IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999 573

A Structured Adaptive Supervisory Control
Methodology for Modeling the Control of
a Discrete Event Manufacturing System

Robin G. Qiu,Associate Member, IEEEand Sanjay B. JoshiMember, IEEE

Abstract—Two basic measures, model complexity and model for the shop floor is usually evaluated by the following two
construction efficiency, are usually used to evaluate the imple- pasic measures:
mentability (or ease of use in practice) of a methodology for . o
modeling the control of a discrete event manufacturing system 1) Model Complexity—a quantitative measure. The com-
(DEMS) on the shop floor. Many well-recognized methods are plexity of a designed control model (in terms of the
used to represent and analyze the dynamics of DEMS'’s, but number of control states) should not exceed the limits
not many relevant applications have been found in developing of practical implementation.

control software for the shop floor due to their shortcomings in - - P
satisfying these two measures. This paper explores a method- 2) Model Construction Efficiency—a qualitative measure.

ology for modeling the control of a DEMS, which leads to A methodology should be able to support systematic
ease of control software development, rather than a new rep- construction of a control model from start to finish
resentational/analytical tool, by significantly reducing the model without iterating through phases of trial, analysis, and

complexity (in terms of the number of required control states) and redesign. The resulting design should satisfy all the
improving the model construction efficiency. First, an extended ’

finite machine, called a deterministic finite capacity machine specified control objectives.
(DFCM) with parallel computing capability is developed. Based Currently, Petri nets and supervisory control theory are
on DFCM'’s, the complexity growth function of a DEMS control popular approaches used to model and analyze the controls

model is linear in the number of synthesized control components.)
Then, an automaton structure of a DFCM control model, called of DEMS's [6], [9], [10], [13], [17], [18], [25]. Because of

structured adaptive supervisory control (SASC), is developed. By the combinatorial explosion of solution complexity when the
referring to supervisory control theory, an SASC model is created dynamics of a DEMS is modeled using these theories [7],
with three function layers: acceptance, adaptive supervision, and [11], [18], [19], they are typically limited to creating control
execution. The well-defined structure ensures that the control odels of simple systems, such as small or medium-sized
model can be constructed systematically. . . - . .
systems with a fixed part-mix and given processing routes
[6], [13], [25]. For example, when modeling the control of a
two-machine, two-robot, two-buffer, and two-part-type system
NCE a large portion of the cost of establishing a discretgsing supervisory control theory, the size of the potential
vent manufacturing system (DEMS) on the shop flo@ontrol state space is in excess18P® states [24]. Although
is consumed by its control system [1], significant researthe size of a Petri net model in terms of the number of control
has been conducted to develop methodologies for modelisigtes can be controlled (i.e., it could grow linearly in the
the dynamics of DEMS’s [3], [5]-[7], [9], [10], [13], [14], number of control components), the size of the reachability
[17]-[20], [25]. Existing approaches include Markov chainggraph used for analysis to attain the final control model grows
queuing theory, Petri nets, and supervisory control theory [1Exponentially [7]. Therefore, the effort in resolving a control
Developed models using these approaches are widely appkgfithesis problem using either Petri nets or supervisory control
for analyzing the behaviors of DEMS's, but very few of thentheory can be extremely complex and easily go beyond a
have been transferred into manufacturing control systems gs@ctitioner’s ability.
to their limited implementability (or ease of use in practice) The control model of a DEMS using Petri nets is based
on the shop floor [2], [16], [24], [25]. For a methodology ton trial, analysis, and redesign to converge to a model with
be applicable to developing control software on the shop flogfe desired properties [6]. There has been some effort to
it must support construction of a control model in an efficiefhyestigate efficient modeling techniques using Petri nets [13],
and effective manner. The implementability of a methodologys), but no methodology for systematically modeling the
Manuscript received April 15, 1996; revised September 16, 1996; May 1dynamics of a large-scale DEMS on the shop floor has been
1999; and July 20, 1999. This work was supported in part by NSF Presidengadtablished. In contrast, supervisory control theory provides
ngggi;g’elzsé'i?;t%ﬁvﬁd DDM9158042. This paper was recommended Elysysj[ematic approach from start to finish, and unlike Petri
R. G. Qiu is with the Factory Systems Division, Kulicke & Soffa Industriesn€ets it does not require iterating through phases of trial,

Inc., Willow Grove, PA 19090 USA (e-mail: rqiu@eng.kns.com). _analysis, and redesign, to modeling the control of a DEMS.
S. B. Joshi is with the Department of Industrial and Manufacturin

Engineering, Pennsylvania State University, University Park, PA 16802 US%.mce supervisory control th_eory is a modeling methodology
Publisher Item Identifier S 1083-4427(99)08394-0. developed from the synthesis of control theory and automata

I. INTRODUCTION

1083-4427/99$10.001 1999 IEEE

574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

theory [17], [18], it guarantees that the designed model foaturally as the number of machines and parts increases [11],
controlling a DEMS yield the desired properties. [15], [18]. That is, the size of the control space will be the

Although supervisory control theory provides a systematfroduct of| M| x |Mz|x - - - | M, |, whereM; for 1 < ¢ < m is
method to model the control of a DEMS, the control-space ea-component of the DEMS, and/;| represents the cardinality
plosion problem still limits its shop floor applications [2], [7],0f the control state space of componéd}. Obviously, as the
[24]. Hence, a methodology applicable to the manufacturirgigze of the DEMS grows, the control problem of the DEMS
shop floor for the modeling and control of a DEMS, whiclwill eventually become too large and practically unresolvable
leads to ease of software development rather than a genermlthe shop floor with the enabling technologies (although it
representational and analytical tool, is worth further explds resolvable in theory). This type of system and explosion
ration. In this paper, a two step approach is used to explaseclassified as an NP-hard problem and cannot be resolved
such a methodology by addressing these basic requiremespimally without a new approach to reduce the size of
carefully. constrained control state space [22].

First, a modified finite machine, called deterministic finite Delving into the operations of a DEMS reveals some unique
capacity machine (DFCM), is systematically developed tharacteristics, which are worthy of consideration during the
model the dynamics of a DEMS. Automata and languagkesign of a control model. All the asynchronous events (except
theory is used to provide a firm mathematical foundation those concerning the loss or recovery of machine capability
study the logical behavior of a deterministic event systerin a DEMS) are associated with on-line part states. In other
Using these theories, the structural and behavioral propertigsrds, a machine state or event can be mapped into a part
of the formal model of a deterministic event system can tstate, while the part state is normally easy to trace [20].
precisely defined and analyzed. Thus, like supervisory contfiis characteristic in manufacturing automation is capedt
theory, automata and language theory is used as the basiseability. The dynamics of a DEMS can be then modeled by
for the theoretical development of DFCM'’s. By capturinglescribing all the possible part states instead of all the possible
the specific characteristics of a manufacturing control systamachine states within the DEMS. As a result, the control issue
and combining the technological advances in multi-processa DEMS becomes one that all the on-line part states should
operating systems, a DFCM is developed with the capability b& dynamically and cooperatively changed as desired.
running multiple computations in parallel. Consequently, the A part advancing through a DEMS can be described by
control-state-space explosion problem is resolved successfuily.part flow—a diagram showing the sequence of part states

Secondly, an automaton structure of a DFCM control modadquired to process this part within the DEMS [16]. If a
called structured adaptive supervisory control (SASC) is dmguagelL is used to represent all the legal sequences of
veloped for describing the dynamics of a DEMS. By referringart states for these desirable families of parts manufactured
to supervisory control theory, an SASC model is defined with a DEMS, a string from the languagde provides one legal
three function layers: acceptance, adaptive supervision, agfjuence of part states for a particular part. For each part,
execution. The well-defined structure ensures that the SA8{ere exists at least one string indescribing how to make it.
model can be constructed systematically. In terms of modeling the control of the DEMS using automata

