
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999 573

A Structured Adaptive Supervisory Control
Methodology for Modeling the Control of
a Discrete Event Manufacturing System

Robin G. Qiu,Associate Member, IEEE, and Sanjay B. Joshi,Member, IEEE

Abstract—Two basic measures, model complexity and model
construction efficiency, are usually used to evaluate the imple-
mentability (or ease of use in practice) of a methodology for
modeling the control of a discrete event manufacturing system
(DEMS) on the shop floor. Many well-recognized methods are
used to represent and analyze the dynamics of DEMS’s, but
not many relevant applications have been found in developing
control software for the shop floor due to their shortcomings in
satisfying these two measures. This paper explores a method-
ology for modeling the control of a DEMS, which leads to
ease of control software development, rather than a new rep-
resentational/analytical tool, by significantly reducing the model
complexity (in terms of the number of required control states) and
improving the model construction efficiency. First, an extended
finite machine, called a deterministic finite capacity machine
(DFCM) with parallel computing capability is developed. Based
on DFCM’s, the complexity growth function of a DEMS control
model is linear in the number of synthesized control components.
Then, an automaton structure of a DFCM control model, called
structured adaptive supervisory control (SASC), is developed. By
referring to supervisory control theory, an SASC model is created
with three function layers: acceptance, adaptive supervision, and
execution. The well-defined structure ensures that the control
model can be constructed systematically.

I. INTRODUCTION

SINCE a large portion of the cost of establishing a discrete
event manufacturing system (DEMS) on the shop floor

is consumed by its control system [1], significant research
has been conducted to develop methodologies for modeling
the dynamics of DEMS’s [3], [5]–[7], [9], [10], [13], [14],
[17]–[20], [25]. Existing approaches include Markov chains,
queuing theory, Petri nets, and supervisory control theory [11].
Developed models using these approaches are widely applied
for analyzing the behaviors of DEMS’s, but very few of them
have been transferred into manufacturing control systems due
to their limited implementability (or ease of use in practice)
on the shop floor [2], [16], [24], [25]. For a methodology to
be applicable to developing control software on the shop floor
it must support construction of a control model in an efficient
and effective manner. The implementability of a methodology

Manuscript received April 15, 1996; revised September 16, 1996; May 12,
1999; and July 20, 1999. This work was supported in part by NSF Presidential
Young Investigator Award DDM9158042. This paper was recommended by
Associate Editor C. Hsu.

R. G. Qiu is with the Factory Systems Division, Kulicke & Soffa Industries,
Inc., Willow Grove, PA 19090 USA (e-mail: rqiu@eng.kns.com).

S. B. Joshi is with the Department of Industrial and Manufacturing
Engineering, Pennsylvania State University, University Park, PA 16802 USA.

Publisher Item Identifier S 1083-4427(99)08394-0.

for the shop floor is usually evaluated by the following two
basic measures:

1) Model Complexity—a quantitative measure. The com-
plexity of a designed control model (in terms of the
number of control states) should not exceed the limits
of practical implementation.

2) Model Construction Efficiency—a qualitative measure.
A methodology should be able to support systematic
construction of a control model from start to finish
without iterating through phases of trial, analysis, and
redesign. The resulting design should satisfy all the
specified control objectives.

Currently, Petri nets and supervisory control theory are
popular approaches used to model and analyze the controls
of DEMS’s [6], [9], [10], [13], [17], [18], [25]. Because of
the combinatorial explosion of solution complexity when the
dynamics of a DEMS is modeled using these theories [7],
[11], [18], [19], they are typically limited to creating control
models of simple systems, such as small or medium-sized
systems with a fixed part-mix and given processing routes
[6], [13], [25]. For example, when modeling the control of a
two-machine, two-robot, two-buffer, and two-part-type system
using supervisory control theory, the size of the potential
control state space is in excess of states [24]. Although
the size of a Petri net model in terms of the number of control
states can be controlled (i.e., it could grow linearly in the
number of control components), the size of the reachability
graph used for analysis to attain the final control model grows
exponentially [7]. Therefore, the effort in resolving a control
synthesis problem using either Petri nets or supervisory control
theory can be extremely complex and easily go beyond a
practitioner’s ability.

The control model of a DEMS using Petri nets is based
on trial, analysis, and redesign to converge to a model with
the desired properties [6]. There has been some effort to
investigate efficient modeling techniques using Petri nets [13],
[25], but no methodology for systematically modeling the
dynamics of a large-scale DEMS on the shop floor has been
established. In contrast, supervisory control theory provides
a systematic approach from start to finish, and unlike Petri
nets it does not require iterating through phases of trial,
analysis, and redesign, to modeling the control of a DEMS.
Since supervisory control theory is a modeling methodology
developed from the synthesis of control theory and automata

1083–4427/99$10.00 1999 IEEE

574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

theory [17], [18], it guarantees that the designed model for
controlling a DEMS yield the desired properties.

Although supervisory control theory provides a systematic
method to model the control of a DEMS, the control-space ex-
plosion problem still limits its shop floor applications [2], [7],
[24]. Hence, a methodology applicable to the manufacturing
shop floor for the modeling and control of a DEMS, which
leads to ease of software development rather than a general
representational and analytical tool, is worth further explo-
ration. In this paper, a two step approach is used to explore
such a methodology by addressing these basic requirements
carefully.