The remaining paper is organized as follows. Section Il angreory, when only one part enters the DEMS, a recognizer
lyzes the specific characteristics of manufacturing automatia®, for the languagel should describe (recognize) the trace
from which the requirements for control are derived. Sectiasf the part advancing through the DEMS. But if the DEMS
[l reviews the basic terminology and notation of the theoris machining multiple parts, all the separate part traces are
of automata and languages and provides preliminaries for tifign required to be recognized simultaneously. According to
paper. Section IV develops the theory of deterministic finitgis observation, a control system can be considered as a
capacity machines. Section V systematically investigates th&ognizerG, capable of recognizing a shuffled language
structured adaptive supervisory control. Section VI showswehereL, = {w:zx =z ||, - ||ls Zi- ||s &m fOr 1 <i <m
typical implementation of the developed methodology. Finallyand «; € L}, ||, is the natural shuffle operation, amd is the
conclusions of this paper are presented in Section VII. maximum number of parts being machined within the DEMS.

Theoretically, whenn languages are shuffled amdis the

average number of control states required for a recognizer to

II. SPECIFIC CHARACTERISTICS OF recognize a language, the number of control states required
MANUFACTURING AUTOMATION for a recognizer to recognize the shuffled languag@(is™).

A DEMS is composed of finite asynchronous equipmemt other words, even though the dynamics of a DEMS is
components [4], [6], [11], [17]-[19], [25]. The control statedescribed by the set of all the part traces (instead of the set
space of the synthesized control model of a DEMS suffeof all the legal machine-event sequences), the complexity (in
from exponential growth in the number of components [19jerms of the number of control states) of the DEMS recognizer
Take for example, an abstracted manufacturing system cdrs could be the same as that of a control system recognizing
sists of m machines. The controller for this system must ball the machine-event sequences.
formed in such a way that all the control states of individual However, it is worth noting that all the strings (part traces)
asynchronous machines are synthesized and the desirallla DEMS are from the same languaderepresenting all
control properties are acquired. Consequently, a combinatogassible part-flows within the DEMS. As discussed, it is
explosion in terms of the number of control states arisg®ssible to construct a new recognizgér which recognizes

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 575

the shuffled languagd.;. But instead, one could form aThe relationxoll*ow, which relates arguments &t to results
coordinator which coordinates all the necessary recognizefsP, is called as théransfer relationof P, and is denoted by
G, for 1 < i < m, whereG,; = G, and each’; is required
for tracing an individual par{z; € L; = L). (A part is
physically traceable.) Thus, the control model space of g long as programP is deterministic and has no null
DEMS will avoid the control-state-space explosion promerﬁ’lstructions, ther of P is a partial function.

associated with constructing a recognizer for Itis the use |t 3 program is faced with a choice of which instruction to
of the concepts of coordination of multiple computations anghform next or whether to continue or terminate, the program
part traceability that provides the foundation for the solutio ,ondeterministic The program isdeterministiconly if all
approach, presented in this paper, to modeling the controligf penavior of the program is precisely determined.

. T
7= aoll*ow, ie.xr—y.

a DEMS on the shop floor. When a programP is installed on a finite maching\,
machine M is an operational finite maching5], which can
[ll. TERMINOLOGY AND NOTATION [8], [12] be formally denoted as
A machine M is an ordered tuple oflevicesd; for i = M=(Q,%,ALq,Q;),

1,2,...,k, specifically denoted by, ,ds, ..., dy]. The class
of devices consists of control, input, output, stack, queue, tapéd)ere

etc. A machine type is defined by a fixed combination of ¢ finite control set;

different devices. If maching1 has no storage devices other input alphabet;

than the control, it is called finite machine A machine state A output alphabet,

is called aconfigurationof a machine, which is the aggregate 1 finite instruction set;

of all information stored by the machine’s devices. Formally, ¢, € @ initial control state;

a configuration is &-tuple of stateC = (¢, ¢2,...,c); it Q; € @ final control set.

specifies that the state of devideis ¢; fori =1,2,... k. If a program on machineM is deterministic and only

A program for a machineM comprises annitializer «, determines the membership of an input string, ie..€
aterminatorw, and a finiteinstruction setI for machineM. L(M) < z & ACCEPT, L(M) is used to denote the

An initializer, a = (a1, @g,..., aq), for machine M is |anguage accepted by prograon machineM and machine
an injection which maps an argument to the initial comy is called as adeterministic finite acceptor
figuration of machineM. Typically = € X", where¥ is |f 3 deterministic finite acceptor replaces its input by an out-
an input alphabet, denotes an argument to progfamand pt, then the acceptor becomedeterministic finite generator
Co = (1,0, 2,0, - - -, c,0) denotes the initial configuration for The generator is defined to be a deterministic automaton by
machineM. The relatione is defined as including the marking concept [1717 = (Q, %, 8, g0, Qm),
va = (zan, vam, . wan), ie. % Co. where @ is the state spacé; is the alphabet or set of output

symbolsa, § : 3 x @ — @ is the transition function (pfn),
Similarly, a terminatorw = (wy,ws, .. ., w), for machine % € @ is the initial state, and),, C _Q is the set of marked

M is a partial function which determines whether a languagi@tes- The language generated®ys

is accepted or whether a transduction is completed. It is worth L(G) = {s € ©* : §(s, qo) is defineg.

noting that no result is produced unless all devices are in a

final state. We denotg € A* as some result, wherd is The language marked b§ is

an output alphabet, and; = (c1.7,c2.7,. .., ck) @s a final B) .
configuration for machine\. Then if the terminator, maps Lin(G) = {5 € L(G) : (s, 90) € Qm andw is well-behaved.

the configuratiorC’y to some resuly, the relationw is defined |t hrogram® on machineM is deterministic and maps an
as input string to an output string in one complete computation,
ie.xz 5y, & € X y € A*, programP on machineA
) " completes a finite transduction and machihg is called a
and ¢ pory, i.e.,Cpr—y. deterministic finite transducer

If machine M has a complete computation on argument
then machineM halts on z. If machine M is blocked the

by arr]'_ Instruction. Ar? mstruft_:tlon r_nap/s ahgonflgure_ltlﬁnof current configuration of maching/ is neither in the domain
machineM to another configuratior©”. This mapping can of any instruction nor in the domain of.

be completed in one step iff there exists some instruction
7 € I such thatCxC’. This mapping can be simply denoted
as CIIC" wherell = U,crn. If a finite number of steps is
required to complete this composite relation, it is denoted) .
as CII*C’. A computationis the sequence of instructions™ Basic Concepts and Representations
({m1,72, .., 7p, ...}y €Xecuted when prograr®? is run on For a finite machine a task € 7 (a set of tasks) is
machine M. Therefore, a complete computation &f on a specified string which requires computing to determine
argumentz with resulty exists iff anzall*wy also exists. whether it belongs to the domain of a languagepracessis

Crwy & ¢ ywiy and ¢ jwoy and

An operation for each device of machidel is designated

IV. FINITE CAPACITY MACHINES

576 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

program 2 program 2
task th I task t m

| l

process P process P e . process Pm

task t

Fig. 1. Single process versus multiple processes on a finite machine.

Fig. 2 State transition diagram of a finite capacity machine.

a program whose computation has started but not terminated.

Using the analogy of computer operating systems, MS-DOS . token holder
supports one process, while UNIX supports multiple processes. —) ‘

As a finite machine can have only one process at a time ‘ control state q%
[Fig. 1(a)], a finite machine should be able to be extended ‘
into a new finite capacity machine capable of running multiple O

control state capacity

processes simultaneously [Fig. 1(b)].
A finite capacity machine can be considered as an aggregeite 3. Basic representations.

of multiple identical traditional finite machines. To a finite

capacity machine, each finite machine seems like a process; b

each process has its unique input and output devices [16].

To identify a process, a digitized token is used. The forma

definition of a finite capacity machine is then given as follow§
Definition 1: A finite capacity machingFCM) is formally

defined by

Fig. 4. One basic transition.

= (Q7 le Q;n? Enlv Anlvlv q0, Qf)

where Node O is the initial and final state. The meanings of these
Q finite control set, which includes all the mainsymbols in this diagram will be explained shortly.
control states forM; If each of the main control states is considered as a type of
Q' extra finite control set, calledtate-availability resource whose capacity is limited, then a computation can be
control set, ¢, € Q = {0,1}, ¢ € Q. If interpreted as a sequence of resource uses. Let the capacity of

¢, = 1, then the control state; is available a resource(q; € Q) ber; (r; = 1) fori =1,...,n, where

for a transition fromy, otherwise control statg; n = |@Q|. The finite machine capacity will b& = >"" , r;

is not available; Therefore, the number of allowed processes should be not
m multiple-extra control set, calledigitized token greater than the finite machine capacity, i7e.< R.

control set, which is the Cartesian product of all A process obtains a unique digitized token when the process

the digitized token control set§);* = x;nl ¢ is initialized by the initializera, and returns the token when

t
qtq € Qi = {01}, ¢ € Q. If ¢, =1 for the process is terminated by the terminator[Fig. 3(a)].

i=1,...,m, then there is a d|g|t|zed token inA token booth is used as the provider and collector of
stateq, otherW|se theth token is not in statg; tokens. The number of tokens in the token booth can be any

nm multiple-input alphabet, the Cartesian product gpositive number not greater thdd Fig. 3(b) shows the three
all the inputs, i.e. XM = ><Mlzz, ¥; € ¥ (an components of a node: control state, token holder, and control
input alphabet) for = 1,...,m; state capacity. The capacity of a token holder is equal to its

A™ multiple-output alphabet the Cartesian product afontrol state capacity, i.e., resource capacity. A basic transition
all the outputs, i.e. A™ = x7 A“ A; CA (an of an FCM M is shown in Fig. 4, wherel/ completes an
output alphabet) foi = 1,...,m; instruction

1 instruction set;

={qp — a,a, (¢, =0.¢,, =1) = (¢, = 1,4, =0),

qo € Q initial control state; ; ; i
Qiq, — T, ;> forsomei=1,... m.

Qs C Q final control set.
Like a finite machine, a finite capacity machine can aldb the configuration of machinel{/ is represented by’ =
be graphically represented by a state transition diagram. Tie, ¢, Q7*) [8], then this transition changes the configuration
diagram consists of a finite number of nodes and a finifeom (qo,(0,1),(1,0)) to (¢, (1,0),(0,1)). A transition can
number of directed arcs. All the arcs except these representbegfired fromgg to ¢, iff ¢, is ava|lable, i.e.q, =1
the initializer and the terminator are interpreted as instructionsThe use of the token and availability concepts may make
« € I. All the nodes are interpreted as the main control stataa FCM look similar to a Petri net. In fact, a token in an
q € Q. Atypical state transition diagram for a machine capableCM is totally different from one in Petri nets. In a Petri net,
of running four processes is shown in Fig. 2. The nodes labeledoken represents the availability of a place. When a token
0, 1, 2 correspond to the main control states of the machimists in a place, it means a condition in the place is satisfied

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 577

and ready for next transition. A transition can be fired iff alFor each complete computation of a process on the DBZM

the required conditions for firing it are satisfied. Tokens amne can say that an assigned task is performed successfully,
unceasingly diverged or converged during computation [@]e., there is a
[13], [25]. Thus, the physical meaning of a token also varies

with places. But in an FCM a token represents a physical 4 4
entity (e.g., part in a DEMS). It never changes its physicifhere= € (X9%, y € (A", andll = Uresm. 4
representation during computation. A token also identifies aNOte that a state transition occursdff : X' xQx Q' xQ; —
computation process. The concept of a process tracing fig @' x @i for1 <i<mis dgfme/d. For a multiple process
entity (token) in an FCM is unique, and neither a Petri n&iCM: if @ requested state satisfigs = 0, it simply means

nor a supervisory control model includes this concept. that the requested state is occupied by some other process. In
other words, the requesting process should be kept waiting in
its current state until the requested state is released,g}.e.,
turns to 1.

When only one individual process is run on an FCM In the case of a tie (multiple processes requesting the
M, machine M will function exactly the same as a finitesame resource simultaneously), the conflict can be resolved
machine. However when multiple processes are computinging their token values as their priorities. For instance, a
simultaneously, the processes compete for resources Wwitilacess with the highest priority will execute first. The priority
each other. The fixed capacity of a token holder will causgtting can be transformed into a scheduling problem (beyond
conflicts if too many processes attempt to transfer into thiee scope of this paper). The token value of a process can
same control state. It is obvious that effective coordinatidse modified internally or externally without affecting the
between different processes can avoid these conflicts. Bymputation of the process. Therefore, it is the existence
referring to the coordination theory for intelligent machinesf a transition-availability control set and the well-defined
[23], a method to coordinate different processes is studied. 3agmented state transition function that ensure that all the
investigate how processes can coordinate with each other, ipi®cesses started can run in a coordinated manner.
necessary to understand how an individual process works in gpfter the concept and coordination mechanisms of processes

T 3
zr—y, T=aoll'ow

B. Coordination of Computing Processes

parallel-computing environment. have been exploited, a DFCW can be simply defined by
The definition of an individual process on an FCM is
as follows. M= (P[Pl -1l P)

Definition 2: One process’; for somel < ¢ < m, runNing \yhere || is a parallel line which indicates the concurrence of
on a finite capacity maching/, can be formally defined by gjstinct processes. The configuration of the DFCWI will

P =(Q,Q,Q1,%, A" T, q0,Qy) then be described as
wh(_ar_e_Q, Q', I, g0, Q; are defined the same as these in C = C1{(+)Co(4) - - (+) O,
definition 1 _ o _ _ - o
Q! extra control set, called a digitized token control Sewhere(Jr) isa d|510|nt_cpnf|gurat|on addition through distinct
' 4, € Qi =101}, g € @ processes. More explicitly, i€ = (Q, @', Q™), then
% input alphabet; % (ero,¢ er)
A® output alphabet. 4 T 1k
If only a deterministic FCM (DFCM) is considered, then _ (dor sl
the behavior of a process running on the DFCM is PN TR T)
precisely determined by the instruction seffor 1 < i < (Ems Crmis - - - s Emats)

m. (Although a nondeterministic finite machine can simplify qx

machine construction and provide sufficient problem-solvin k m

: AR here,e;; € (0,1), > ey =1,1<i<m, > " e,; =1

information, it is impossible to physically build an operationa o V) Leg=0 T V==Y Lwi=0 T ’
b ol ! f<y§/c,1s@,y,kSnlel-

machine based on a nondeterministic finite machine.) T eE—3 ina the ab di _ the following f
instruction setl [8], [12], [17] can be further defined as y summarizing thé above discussions, the toflowing four

remarks are provided to elucidate the operational properties

I= of a DFCM:
{5 PETX QX Qp — @ x @y, state transition function (pfn) Remark 1: A transition of a process on a DFCM can be
g:X'xQ— A output function (pfn) made iff the transition is defined and the next state is available.