First, a modified finite machine, called deterministic finite
capacity machine (DFCM), is systematically developed to
model the dynamics of a DEMS. Automata and language
theory is used to provide a firm mathematical foundation to
study the logical behavior of a deterministic event system.
Using these theories, the structural and behavioral properties
of the formal model of a deterministic event system can be
precisely defined and analyzed. Thus, like supervisory control
theory, automata and language theory is used as the basis
for the theoretical development of DFCM’s. By capturing
the specific characteristics of a manufacturing control system
and combining the technological advances in multi-process
operating systems, a DFCM is developed with the capability of
running multiple computations in parallel. Consequently, the
control-state-space explosion problem is resolved successfully.

Secondly, an automaton structure of a DFCM control model
called structured adaptive supervisory control (SASC) is de-
veloped for describing the dynamics of a DEMS. By referring
to supervisory control theory, an SASC model is defined with
three function layers: acceptance, adaptive supervision, and
execution. The well-defined structure ensures that the SASC
model can be constructed systematically.

The remaining paper is organized as follows. Section II ana-
lyzes the specific characteristics of manufacturing automation,
from which the requirements for control are derived. Section
III reviews the basic terminology and notation of the theory
of automata and languages and provides preliminaries for this
paper. Section IV develops the theory of deterministic finite
capacity machines. Section V systematically investigates the
structured adaptive supervisory control. Section VI shows a
typical implementation of the developed methodology. Finally,
conclusions of this paper are presented in Section VII.

II. SPECIFIC CHARACTERISTICS OF

MANUFACTURING AUTOMATION

A DEMS is composed of finite asynchronous equipment
components [4], [6], [11], [17]–[19], [25]. The control state
space of the synthesized control model of a DEMS suffers
from exponential growth in the number of components [19].
Take for example, an abstracted manufacturing system con-
sists of machines. The controller for this system must be
formed in such a way that all the control states of individual
asynchronous machines are synthesized and the desirable
control properties are acquired. Consequently, a combinatorial
explosion in terms of the number of control states arises

naturally as the number of machines and parts increases [11],
[15], [18]. That is, the size of the control space will be the
product of , where for is
a component of the DEMS, and represents the cardinality
of the control state space of component. Obviously, as the
size of the DEMS grows, the control problem of the DEMS
will eventually become too large and practically unresolvable
on the shop floor with the enabling technologies (although it
is resolvable in theory). This type of system and explosion
is classified as an NP-hard problem and cannot be resolved
optimally without a new approach to reduce the size of
constrained control state space [22].

Delving into the operations of a DEMS reveals some unique
characteristics, which are worthy of consideration during the
design of a control model. All the asynchronous events (except
those concerning the loss or recovery of machine capability
in a DEMS) are associated with on-line part states. In other
words, a machine state or event can be mapped into a part
state, while the part state is normally easy to trace [20].
This characteristic in manufacturing automation is calledpart
traceability. The dynamics of a DEMS can be then modeled by
describing all the possible part states instead of all the possible
machine states within the DEMS. As a result, the control issue
of a DEMS becomes one that all the on-line part states should
be dynamically and cooperatively changed as desired.

A part advancing through a DEMS can be described by
its part flow—a diagram showing the sequence of part states
required to process this part within the DEMS [16]. If a
language is used to represent all the legal sequences of
part states for these desirable families of parts manufactured
in a DEMS, a string from the language provides one legal
sequence of part states for a particular part. For each part,
there exists at least one string indescribing how to make it.
In terms of modeling the control of the DEMS using automata
theory, when only one part enters the DEMS, a recognizer

for the language should describe (recognize) the trace
of the part advancing through the DEMS. But if the DEMS
is machining multiple parts, all the separate part traces are
then required to be recognized simultaneously. According to
this observation, a control system can be considered as a
recognizer capable of recognizing a shuffled language,
where for
and is the natural shuffle operation, and is the
maximum number of parts being machined within the DEMS.

Theoretically, when languages are shuffled andis the
average number of control states required for a recognizer to
recognize a language, the number of control states required
for a recognizer to recognize the shuffled language is .
In other words, even though the dynamics of a DEMS is
described by the set of all the part traces (instead of the set
of all the legal machine-event sequences), the complexity (in
terms of the number of control states) of the DEMS recognizer

could be the same as that of a control system recognizing
all the machine-event sequences.

However, it is worth noting that all the strings (part traces)
of a DEMS are from the same languagerepresenting all
possible part-flows within the DEMS. As discussed, it is
possible to construct a new recognizer which recognizes

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 575

the shuffled language . But instead, one could form a
coordinator which coordinates all the necessary recognizers

for , where , and each is required
for tracing an individual part . (A part is
physically traceable.) Thus, the control model space of a
DEMS will avoid the control-state-space explosion problem
associated with constructing a recognizer for. It is the use
of the concepts of coordination of multiple computations and
part traceability that provides the foundation for the solution
approach, presented in this paper, to modeling the control of
a DEMS on the shop floor.

III. T ERMINOLOGY AND NOTATION [8], [12]

A machine is an ordered tuple ofdevices for
, specifically denoted by . The class

of devices consists of control, input, output, stack, queue, tape,
etc. A machine type is defined by a fixed combination of
different devices. If machine has no storage devices other
than the control, it is called afinite machine. A machine state
is called aconfigurationof a machine, which is the aggregate
of all information stored by the machine’s devices. Formally,
a configuration is a -tuple of states ; it
specifies that the state of device is for .

A program for a machine comprises aninitializer ,
a terminator , and a finiteinstructionset for machine .

An initializer, , for machine is
an injection which maps an argument to the initial con-
figuration of machine . Typically , where is
an input alphabet, denotes an argument to program, and

denotes the initial configuration for
machine . The relation is defined as

i.e.

Similarly, a terminator, , for machine
is a partial function which determines whether a language

is accepted or whether a transduction is completed. It is worth
noting that no result is produced unless all devices are in a
final state. We denote as some result, where is
an output alphabet, and as a final
configuration for machine . Then if the terminator maps
the configuration to some result , the relation is defined
as

and and

and i.e.,

An operation for each device of machine is designated
by an instruction. An instruction maps a configurationof
machine to another configuration . This mapping can
be completed in one step iff there exists some instruction

such that . This mapping can be simply denoted
as where . If a finite number of steps is
required to complete this composite relation, it is denoted
as . A computation is the sequence of instructions

executed when program is run on
machine . Therefore, a complete computation of on
argument with result exists iff an also exists.

The relation , which relates arguments of to results
of , is called as thetransfer relationof , and is denoted by

i.e.

As long as program is deterministic and has no null
instructions, the of is a partial function.

If a program is faced with a choice of which instruction to
perform next or whether to continue or terminate, the program
is nondeterministic. The program isdeterministiconly if all
the behavior of the program is precisely determined.

When a program is installed on a finite machine ,
machine is an operational finite machine[5], which can
be formally denoted as

where

finite control set;
input alphabet;
output alphabet,
finite instruction set;
initial control state;
final control set.

If a program on machine is deterministic and only
determines the membership of an input string, i.e.,

ACCEPT is used to denote the
language accepted by programon machine and machine

is called as adeterministic finite acceptor.
If a deterministic finite acceptor replaces its input by an out-

put, then the acceptor becomes adeterministic finite generator.
The generator is defined to be a deterministic automaton by
including the marking concept [17], ,
where is the state space, is the alphabet or set of output
symbols is the transition function (pfn),

is the initial state, and is the set of marked
states. The language generated byis

is defined

The language marked by is

and is well-behaved

If program on machine is deterministic and maps an
input string to an output string in one complete computation,
i.e. , program on machine
completes a finite transduction and machine is called a
deterministic finite transducer.

If machine has a complete computation on argument,
then machine halts on . If machine is blocked, the
current configuration of machine is neither in the domain
of any instruction nor in the domain of.

IV. FINITE CAPACITY MACHINES

A. Basic Concepts and Representations

For a finite machine a task (a set of tasks) is
a specified string which requires computing to determine
whether it belongs to the domain of a language. Aprocessis

576 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Fig. 1. Single process versus multiple processes on a finite machine.

a program whose computation has started but not terminated.
Using the analogy of computer operating systems, MS-DOS
supports one process, while UNIX supports multiple processes.
As a finite machine can have only one process at a time
[Fig. 1(a)], a finite machine should be able to be extended
into a new finite capacity machine capable of running multiple
processes simultaneously [Fig. 1(b)].

A finite capacity machine can be considered as an aggregate
of multiple identical traditional finite machines. To a finite
capacity machine, each finite machine seems like a process;
each process has its unique input and output devices [16].
To identify a process, a digitized token is used. The formal
definition of a finite capacity machine is then given as follows.

Definition 1: A finite capacity machine(FCM) is formally
defined by

where

finite control set, which includes all the main
control states for ;
extra finite control set, calledstate-availability
control set, . If

, then the control state is available
for a transition from , otherwise control state
is not available;
multiple-extra control set, calleddigitized token
control set, which is the Cartesian product of all
the digitized token control sets,

. If for
, then there is a digitized token in

state , otherwise theth token is not in state;
multiple-input alphabet, the Cartesian product of
all the inputs, i.e., (an
input alphabet) for ;
multiple-output alphabet, the Cartesian product of
all the outputs, i.e., (an
output alphabet) for ;
instruction set;
initial control state;
final control set.

Like a finite machine, a finite capacity machine can also
be graphically represented by a state transition diagram. The
diagram consists of a finite number of nodes and a finite
number of directed arcs. All the arcs except these representing
the initializer and the terminator are interpreted as instructions

. All the nodes are interpreted as the main control states
. A typical state transition diagram for a machine capable

of running four processes is shown in Fig. 2. The nodes labeled
0, 1, 2 correspond to the main control states of the machine.

Fig. 2 State transition diagram of a finite capacity machine.

Fig. 3. Basic representations.

Fig. 4. One basic transition.

Node 0 is the initial and final state. The meanings of these
symbols in this diagram will be explained shortly.

If each of the main control states is considered as a type of
resource whose capacity is limited, then a computation can be
interpreted as a sequence of resource uses. Let the capacity of
a resource be for , where

. The finite machine capacity will be .
Therefore, the number of allowed processes should be not
greater than the finite machine capacity, i.e., .

A process obtains a unique digitized token when the process
is initialized by the initializer , and returns the token when
the process is terminated by the terminator[Fig. 3(a)].
A token booth is used as the provider and collector of
tokens. The number of tokens in the token booth can be any
positive number not greater than. Fig. 3(b) shows the three
components of a node: control state, token holder, and control
state capacity. The capacity of a token holder is equal to its
control state capacity, i.e., resource capacity. A basic transition
of an FCM is shown in Fig. 4, where completes an
instruction

for some

If the configuration of machine is represented by
[8], then this transition changes the configuration

from to . A transition can
be fired from to iff is available, i.e., .