1) Remark 2:¢ € @ = {0,1} can be set internally or

An augmented state transition functién: Six Qx Q' x Qi — externally. When the number of tokens in control stgtéor
Q x Q' x Q! can be defined according to i=1,...,nis equal to the capacity of its token holder, i.e.
by > o1 By, = Tis 4y, € Q' is set to 0 internallyg,, = 0 will
ba(0,a % q x Ghq) = ‘ ~ be held until one token is passed on to another control state.
§(0,q % ¢,) if the codomain of, : %' x @ x Q' x Q; Besides, if the token holder loses its capability, as in the case
— Qx Q' x Q) satisfiesg; = 1, of machine breakdowny), can be set to 0 externally. In this
undefined otherwise case,q,, = 0 will be held until its capability is recovered
) (fixed).

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Remark 3:¢i € Qi = {0,1} fori = 1,...,m keeps track Therefore,
of the i¢th token. The token has a unique identification number

(e.g., a valid integer) given when thith process gets started. L(M) = U L(F;)

The token moves to next node iff the associated transition has 1<i<m

been completed. The location of a token shows the state of L(M)=L(P;) forl1<i<m.
a process.

Remark 4: Whenever a process is initialized, it obtains Since a DFCM can be considered as an aggregate of
a token. A process will terminate when it completes itgultiple deterministic finite state machines, the structure of the
computation. At that time, the process returns its token. If TOFCM can be further simplified for the purpose of analysis.
tokens are available in a DFCM, the DFCM cannot accept amased on Proposition 1, the structure of a DFCM can be
more tasks. Since the number of tokens is finite, the capadigfined as the structure of an one-process DFCM but with

of a DFCM is therefore limited. a token control set. Thus, the language of a DFCM then can
be defined in a concise manner.
C. Language Representations Definition 3: The language that can be accepted by a

If a program?® on machineM is deterministic and each DFCA can be defined as the language acceptediby=

processP; of a DFCM M for 1 < ¢ < m only determines the (@Q,Q, Q7 %, 1,q0,Qy), ie.

membership of an input string, i.e.
L(M) = {z:z € ¥* andz +> ACCEPT}.
z € L(F;) & = — ACCEPT, When L physically represents all the process plans required
to produce parts, a string ih is a sequence of operations
L(F;) is used to denote the language accepted by procesguired for completing a part. Since each type of part can be
P;, L(M) to denote the language accepted by progfaran made by following different process plans, a task equivalence
machine M, and machinel! is called adeterministic finite class or coset in terms of process plans (strings) can be
capacity accepto(DFCA). identified according to the following two definitions [8], [16].
If a program® on machineM is deterministic and each More specifically, all of the possible processing alternatives
processP; of a DFCM A for 1 <4 < m tests the membership defined for processing a part will be included in a task

of an input string within a finite computation, i.e. equivalence class. Therefore, no matter which alternative is
chosen from this partitioned coset, its computation can be
z € L(P) & » > ACCEPT, and completed and the task can be performed successfully.
)

Definition 4 (Task Equivalence)Let L be a language of an
FCM. Two stringsz; andz- are task equivalence with respect
]] to L (denoted as(:léLa:) if
L(P,) is used to denote the language recognized by process
P;, L(M) to denote the language recognized by progf@m
on machineM, and machinél/ is called adeterministic finite

capacity recognize(DFCR). , L wheree represents the set of characters physically completing
If program 7> on machineM is deterministic and each \one of yseful tasks (e.g., a part being sent to a buffer and
processF; maps an input string to an output string in ONGyaiting for further processing or inspection).

complete computation, i.e: — y, x € X, y € A", program pefinition 5 (Task Equivalence Classket L be a language
P on machineM completes a finite transduction and machings an EFCM. The class of task equivalence will bg = {«’

M is called adeterministic finite capacity transduc@@FCT). ¢

For each proces®; for 1 < i < m of a DFCA, if the * ~Lal.
process finishes a complete computation, then an assigned t
is successfully completed. The language (set of tasks) accep
by the process of the DFCA is

x ¢ L(P) < = > REJECT

(Vu €) (Vv € ul| ,e")[z1u € L & zov € L],

Qweorem 1:If L is a shuffled language df;, Lo,..., Ly,
reL; = L; for 1 <4, j < m and.L is recognized by a
eterministic finite recognizel/, then there exists a DFCR
which is at least as powerful as the recognizér
Proof:
1) For simplicity, first assumer = 2, thenL = L4 ||s L2
(L1 = L») is defined by

L(P) = {x:x € (¥)* andx > ACCEPT}.

Proposition 1: The language of a procegsfor1 <i <m
of a DFCM M is equivalent to the language of the DFCM.
Proof: Based on Definition 1, the language of one
processP; has the same language as that of another process Y=Y1...Yj---Yn, andx € L1,y € Lo}
P (i#7,1<i<m,1<j<m)since all the processes are
running the same program ol

L={sis=my ... 0¥ .. . TnYn, T =T1...%i...Tn,

wherez, y can be strings of any lengtle;, y; for 1 < 4,
j < n can be either characters or empty. Furthermore,
L(P)=L(F;) for1<i, j<m. assume thad/ recognized.. ThenR can be constructed

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 579

M R(P and P) WORKSTATION
1 2

Wiyes. L sexly) | parallel lathe
x|| y)=s. s(=x|ly) ||: paralle
l buffer
o, %,
G T G mill | M2 robot

1 i

Fig. 6. Typical workstation.

thenn; = ny = n. Since M is capable of computing
) . x € Ly andy € L, simultaneously without shuffling
z andy as one input string, the size dfl in terms
a, Q of the number of control states ©(n) rather than
1) O(n?). Whenn increases, the size @f increases with
n proportionally, i.e.,O(n).
Fig. 5. R lockstep simulatesi/. 2) In general, if a recognizer needs to recognizelan-
guages, i.e. the shuffle dfy ||s L2~ ||s Li - ||s Lm
for 1 < ¢ < m, it will requires for O(n™) control
as a two-processi{, and F,) DFCR (R's program P states, where: is the average number of control states
recognizesL; or L, L; = L). The representation for the recognizer ofL; for 1 < i < m. M is
relation p of R and M configurations can be defined capable of computingr strings by runningn processes
as simultaneously. Thesen processes are running in a
coordinated manner so that all the computations will
i be complete if those strings are legal. This is
< x)v(q(]ovq(]lv"'vq(]n)v
0
0

1

g <

CrpCur = (& izB: (L: = L. i
q constructed to recognizk; (L; = L; for 1 <4, j < m)
rather thanL, = Ly ||s Lo--- ||s Li--- ||s Lm for
(,0)
(P

1 <1 < m. Therefore, whem increases, the size @ff
still increases proportionally with, i.e., O(n).

If ¢, forl <4 g n is always marked as a red characterD_ Adjustable Transitions

andy; for 1 < j < n as a blue character, then whenever i .)