The use of the token and availability concepts may make
an FCM look similar to a Petri net. In fact, a token in an
FCM is totally different from one in Petri nets. In a Petri net,
a token represents the availability of a place. When a token
exists in a place, it means a condition in the place is satisfied

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 577

and ready for next transition. A transition can be fired iff all
the required conditions for firing it are satisfied. Tokens are
unceasingly diverged or converged during computation [6],
[13], [25]. Thus, the physical meaning of a token also varies
with places. But in an FCM a token represents a physical
entity (e.g., part in a DEMS). It never changes its physical
representation during computation. A token also identifies a
computation process. The concept of a process tracing the
entity (token) in an FCM is unique, and neither a Petri net
nor a supervisory control model includes this concept.

B. Coordination of Computing Processes

When only one individual process is run on an FCM
, machine will function exactly the same as a finite

machine. However when multiple processes are computing
simultaneously, the processes compete for resources with
each other. The fixed capacity of a token holder will cause
conflicts if too many processes attempt to transfer into the
same control state. It is obvious that effective coordination
between different processes can avoid these conflicts. By
referring to the coordination theory for intelligent machines
[23], a method to coordinate different processes is studied. To
investigate how processes can coordinate with each other, it is
necessary to understand how an individual process works in a
parallel-computing environment.

The definition of an individual process on an FCM is
as follows.

Definition 2: One process for some , running
on a finite capacity machine , can be formally defined by

where are defined the same as these in
definition 1

extra control set, called a digitized token control set,
;

input alphabet;
output alphabet.

If only a deterministic FCM (DFCM) is considered, then
the behavior of a process running on the DFCM is
precisely determined by the instruction setfor

. (Although a nondeterministic finite machine can simplify
machine construction and provide sufficient problem-solving
information, it is impossible to physically build an operational
machine based on a nondeterministic finite machine.) The
instruction set [8], [12], [17] can be further defined as

state transition function (pfn)
output function (pfn)

(1)

An augmented state transition function
can be defined according to

if the codomain of
satisfies

undefined otherwise
(2)

For each complete computation of a process on the DFCM,
one can say that an assigned task is performed successfully,
i.e., there is a

where , and .
Note that a state transition occurs iff

for is defined. For a multiple process
FCM, if a requested state satisfies , it simply means
that the requested state is occupied by some other process. In
other words, the requesting process should be kept waiting in
its current state until the requested state is released, i.e.,
turns to 1.

In the case of a tie (multiple processes requesting the
same resource simultaneously), the conflict can be resolved
using their token values as their priorities. For instance, a
process with the highest priority will execute first. The priority
setting can be transformed into a scheduling problem (beyond
the scope of this paper). The token value of a process can
be modified internally or externally without affecting the
computation of the process. Therefore, it is the existence
of a transition-availability control set and the well-defined
augmented state transition function that ensure that all the
processes started can run in a coordinated manner.

After the concept and coordination mechanisms of processes
have been exploited, a DFCM can be simply defined by

where is a parallel line which indicates the concurrence of
distinct processes. The configuration of the DFCM will
then be described as

where is a disjoint configuration addition through distinct
processes. More explicitly, if , then

where,
.

By summarizing the above discussions, the following four
remarks are provided to elucidate the operational properties
of a DFCM:

Remark 1: A transition of a process on a DFCM can be
made iff the transition is defined and the next state is available.

Remark 2: can be set internally or
externally. When the number of tokens in control statefor

is equal to the capacity of its token holder, i.e.
is set to 0 internally. will

be held until one token is passed on to another control state.
Besides, if the token holder loses its capability, as in the case
of machine breakdown, can be set to 0 externally. In this
case, will be held until its capability is recovered
(fixed).

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Remark 3: for keeps track
of the th token. The token has a unique identification number
(e.g., a valid integer) given when theth process gets started.
The token moves to next node iff the associated transition has
been completed. The location of a token shows the state of
a process.

Remark 4: Whenever a process is initialized, it obtains
a token. A process will terminate when it completes its
computation. At that time, the process returns its token. If no
tokens are available in a DFCM, the DFCM cannot accept any
more tasks. Since the number of tokens is finite, the capacity
of a DFCM is therefore limited.

C. Language Representations

If a program on machine is deterministic and each
process of a DFCM for only determines the
membership of an input string, i.e.

ACCEPT

is used to denote the language accepted by process
to denote the language accepted by programon

machine , and machine is called adeterministic finite
capacity acceptor(DFCA).

If a program on machine is deterministic and each
process of a DFCM for tests the membership
of an input string within a finite computation, i.e.

ACCEPT and

REJECT

is used to denote the language recognized by process
to denote the language recognized by program

on machine , and machine is called adeterministic finite
capacity recognizer(DFCR).

If program on machine is deterministic and each
process maps an input string to an output string in one
complete computation, i.e. , program

on machine completes a finite transduction and machine
is called adeterministic finite capacity transducer(DFCT).

For each process for of a DFCA, if the
process finishes a complete computation, then an assigned task
is successfully completed. The language (set of tasks) accepted
by the process of the DFCA is

and ACCEPT

Proposition 1: The language of a process for
of a DFCM is equivalent to the language of the DFCM.

Proof: Based on Definition 1, the language of one
process has the same language as that of another process

since all the processes are
running the same program on

for

Therefore,

for

Since a DFCM can be considered as an aggregate of
multiple deterministic finite state machines, the structure of the
DFCM can be further simplified for the purpose of analysis.
Based on Proposition 1, the structure of a DFCM can be
defined as the structure of an one-process DFCM but with
a token control set. Thus, the language of a DFCM then can
be defined in a concise manner.

Definition 3: The language that can be accepted by a
DFCA can be defined as the language accepted by

, i.e.

and ACCEPT

When physically represents all the process plans required
to produce parts, a string in is a sequence of operations
required for completing a part. Since each type of part can be
made by following different process plans, a task equivalence
class or coset in terms of process plans (strings) can be
identified according to the following two definitions [8], [16].
More specifically, all of the possible processing alternatives
defined for processing a part will be included in a task
equivalence class. Therefore, no matter which alternative is
chosen from this partitioned coset, its computation can be
completed and the task can be performed successfully.

Definition 4 (Task Equivalence):Let be a language of an
FCM. Two strings and are task equivalence with respect

to (denoted as) if

where represents the set of characters physically completing
none of useful tasks (e.g., a part being sent to a buffer and
waiting for further processing or inspection).

Definition 5 (Task Equivalence Class):Let be a language
of an FCM. The class of task equivalence will be

.
Theorem 1: If is a shuffled language of ,

where for and is recognized by a
deterministic finite recognizer , then there exists a DFCR
which is at least as powerful as the recognizer.

Proof:

1) For simplicity, first assume , then
is defined by

and

where can be strings of any length, for
can be either characters or empty. Furthermore,

assume that recognizes . Then can be constructed

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 579

Fig. 5. R lockstep simulatesM .

as a two-process (and) DFCR (’s program
recognizes or). The representation
relation of and configurations can be defined
as

If for is always marked as a red character,
and for as a blue character, then whenever

receives a red character, computes; otherwise
computes (Fig. 5). If accepts , then accepts both

and ; if rejects , then rejects both and .
2) In general, can be any integer number. By marking

all the characters of a string from a different language
in a unique color and constructing using the above
techniques, can be formed, which simulates in
a lockstep manner. Therefore, there exists a DFCR
which is at least as powerful as [8].

Theorem 2: When a DEMS is modeled by a DFCR, the
number of control states in the DFCR grows linearly in the
number of resources of the DEMS.

Proof: Note that each of the main control states in
a DFCR can be considered as a kind of resource, then a
computation can be interpreted as a sequence of resource uses.
Assume a DFCR is defined as .
If , then indicates the number of resources.
According to Proposition 1, for .
The proof of this theorem can be also divided into two steps.

1) For simplicity, first assume , then the shuffled lan-
guage of and will be
. If the recognizer of has control states and the

recognizer of has control states, the recognizer of
will need control states according to

Myhill–Nerode and Pumping theorems [8]. If ,

Fig. 6. Typical workstation.

then . Since is capable of computing
and simultaneously without shuffling

and as one input string, the size of in terms
of the number of control states is rather than

. When increases, the size of increases with
proportionally, i.e., .

2) In general, if a recognizer needs to recognizelan-
guages, i.e. the shuffle of
for , it will requires for control
states, where is the average number of control states
for the recognizer of for . is
capable of computing strings by running processes
simultaneously. These processes are running in a
coordinated manner so that all the computations will
be complete if those strings are legal. Thus is
constructed to recognize (for)
rather than for

. Therefore, when increases, the size of
still increases proportionally with , i.e., .

D. Adjustable Transitions

Assume that each node in a DFCA state transition diagram
represents one resource in a DEMS. When , the
control state incident to control state will be held. In
other words, since the transition of control stateis not
available, the process will be put in its state waiting for the
resource. If a resource is in full operations and all the users
of other resources are in waiting states, then no additional
state transition can occur. This situation results in the low
utilization of the resource, potentially even a system deadlock
for the DEMS if the resource is pivotal, such as a robot, and
any other kind of material handler. To avoid this undesirable
situation, a distinguishable subset of the input alphabet
is defined. Like supervisory control [17], [18], an operation

is an adjustable operation if .
An adjustable operation is graphically denoted as . Let

be the set of assignments to the elements of. Then a total
function holds, which is an adjustable pattern.

Example 1: An automated manufacturing workstation con-
sists of two machines and , one robot and one buffer

(Fig. 6). Assume that each of these resources has a capacity
of one and the robot can access all the other resources. The
controller of this workstation can be then constructed as a
DFCA whose state transitions are shown in Fig. 7. The state
transitions (, and) physically correspond to all

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Fig. 7. State transitions of example 1’s controller.

the possibilities of part-flows within the workstation during
production.

Formally, the controller is defined by
, where

;
;

token matrix;
;

;
;

defined as (2);
;

;
;

;
.

Let us see how the adjustable pattern works in the example.
If the lathe has a part, then . When a new part requests
an operation on the lathe, the robot will first pick up the part;
then before sending the part to the lathe, the robot checks
if the transition is available. Since the lathe has a part, the
check returns false. To avoid this new part from blocking
other operations, the robot should be released. In this case,
transition “ ” should be adjustable, so the robot can be released
by putting the part onto the buffer.

When is adjustable. But will be
adjusted iff it is necessary. Furthermore, if any operation of a
part has been adjusted, the task should not be changed. Another
concept termed as substitution under a task is defined below,
which assures that a part can be completed even though some
operations of the part have been changed during production.

Definition 6 (Substitution under a Task):For and
, a transfer relation can be substituted under a task by

a iff if , where .
Proposition 2: Substitutions under a task assure that the

assigned task will be successfully complete, no matter how
many transitions have been adjusted within its computation.

Proof: The class of regular languages is closed under
substitutions [12]. If the process of a computation is dynam-
ically adjusted by observing substitutions under a task, the
computation retains the task in an unchanged state.

Fig. 8. Well-structured SASC model.

More specifically, let and indicates
immediate derivation due to a substitution under a task. If

then for every , there exist , with
such that

As long as each derivation is taken according to Definition 6,
can be any finite integer.