R receives a red characteP; computes; otherwis®, Assume that each node in a DFCA state transition diagram

computes (Fig. 5). I\ acceptss, then R accepts both f€Presents one resource in a DEMS. Whga = 0, the
= andy; if M rejectss, thenR rejects bothz andy. control stateg incident to control statey will be held. In

2) In general;n can be any integer number. By markingother words, since the transition of control stateis not

all the characters of a string from a different Ianguag%va'lable' the process will be put in its state waiting for the

in a unique color and constructing using the above refsotl;]rce. If a resource IS n fl.JtI.I opetratuonsthand al tr:jzllt{sersi
techniques,R can be formed, which simulate®! in of ofher resources are in waling states, then no additiona

a lockstep manner. Therefore, there exists a DFER sta_te t_ransmon can occur. ThlS_Sltuatlon results in the low
oo utilization of the resource, potentially even a system deadlock
which is at least as powerful a& [8].

_ i for the DEMS if the resource is pivotal, such as a robot, and
Theorem 2:When a DEMS is modeled by a DFCR, they, oiher kind of material handler. To avoid this undesirable

number of control states in the DFCR grows linearly in th?ituation, a distinguishable subset of the input alphabgt
number of resources of the DEMS. ‘is defined. Like supervisory control [17], [18], an operation
Proof: Note that each of the main control states Ny, g % ¢.q1 x ¢}) is an adjustable operation i € 3, C ¥.

a DFCR can be considered as a kind of resource, themhg adjustable operation is graphically denoted-as-. Let
computation can be interpreted as a sequence of resource uses.

Assume a DFCR is defined a¢ = (Q, Q',Q1, %, 1, ¢, Q). U= {1}% u{opr—>e

If |Q] = n, thenn indicates the number of resourcespe the set of assignments to the element&ofrhen a total

According to Proposition 1L(M) = L(F;) for 1 < ¢ < m. fynction+ : £ — {0,1} holds, which is an adjustable pattern.

The proof of this theorem can be also divided into two StepS-ExampIe 1: An automated manufacturing workstation con-

1) For simplicity, first assume: = 2, then the shuffled lan- sists of two machines/; and,, one robotR and one buffer

guage ofL; andL, willbe Ly ||; Ly = Uzer, yer,% ||s B (Fig. 6). Assume that each of these resources has a capacity
y. If the recognizer of.; hasn, control states and the of one and the robot can access all the other resources. The
recognizer ofL, hasny control states, the recognizer ofcontroller of this workstation can be then constructed as a
Ly ||s Lz will need O(n1n2) control states according to DFCA whose state transitions are shown in Fig. 7. The state
Myhill-Nerode and Pumping theorems [8].4f, = L, transitions &, b, ¢, d, ¢, and f) physically correspond to all

,0,...,1“‘}1,...
0, Ljth, -+, 0)

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

lathe Input Feedback
| A
(Acceptor
Tk .
buffer Queue Decision layer
| S (Adaptive supervisor) | Supervision layer
£ (Executor) Execution layer

v I

Output Feedback

Fig. 7. State transitions of example 1's controller. Fig. 8. Well-structured SASC model.

More specifically, letzg = apfp--- (o and = indicates

the possibilities of part-flows within the workstation durin%mmediate derivation due to a substitution under a task. If

production.
Formally, the controller is defined b/ = (Q,Q", Q™,
%, 64,90, Qy), Where To=> T = =T,
Q = {0,1,2,3};
Q' = {0,1}; then for everyi (1 < i < n), there exista;, f;, - - - ¢, with
m 4 x 4 token matrix; x; = «;f3; --- ¢ such that
by = {a,b,c,d,e, f};
SHETS A = a,
Sa defined as (2); fo=Pr= = Pa,
Qo = 0; e
Qy = {0} == =6
£ {e, d};
E(M) : 82?; 305)3&’ As long as each derivation is taken according to Definition 6,

)) n can be any finite integer.
Let us see how the adjustable pattern works in the example.

If the lathe has a part, they}; = 0. When a new part requests
an operation on the lathe, the robot will first pick up the part; V. STRUCTURED ADAPTIVE SUPERVISORY CONTROL

then before sending the part to the lathe, the robot checksy pEcM can be used to model the control of a DEMS. A
if the transition is available. Since the lathe has a part, thgathod is needed to construct DECM control models, which
check returns false. To avoid this new part from blockingre guaranteed to function as desired and be easily transformed
other operations, the robot should be released. In this cag, an operational control system. By referring to supervisory
transmqn ‘a” should be adjustable, so the robot can be releasggnirol theory [17], [18], an automaton structure called struc-
by putting the part onto the buffer. . tured adaptive supervisory control (SASC) for manufacturing
When (o) = 1, o € %, is adjustable. Butr will be gystems is developed (Fig. 8). To take advantage of object-
adjusted iff it is necessary. Furthermore, if any operation of §iented programming techniques, an SASC model is defined
part has been adjusted, the task should not be changed. Anof&{ave an object structure. The interface for an SASC model
concept termed as substitution under a task is defined belgye only way to connect an SASC controller to its outside
which assures that a part can be completed even though SQR®id components) includes an input, an output, and feedback.
operations of the part have been changed during productiofthe input receives incoming messages from a task-requesting
Definition 6 (Substitution under a TaskFor = € %* and ypjt and returns controller states to the task-requesting unit.
y € A*, atransfer re/latiorfr can be substituted under a task by output sends out commands to a task-executing unit
ar'iff x>y & o' S yif 2 € [z], where[z] = [z :a:’ém:]. and receives feedback from the task-executing unit. All the
Proposition 2: Substitutions under a task assure that thembedded methods can be classified into three categories:
assigned task will be successfully complete, no matter halcision, supervision, and execution.
many transitions have been adjusted within its computation. The execution layer consists of an executor. In terms of
Proof: The class of regular languages is closed und@armal languages, its function can be interpreted as accepting a
substitutions [12]. If the process of a computation is dynanenguage, and its structure can be obtained from a deterministic
ically adjusted by observing substitutions under a task, tfiaite capacity acceptor. In terms of the physical operations,
computation retains the task in an unchanged state. the executor executes all the assigned executable operations;

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 581

when an unexecutable event occurs, it requests an adjustmdhthe state transitionga, b, ¢, d, ¢, f } physically correspond
from its adaptive supervisor. to all the possible part flows during production. Formally, the

The supervision layer consists of an adaptive supervisexecutor is defined a3/, = (Q., Q., Q7. %¢, bea, Ge0, Qe)
The adaptive supervisor conceptually functions as a recaghere

nizer, and is constructed from a deterministic finite capacity ¢, = {0,1,2,3};
transducer. In terms of physical operations, it dynamically Q. = {0,1};
supervises the behavior of the executor, coordinates all the rung)m 4 x 4 token matrix
ning processes on the executor, thus guarantees the completion, = {a,b,c,d,c, f};
of all the dispatched tasks. Yea = {a,¢};

The decision layer includes an acceptor and a task queuey;, — 3., = {b.c,d, f};
The acceptor is constructed from a deterministic finite capacitys_, defined as (3);
transducer, and performs two functions: oo = 0;

1) checking the capability of the controller to complete an Q. = {0}

incoming task; r = {1}¥ea U {0} Fee,

2) taking action by accepting the task and mapping it intQonsequently, the accepted language for executbr is
a task in an executable format, or by rejecting the ta®qown

if it is beyond the controller capability. .
The existence of an acceptor ensures that all the computir%Me) ={z:z e X and(z, go X gio) = (A, gey X acp)}
processes on the executor will be nonblocking. The task AU&HRere A stands for an empty string, i.e
simply collects all the accepted tasks and dispatches them to
the lower layers optimally. L(M.) = (abUcdUef)".