V. STRUCTURED ADAPTIVE SUPERVISORY CONTROL

A DFCM can be used to model the control of a DEMS. A
method is needed to construct DFCM control models, which
are guaranteed to function as desired and be easily transformed
into an operational control system. By referring to supervisory
control theory [17], [18], an automaton structure called struc-
tured adaptive supervisory control (SASC) for manufacturing
systems is developed (Fig. 8). To take advantage of object-
oriented programming techniques, an SASC model is defined
to have an object structure. The interface for an SASC model
(the only way to connect an SASC controller to its outside
world components) includes an input, an output, and feedback.
The input receives incoming messages from a task-requesting
unit and returns controller states to the task-requesting unit.
The output sends out commands to a task-executing unit
and receives feedback from the task-executing unit. All the
embedded methods can be classified into three categories:
decision, supervision, and execution.

The execution layer consists of an executor. In terms of
formal languages, its function can be interpreted as accepting a
language, and its structure can be obtained from a deterministic
finite capacity acceptor. In terms of the physical operations,
the executor executes all the assigned executable operations;

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 581

when an unexecutable event occurs, it requests an adjustment
from its adaptive supervisor.

The supervision layer consists of an adaptive supervisor.
The adaptive supervisor conceptually functions as a recog-
nizer, and is constructed from a deterministic finite capacity
transducer. In terms of physical operations, it dynamically
supervises the behavior of the executor, coordinates all the run-
ning processes on the executor, thus guarantees the completion
of all the dispatched tasks.

The decision layer includes an acceptor and a task queue.
The acceptor is constructed from a deterministic finite capacity
transducer, and performs two functions:

1) checking the capability of the controller to complete an
incoming task;

2) taking action by accepting the task and mapping it into
a task in an executable format, or by rejecting the task
if it is beyond the controller capability.

The existence of an acceptor ensures that all the computing
processes on the executor will be nonblocking. The task queue
simply collects all the accepted tasks and dispatches them to
the lower layers optimally.

A. Executor

The behavior of a DEMS can be completely described by
its structured event-graph at the part-flow level [15], [20],
which forms the state transition diagram of the DEMS. The
event-graph can be then transferred into a DFCA. Formally an
executor is defined as ,
where

finite control set;
transition-availability control set;
token control set;
input alphabet;
transition function;
initial control state;
final control set.

The accepted language is

and ACCPET

As discussed in Section IV, a distinguishable subset of the
input alphabet can be defined. An operation

is an adjustable operation if . Let

be the set of assignments to the elements of. A function
holds, which is an adjustable pattern. Further-

more, an augmented transition function
(pfn) can be defined according to

if the codomain of
satisfies

undefined otherwise
(3)

The executor forExample 1can be constructed as a DFCA
whose state transitions are correspondingly shown in Fig. 7.

All the state transitions physically correspond
to all the possible part flows during production. Formally, the
executor is defined as
where

token matrix

defined as (3);

Consequently, the accepted language for executor is
known

and

where stands for an empty string, i.e.,

For example, a part p1 needs three machining operations in
the workstation according to the process plan, <<M1-turning,
M1-turning, M2-milling>>. This process plan belongs to the
domain of traditional manufacturing process plans which calls
out routing sequences. To execute this process plan on,
it should be converted into a string ‘ ’ such that

. The class of task equivalence for part 1 is

i.e., any string from describes part p1 task. For executor
, a complete computation of such a string from

physically indicates the task completion of part p1.

B. Adaptive Supervisor

An adaptive supervisor oversees the behavior of the
executor . The adaptive supervisor can be formally
defined as a filter which is a particular DFCT,

, where
are defined the same as before,

is the state transition function (pfn),
is the output function (pfn), and whose transfer relation

is given by

if
undefined otherwise

Obviously, is regular.
Let and couple process of supervisor

to process of executor for by
a lockstep loop in such a way that a currently computing
instruction can be completely computed on iff its output is
currently executable on ; otherwise, the instruction will be
temporarily blocked. A coupler is required, which
functions in a lockstep loop manner such that an operation on

and its corresponding operation on can be stepwise
coordinated.

582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Fig. 9. Ms andMe are coupled by a lockstep loop.

Formally a coupler is defined as a coupling
function by

(4)

(5)

is a downward lockstep feed which guarantees the output
of accepted stepwise by is an upward lockstep
feedback which guarantees that the next operation oncan
be computed iff the operation on has been completed. The
function of a coupler is graphically shown in Fig. 9.

In a DEMS, a currently running operation can possibly
be blocked (or conflict with others) due to the existence of
concurrent and asynchronous operations. In order for executor

to complete its temporarily blocked running process, the
adaptive supervisor has to be capable of replacing its
program (making a dynamic adjustment) by another in such
a way that will still successfully execute its running task
under the supervision of .

The state feedback map is defined as
which is a function that maps supervisor state into

adjustable pattern and ’s state . Define
for each and , which simply means that a
block or conflict occurs in the current computing process on

; otherwise, . When , the supervisor
has to adaptively replace its program by another such that the
new program will map a newly coordinated operation sequence
from the current task equivalence class.

As discussed previously, the completion of a task is defined
by the completion of a computation on a machine. A formal
definition for task completion during an adaptively supervised
computation can correspondingly be defined as: a task is
completely done iff the coupler of and has
simultaneously led and into their final states during
their computations.

For the workstation in Example 1, its adaptive
supervisor can be constructed as

, whose instructions are shown in
Fig. 10.

Without loss of generality, assume that only one adjustable
transition arc is considered. In this case, for instance ‘’, the
language accepted by this controller is still described by

and

i.e.

Fig. 10. State transitions of the supervisor.

(a)

(b)

Fig. 11. A subprogram substitutes an instruction.

Fig. 12. State transitions of the acceptor.

The equivalence class for part p1 is
. It is obvious that for real manufacturing

setuations the Kleene-closure will be interpreted as either
zero or one. Any number greater than one will be redundant.

If a state feedback map is , the adaptive super-
visor can switch computation from to . Since only one
adjustable operation is considered, there is only one instruc-
tion [Fig. 11(a)] which will be substituted by a subprogram
(Fig. 11(b)) when . Apparently, any string from

can be computed completely
by both and .

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 583

Fig. 13. FMS in the CIM lab at Pennsylvania State University.

C. Acceptor

If a string (a given process plan) is mapped into another
string which belongs to the accepted language of executor

, string (or string) can be computed completely on both
and . However, if there is no such mapping, the process

computing string will eventually be blocked. To guarantee
that no computing process will be blocked, an acceptor is used
to check whether the mapping of an input string is complete.
The acceptor resides on the top of . A string accepted by
the acceptor is a computable task; otherwise, the string is not
computable and should be rejected.

An acceptor can be formally defined as a standard determin-
istic finite transducer [8], ,
which maps an input string, (a set of strings incom-
ing messages formatted in traditional process plans), to an
output string, (a set of strings formatted in modified
process plans and executable for the executor), by a complete
computation, i.e.

An acceptor forExample 1can be constructed as
, whose instructions are shown in

Fig. 12. If character 0 stands for the robot, 1 for M1, and 2 for
M2, then . The given traditional process plan,
<<M1-turning, M1-turning, M2-milling>>, for part p1 can be
accepted and mapped into a modified and executable process
plan by this acceptor, i.e. , or such
that .

VI. A CASE STUDY

The flexible manufacturing system (FMS) in the CIM Lab at
Penn State is a typical DEMS, which includes three numeri-
cal control (NC) machines, five robots, a material transport
system, and a warehouse system (Fig. 13). Each computer
controls a piece of equipment. Based on the manufactur-
ing functionality and control architecture [21], the DEMS
is divided into five workstations: a rotational workstation, a
prismatic workstation, an assembly workstation, a material
transport workstation, and a storage workstation.

The rotational workstation consists of a Daewoo Puma
numeric control turning machine, a Pratt & Whitney Hori-
zon V NC vertical milling machine, a Fanuc M1-L robot,
and an intermediate buffer space containing five slots. The
prismatic workstation consists of a Fadal NC milling machine

584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Fig. 14. State transition diagram of the FMS executor.

and a Fanuc M1 robot. The assembly workstation consists
of an IBM7545 robot and an IBM7535 robot. The IBM
7545 robot performs assembly operations, while the IBM
7535 robot performs only part delivery tasks. The AS/RS
workstation consists of a Kardex tray-based vertical automatic
storage system and a Fanuc A0 robot. The material transport
workstation consists of a mini-Cartrac conveyor system which
physically ties all the other constituent workstations into an
integrated manufacturing system. All the parts (raw material,
partially finished pieces, and finished pieces) are transported
between different workstations by the Cartrac system. In the
Cartrac system, six carts are available. Each cart has four slots.
Whereas, all the above processing machines and robots are
capable of dealing with one part at a time. The capacity for
this system can be summed as .

A part advances through different workstations based on
a given process plan. A part can be completely processed
iff its process plan is successfully executed by the FMS
control system. Carts in the Cartrac system and the buffer in
the rotation workstation can be used as intermediate storage
spaces between processes. In addition, some parts may have
alternative process routes during production. Therefore, part-
state transitions from Cartrac to M1, to M1-L, or to IBM7535
and from M1-L to Horizon, or to Puma are adjustable.

The control model of this FMS is developed using
the presented SASC automaton structure. First, the state
transition diagram of the executor is constructed (Fig. 14).
Formally, the executor is defined as

where

token matrix

if the codomain of
satisfies

undefined otherwise

Consequently, the accepted language for is known

and

where stands for an empty string, i.e.,

As an example, consider the following four parts made in
the FMS: p1, p2, p3, and p4. Their process plans along with
alternatives are: p1Alt1 Puma Horizon Alt2 Horizon
Puma Alt3 Fadal Puma ; p2 Fadal ; p3 Fadal
Puma Horizon ; p4 Alt1 Fadal Puma IBM7545
Alt2: Horizon Puma IBM7545 . Based on the definition
of task equivalence, their task equivalence classes are then
defined by

and

where , and .

QIU AND JOSHI: STRUCTURED ADAPTIVE SUPERVISORY CONTROL METHODOLOGY 585

Fig. 15. State transition diagram of the FMS adaptive supervisor.

Fig. 16. State transition diagram of the FMS acceptor.

Then, the adaptive supervisor is constructed. As dis-
cussed, the following substitutions under tasks are valid in the
FMS: ,
and . Thus can be constructed as

, whose instructions are
shown in Fig. 15. Intermediate states , and are
defined, which accomplish all the necessary task adjustments
under a coupler defined in Eqs. (4) and (5).

The last step requires the construction of the acceptor,
which is constructed as ,
whose instructions are shown in Fig. 16. The example
process plans: p1Alt1 Puma Horizon Alt2 Horizon
Puma Alt3 Fadal Puma , p2 Fadal , p3 Fadal
Puma Horizon , p4 Alt1 Fadal Puma IBM7545
Alt2 Horizon Puma IBM7545 can be transferred
into

. Apparently,
, and are held.