A. Executor For example, a part pl needs three machining operations in

) , the workstation according to the process plan, <<M1-turning,
The behavior of a DEMS can be completely described Ry y,ring M2-milling>>. This process plan belongs to the

its structured event-graph at the part-flow level [15], [zohomain of traditional manufacturing process plans which calls

which forms the state transition diagram of the DEMS. Thgut routing sequences. To execute this process plai/on

event-graph can be then transferred into a DFCA. Formally A%hould be converted into a string = ‘ababef’ such that
1 1 P / m
executor is defined adl. = (Qc, Qc, Q% e, be; Geos Qes)y 4 ¢ L(M.). The class of task equivalence for part 1 is

where
Q finite control set; [zp1] = (ed)*ab(cd)* ab(cd) e f(cd)*
QL transition-availability control set; . . .
m token control set: i.e., any string fronx,,1] describes part p1 task. For executor
E:t input alphabet; ' M., a complete computation of such a string fram,]
5; transition funct'ion; physically indicates the task completion of part p1l.
q €Q initial control state;) _
Q; C Q final control set. B. Adaptive Supervisor
The accepted language is An adaptive supervisor oversees the behavior of the

executor M.. The adaptive supervisor can be formally
defined as a filter which is a particular DFCT{, =

As discussed in Section IV, a distinguishable subset of thes: @5 @st: Xss s, 85, 951 40, Qs), Where Qs, @, Qi
input alphabety., can be defined. An operatiofs,q. x > Ds; G0, sy are defined the same as befofe; >, x

¢, q.1 % ¢',) is an adjustable operationdf € ¥, C 3. Let Q. — Q, is the state tr_ansition function (pfry,: 2, x Q4 — _
A, is the output function (pfn), and whose transfer relation

L(M.) = {z : z € & andz > ACCPET}.

[= {1}%e u{0}= e T is given by
be the set of assignments to the element&of A function =, if x €L,
~v:%. — {0, 1} holds, which is an adjustable pattern. Further- = undefined otherwise

more, an augmented transition functifyy: . x {Q. xQ.} —

{Q. x @'} (pfn) can be defined according to Obviously, L N L. = L is regular.

Let Q77 = @7 and couple procesg;; of supervisor
bea(T,qe X diq) M, to processp.; of executor M, for 1 < i < m by
6c(0.q.), if the codomain ofs,, : & x Q. x . @ lockstep loop in such a way that a currently computing
- — Q. x Q! satisfiesq,, = 1, instruction can be completely computed &f, iff its output is
undefined otherwise currently executable of/,; otherwise, the instruction will be

3) temporarily blocked. A couplet = (T, 11) is required, which
functions in a lockstep loop manner such that an operation on
The executor foExample 1can be constructed as a DFCAM, and its corresponding operation dd, can be stepwise
whose state transitions are correspondingly shown in Fig.cbordinated.

582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

xXQ. > . g
M, {Zs Q. —»Q ___ SCAN /WRITE a

2. xQ, > A, SCAN b/WRITE b
T4 i SCAN e/WRITE e
M, [(x>xc)xeXi, ced,] ====>3,xQ.,xQ,'>Q, xQ,’ SCAN f/WRITE f

Fig. 9. M, and M. are coupled by a lockstep loop. @

Formally a coupler¥ = (7', 1I) is defined as a coupling
function by Fig. 10. State transitions of the supervisor.

T:{ESXQSHQS

=> [z —ac):xeXlceX] (4)
Y X Qs — A C@ SCAN a/WRITE a

H:(EereXQ;ﬁQeXQ/@) (@
=[x = xc) 1z € X7, c€] (5)
SCAN @/WRITE ¢ /WRITE d
T is a downward lockstep feed which guarantees the output 0 @

of M, accepted stepwise by/.; II is an upward lockstep
feedback which guarantees that the next operatiod/grcan
be computed iff the operation ai’. has been completed. The

function of a coupler is graphically shown in Fig. 9. /WRITE a
In a DEMS, a currently running operation can possibly p'

be blocked (or conflict with others) due to the existence of

concurrent and asynchronous operations. In order for executor ®)

M. to complete its temporarily blocked running process, tHgg- 11. A subprogram substitutes an instruction.
adaptive supervisoid, has to be capable of replacing its
program (making a dynamic adjustment) by another in such
a way thatM, will still successfully execute its running task

Ml

under the supervision ab/,.
The state feedback magp is defined asp: Q, — I' x A
Q. which is a function that maps supervisor stateinto SCAN I/WRITE a /WRITE b
<o

adjustable patterny and M.’s state g.. Define ¢(g,) = 1
for eachv(s) = 1 and¢. = 0, which simply means that a

block or conflict occurs in the current computing process on a

M.; otherwise,¢(g;) = 0. When ¢(q;) = 1, the supervisor ¢ ® ’

has to adaptively replace its program by another such that the robot

new program will map a newly coordinated operation sequence

from the current task equivalence class. SCAN 2/WRITE ¢ /WRITE f

As discussed previously, the completion of a task is defined
by the completion of a computation on a machine. A formal
definition for task completion during an adaptively supervised
computation can correspondingly be defined as: a task is M2
completely done iff the coupler = (7", 11) of M, and M. has
simultaneously led\/, and M. into their final states during Fig. 12. State transitions of the acceptor.
their computations.

) 4

For the workstation in Example 1 its adaptive The equivalence class for part pl 8p1] = (cd)*ab
supervisor can be constructed df, = (Qs Q,, Q% (cd)*abef(cd)*. It is obvious that for real manufacturing
Y5, Ds,05,95, 450, Qs5), Whose instructions are shown insetyations the Kleene-closufe) will be interpreted as either
Fig. 10. zero or one. Any number greater than one will be redundant.

Without loss of generality, assume that only one adjustable|f 5 state feedback map i8(g;) = 1, the adaptive super-
language accepted by this controller is still described by agjustable operation is considered, there is only one instruc-
i * / tion [Fig. 11(a)] which will be substituted by a subprogram
L(Me) = {Tx P E X a/nd (x,geo X deo) (Fig. 11(b)) wheng¢(gs) = 1. Apparently, any string from
= (A gy X qep)}s 1€ [2p1] = (cd)*ab(ed)*abe f(cd)* can be computed completely
L(M,)=(abUcdUef)". by both M, and M..

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 583

Storage Workstation

Kardex

Rotational Workstation

p bl

i
LI

Assembly Workstation FANUC MI-L &
E E IBM 7545
_£ (E) e—|
IVEEE 8] ravoewn =
] FADAL 4

Cartrac Conveyor

Prismatic Workstation

Ethernet '

Design Workstation Shop Controller

Fig. 13. FMS in the CIM lab at Pennsylvania State University.

C. Acceptor An acceptor forExample 1lcan be constructed ak/, =

If a string z (a given process plan) is mapped into anothéfla: Ya, Ba; Ia; gao, Qay), Whose instructions are shown in
string 4 which belongs to the accepted language of executold- 12. If character 0 stands fqr the rob_o_t, 1 for M1, and 2 for
M., string (or stringy) can be computed completely on botd¥12: thenX, = {0,1,2}. The given traditional process plan,

M, andM.. However, if there is no such mapping, the process=M1-turning, M1-turning, M2-milling>>, for part p1 can be

computing stringe will eventually be blocked. To guarantee®cCepted and mapped into a modified and executable process
that no computing process will be blocked, an acceptor is useign by this acceptor, i.e: =y, or {112} — {ababef} such

to check whether the mapping of an input string is Complet@.alt y € L(M.).

The acceptor resides on the top ;. A string accepted by

the acceptor is a computable task; otherwise, the string is not VI. A CASE StuDY

computable and should be rejected. _ The flexible manufacturing system (FMS) in the CIM Lab at

~ An acceptor can be formally defined as a standard determissnn State is a typical DEMS, which includes three numeri-

istic finite transducer [8]M, = (Qa;Xa; Aa; Lo 4e0: Qar)s cal control (NC) machines, five robots, a material transport

which maps an input string; € L; (a set of strings incom- system, and a warehouse system (Fig. 13). Each computer
ing messages formatted in traditional process plans), 1 @htrols a piece of equipment. Based on the manufactur-
output string,y € L. (a set of strings formatted in modifiedng fynctionality and control architecture [21], the DEMS

process plans and executable for the executor), by a complgijiided into five workstations: a rotational workstation, a

computation, i.e. prismatic workstation, an assembly workstation, a material
o5y o xS (gao, 2, A) transport qukstation, and_a storage workstation.
o The rotational workstation consists of a Daewoo Puma
= (Gays Ay y) numeric control turning machine, a Pratt & Whitney Hori-
T zon V NC vertical milling machine, a Fanuc M1-L robot,

and an intermediate buffer space containing five slots. The
T=aoll" ow. prismatic workstation consists of a Fadal NC milling machine

584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Kardex a 4 Horizon
— 0L A0 T

Fig. 14. State transition diagram of the FMS executor.

and a Fanuc M1 robot. The assembly workstation consists

of an IBM7545 robot and an IBM7535 robot. The IBM ,

7545 robot performs assembly operations, while the IBM Bea(: Ge X Geq) ‘

7535 robot performs only part delivery tasks. The AS/RS bc(0,qc), if the codomain of., : X% x Qe X QL
workstation consists of a Kardex tray-based vertical automatic = — Qe x Q) satisfiesg,, = 1,
storage system and a Fanuc AO robot. The material transport undefined otherwise

workstation consists of a mini-Cartrac conveyor system which

physically ties all the other constituent workstations into an geo = 0;
integrated manufacturing system. All the parts (raw material, Qe = {0};
partially finished pieces, and finished pieces) are transported = {1}Fee U {0} 5 Fea,

between different workstations by the Cartrac system. In tiimnsequently, the accepted language 6y is known
Cartrac system, six carts are available. Each cart has four slots.

Whereas, all the above processing machines and robots T % N /
capable of dealing with one part at a time. The capacity fo%r&we) = ferw e e and(@, g0 X deo) = (A ey X dop)}
this system can be summed Bs= 3., r; = 37.

A part advances through different workstations based
a given process plan. A part can be completely processed
iff its process plan is successfully executed by the FMS L(M.) = (ac*bUac™ ((d(hi U jk U fg)"e)"
control system. Carts in the Cartrac system and the buffer in U ({(np)*m)* U (g(st)*r)*) c*b)".
the rotation workstation can be used as intermediate storage
spaces between processes. In addition, some parts may ha
alternative process routes during production. Therefore, p ﬁ
state transitions from Cartrac to M1, to M1-L, or to IBM753
and from M1-L to Horizon, or to Puma are adjustable.

The control model of this FMS is developed usin
the presented SASC automaton structure. First, the st
transition diagram of the executor is constructed (Fig. 1
Formally, the executord, is defined asM. = (Q.,

Where A stands for an empty string, i.e.,

As an example, consider the following four parts made in
e FMS: p1, p2, p3, and p4. Their process plans along with
alternatives are: p{Altl: Puma— Horizon, Alt2: Horizon —
Puma Alt3:Fadal — Pumg; p2 {Fadal; p3 {Fadal —
uma— Horizon}; p4 {Altl: Fadal = Puma— IBM7545,
{©: Horizon — Puma— IBM7545}. Based on the definition
3f task equivalence, their task equivalence classes are then

o defined by
e ei726766a7QG07Qef)
where [ep1] = ac* (d(jk)* fg(k)"hi U d(jk) hi(ik)" f
Qe = {07 17273747576777 87 9}7 U lnpmc*d(jk)*fg)(jk)*cc*b,
Q. = {0,1} [2p2] = ac*lnpmc*h,
m 37 x 10 token matrix !
t . N T R
Ee = {CL, b7 ¢, d,C,f, g, hvivjvkvlvmvnvpv% 7’,S,t}; ['/L'p?)] B ac*lnpmc :l(Jk) fg(ik) hL(Jf) ec. b’* 3nd *
Sea = {b.d, f b1 q} [#pa] = ac™(Inpmc™d U d(jk)"hi)(jk)" fg(ik)" ec” qstrcT,

Ee - Eea = {a,c,c,g,i,j,k,m,n,p,7’,s,t}; where [xpl]’ [-/17132], [371;3], and [-/L'p4] e L(MF)

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 585

a
< > (0
{ Kardex
. o
a/a

Horizon

37 tokens

IBM7535
9q ¥

Noa

1 ! N
r/r
/c
s/s
t/t /q
cllig/plcle

C ,
> (P
IBM7545 /1 —— v

Fig. 15. State transition diagram of the FMS adaptive supervisor.

N
g
=]

22 = {aclnpmceb}, 3 = {aclnpmdfghiecb}, [z4] =
{aclnpmdf geqstrcb, acdhif gegstreb}. Apparently, [z1] C
[#p1], 22 € [xp2], 3 € [xp3], and [z4] C [zp4] are held.
‘Horizon’/gh This case study demonstrates
1) number of control states in an SASC model grows
linearly in the number of constituent machines, i.e.,
© = O(n), wheren is the number of machines;

‘Horizon’/dh
‘Puma’/if

/ac ‘Puma’/df

0 e » 2) SASC model can be constructed systematically.
© /cb /ge The detailed process plan specification and production oper-
Kardex Puma ations of the FMS are given in Qiu [16]. The control model
has been successfully transferred into control software, which
‘IBM7535’/gs /pm | | ‘Fadal’/in controls the FMS as desired [16].
tr v
@ VIl. CONCLUSION

IBM7545 Fadal In this paper, a methodology potentially applicable to the

shop floor for modeling the control of a DEMS has been

Fig. 16. State transition diagram of the FMS acceptor. studied. Using the concepts of coordination of multiple compu-

tations and part traceability, the methodology was presented

Then, the adaptive supervisdd; is constructed. As dis- as a two step approach.

. - . First, a modified finite machine (DFCM) was developed,
cussed, the following substitutions under tasks are valid in the . .
. which can be used to model certain discrete event manu-
FMS: b © ¢*b, d & ¢*d, 1 & ¢*1, g & c*q, [& (Jk)*f,

o facturing systems and make sure that the complexity of the
and h ,(:) ,S;jk) h. Thus M, can be constrl_Jcted a;MS ~— constructed control model is linear to the constituent machines.
(Qs, s S%’ES’AS"SS’QS’Q,SO’QSJ“)’ whose instructions are Secondly, based on the concept of DFCM, a well-defined
shown in Fig. 15. Intermediate state$, 12, v3, andvd are 5, 1omaton structure SASC is developed, which systematically
defined, which accomplish all the necessary task adjustmegigqes the construction of a DFCM control model for a discrete
under a couple® = (7’ 1I) defined in Egs. (4) and (5). event manufacturing system. By controlling all the on-line part

The last step requires the construction of the accept@fates, the SASC model controls all the machines on the shop
which is constructed as, = (Qa,%a,Aq;la;90,%ar), floor.
whose instructions are shown in Fig. 16. The example However, the presented methodology requires further study
process plans: p{Altl: Puma— Horizon Alt2:Horizon — for applications in assembly lines, where parts can be merged.
Puma Alt3: Fadal — Pumg, p2 {Fada}, p3 {Fadal — In addition, the methodology could be inapplicable to model-
Puma— Horizon}, p4 {Altl: Fadal — Puma— IBM7545, ing the control of a nonpart oriented manufacturing shop floor.
Alt2: Horizon — Puma — IBM7545} can be transferred As discussed, the DFCM is originated from the concept of part
into [z1] = {acdfghiech, acdhifgech, aclnpmdfgech}, traces. A nonpart manufacturing system loses part traceability.

586

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

In addition, note that the presented methodology provides[i@] P. J. Ramadge and W. M. Wonham, “The control of discrete event
structured solution to develop control software for manufac-_ Systems,’Proc. IEEE vol. 77, pp. 81-98, Jan. 1989.

P. J. Ramadge, “The complexity of some basic control problems for

. . 19
turing systems rather than a general representational/analyt Ca]l discrete event systems&dvanced Computing Concepts and Techniques
tool, such as the Petri net [25] and Ramadge—Wonham's in Control Engineering M. J. Denham and A. J. Laub, Eds. Berlin,
supervisory control theory [17]. Germany: Springer-Verlag, 1988.

[20] J. S. Smith, “A formal design and development methodology for shop
floor control in computer integrated manufacturing,” Ph.D. dissertation,
Penn. State Univ., University Park, PA, 1992.
ACKNOWLEDGMENT [21] J. S. Smith, W. C. Hoberecht, and S. B. Joshi, “A shop floor control

The authors would like to thank Dr. R. A. Wysk, Department architecture for computer integrated manufacturing® Trans, vol.

of Industrial and Manufacturing Engineering, Pennsylvani@2

28, no. 10, pp. 783-794, 1996.
] T. J. Tsitsiklis, “On the control of discrete-event dynamic systems,”

State University, Dr. Y. C. Ho, Division of Applied Science, Math. Contr., Sig. Systno. 2, pp. 95-107, 1989.
Harvard University, and Dr. M. W. Wonham, Department ofR3] F. Y. Wang and G. N. Dsaridis, “A coordination theory for intelligent

machines,”Automatica vol. 26, pp. 833-844, Sept. 1990.

Electrical and Computer Engineering, University of Torontqpa R. A. Williams, B. Benhabib, and K. C. Smith, “A hybrid supervisory
for their discussions, comments, and suggestions. control system for flexible manufacturing workcells,” Rroc. IEEE

(1]
(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]
[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

Inte. Conf. Systems, Man, Cybernetit894, vol. 3, pp. 2551-2556.
[25] M. C. Zhou and F. DiCesareRetri Net Synthesis for Discrete Event

REFERENCES Control of Manufacturing Systems Norwell, MA: Kluwer, 1993.

R. U. Ayres, “Technology forecast for CIM,Manuf. Rev.vol. 2, no.
1, pp. 43-52, 1989.

S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin,
“Supervisory control of a rapid thermal multiprocessdEEE Trans.
Automat. Contr.vol. 38, pp. 1040-1059, July 1993.

F. Biemans and P. Blonk, “On the formal specification and verificatio
of CIM architectures using LOTOSComput. Ind.vol. 7, pp. 491-504,
1986.

C. G. Cassandradiscrete Event Systems: Modeling and Performanc
Analysis Homewood, IL: Irwin, 1993.

J. K. Chaar, “A methodology for developing real-time control softwart
for efficient and dependable manufacturing systems,” Ph.D. dissertati
Univ. Michigan, Ann Arbor, 1990.

Robin G. Qiu (M’95-A’96) received the M.S. and
B.S. degrees from Beijing Institute of Technology,
Beijing, China, and the Ph.D. degree in computer
science and industrial engineering from Pennsylva-
nia State University, University Park, in 1996.

His disciplines cover industrial and manufactur-
ing engineering, computer science and engineering,
electrical engineering, and mechanical engineering.
He is currently a Research Scientist at Kulicke
A. A. Desrochers and R. Y. Al-Jaar\pplications of Petri Nets in and Soffa Industries, Inc., Willow Grove, PA. He
Manufacturing Systems New York: IEEE Press, 1995. has more than ten years of working experience in
Y. Dotan and D. Ben-Arieh, “Modeling flexible manufacturing systemsthe field of computer-integrated manufacturing systems. He has had more
The concurrent logic programming approacHEEE Trans. Robot. than 20 articles published or presented in journals or conferences. He is
Automat, vol. 7, pp. 135-148, Feb. 1991. actively serving as a referee and panelist for several international journals
R. W. Floyd and R. BeigelThe Languages of Machines: An Introduc-and USA governmental agencies. His interests include control of automated
tion to Computability and Formal LanguagesNew York: Computer manufacturing systems, information technology, enterprise resource planning,
Science, 1994. and manufacturing execution planning.

A. Giua and F. DiCesare, “Petri net structured analysis for supervisory
control,” IEEE Trans. Robot. Automatol. 10, pp. 185195, Apr. 1994.

A. Giua and F. DiCesare, “Decidability and closure properties of
weak Petri net languages in supervisory contrifEE Trans. Automat.
Contr, vol. 40, pp. 906-910, May 1995.

Y. C. Ho, Discrete Event Dynamic Systems, Analyzing Complexity at
Performance in the Modern Worldr.-C. Ho, Ed. New York: IEEE
Press, 1992.

J. E. Hopcroft and J. D. Ullmanintroduction to Automata Theory,
Languages, and ComputationReading, MA: Addison-Wesley, 1979.

E. Kasturia, F. DiCesare, and A. Desrochers, “Real time control «
multilevel manufacturing systems using colored Petri nets,Pioc.
IEEE 1988 Int. Conf. Robotics Automatiovol. 2, pp. 1114-1119.

A. W. Naylor and M. C. Maletz, “The manufacturing game: A formal : ; . . ¢
approach to manufacturing softwaré®EE Trans. Syst., Man, Cybern. @ ible manufacturing systems, and rapid prototyping
vol. SMC-16, pp. 321-334, May/June 1986. ! and tooling. He is currently Professor of industrial
R. G. Qiu and S. B. Joshi, “Structured adaptive supervisory contrahd manufacturing engineering at Pennsylvania State University, University
of a flexible manufacturing system,” iRactory Automation Intelligent Park. He is currently Department Editor fBrocess Planning—lIIE Transac-
Manufacturing’96 pp. 800-809, May 1996. tions on Design and Manufacturingnd also serves on the editorial board of
R. Qiu, “Modeling and control of a flexible manufacturing system usindournal of Manufacturing System3ournal of Intelligent Manufacturingand
deterministic finite capacity automata,” Ph.D. dissertation, Penn. Stakeurnal of Engineering Design and Automation.

Univ., University Park, PA, 1996. Dr. Joshi is the recipient of several awards, including the Presidential Young
P. J. Ramadge and W. M. Wonham, “Supervisory control of a class bfvestigator Award from NSF in 1991, Outstanding Young Manufacturing
discrete event processeS1AM J. Contr. Optimiz.\Vol. 25, no. 1, pp. Engineer Award from SME in 1991, and Outstanding Young Industrial
206-230, Jan. 1987. Engineer Award from the IIE in 1993.

Sanjay B. Joshi (S'92-M'96) received the B.S.
degree from the University of Bombay, Bombay,
India, the M.S. degree from the State University
of New York, Buffalo, and the Ph.D. degree in
industrial engineering from Purdue University, West
Lafayette, IN.

His research and teaching interests are in the
area of CAD/CAM with specific focus on computer
aided process planning, control of automated flex-