This case study demonstrates

1) number of control states in an SASC model grows
linearly in the number of constituent machines, i.e.,

, where is the number of machines;
2) SASC model can be constructed systematically.

The detailed process plan specification and production oper-
ations of the FMS are given in Qiu [16]. The control model
has been successfully transferred into control software, which
controls the FMS as desired [16].

VII. CONCLUSION

In this paper, a methodology potentially applicable to the
shop floor for modeling the control of a DEMS has been
studied. Using the concepts of coordination of multiple compu-
tations and part traceability, the methodology was presented
as a two step approach.

First, a modified finite machine (DFCM) was developed,
which can be used to model certain discrete event manu-
facturing systems and make sure that the complexity of the
constructed control model is linear to the constituent machines.
Secondly, based on the concept of DFCM, a well-defined
automaton structure SASC is developed, which systematically
guides the construction of a DFCM control model for a discrete
event manufacturing system. By controlling all the on-line part
states, the SASC model controls all the machines on the shop
floor.

However, the presented methodology requires further study
for applications in assembly lines, where parts can be merged.
In addition, the methodology could be inapplicable to model-
ing the control of a nonpart oriented manufacturing shop floor.
As discussed, the DFCM is originated from the concept of part
traces. A nonpart manufacturing system loses part traceability.

586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

In addition, note that the presented methodology provides a
structured solution to develop control software for manufac-
turing systems rather than a general representational/analytical
tool, such as the Petri net [25] and Ramadge–Wonham’s
supervisory control theory [17].

ACKNOWLEDGMENT

The authors would like to thank Dr. R. A. Wysk, Department
of Industrial and Manufacturing Engineering, Pennsylvania
State University, Dr. Y. C. Ho, Division of Applied Science,
Harvard University, and Dr. M. W. Wonham, Department of
Electrical and Computer Engineering, University of Toronto,
for their discussions, comments, and suggestions.

REFERENCES

[1] R. U. Ayres, “Technology forecast for CIM,”Manuf. Rev., vol. 2, no.
1, pp. 43–52, 1989.

[2] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin,
“Supervisory control of a rapid thermal multiprocessor,”IEEE Trans.
Automat. Contr., vol. 38, pp. 1040–1059, July 1993.

[3] F. Biemans and P. Blonk, “On the formal specification and verification
of CIM architectures using LOTOS,”Comput. Ind., vol. 7, pp. 491–504,
1986.

[4] C. G. Cassandras,Discrete Event Systems: Modeling and Performance
Analysis. Homewood, IL: Irwin, 1993.

[5] J. K. Chaar, “A methodology for developing real-time control software
for efficient and dependable manufacturing systems,” Ph.D. dissertation,
Univ. Michigan, Ann Arbor, 1990.

[6] A. A. Desrochers and R. Y. Al-Jaar,Applications of Petri Nets in
Manufacturing Systems. New York: IEEE Press, 1995.

[7] Y. Dotan and D. Ben-Arieh, “Modeling flexible manufacturing systems:
The concurrent logic programming approach,”IEEE Trans. Robot.
Automat., vol. 7, pp. 135–148, Feb. 1991.

[8] R. W. Floyd and R. Beigel,The Languages of Machines: An Introduc-
tion to Computability and Formal Languages. New York: Computer
Science, 1994.

[9] A. Giua and F. DiCesare, “Petri net structured analysis for supervisory
control,” IEEE Trans. Robot. Automat., vol. 10, pp. 185–195, Apr. 1994.

[10] A. Giua and F. DiCesare, “Decidability and closure properties of
weak Petri net languages in supervisory control,”IEEE Trans. Automat.
Contr., vol. 40, pp. 906–910, May 1995.

[11] Y. C. Ho, Discrete Event Dynamic Systems, Analyzing Complexity and
Performance in the Modern World, Y.-C. Ho, Ed. New York: IEEE
Press, 1992.

[12] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages, and Computation. Reading, MA: Addison-Wesley, 1979.

[13] E. Kasturia, F. DiCesare, and A. Desrochers, “Real time control of
multilevel manufacturing systems using colored Petri nets,” inProc.
IEEE 1988 Int. Conf. Robotics Automation, vol. 2, pp. 1114–1119.

[14] A. W. Naylor and M. C. Maletz, “The manufacturing game: A formal
approach to manufacturing software,”IEEE Trans. Syst., Man, Cybern.,
vol. SMC-16, pp. 321–334, May/June 1986.

[15] R. G. Qiu and S. B. Joshi, “Structured adaptive supervisory control
of a flexible manufacturing system,” inFactory Automation Intelligent
Manufacturing’96, pp. 800–809, May 1996.

[16] R. Qiu, “Modeling and control of a flexible manufacturing system using
deterministic finite capacity automata,” Ph.D. dissertation, Penn. State
Univ., University Park, PA, 1996.

[17] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,”SIAM J. Contr. Optimiz., Vol. 25, no. 1, pp.
206–230, Jan. 1987.

[18] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, pp. 81–98, Jan. 1989.

[19] P. J. Ramadge, “The complexity of some basic control problems for
discrete event systems,”Advanced Computing Concepts and Techniques
in Control Engineering, M. J. Denham and A. J. Laub, Eds. Berlin,
Germany: Springer-Verlag, 1988.

[20] J. S. Smith, “A formal design and development methodology for shop
floor control in computer integrated manufacturing,” Ph.D. dissertation,
Penn. State Univ., University Park, PA, 1992.

[21] J. S. Smith, W. C. Hoberecht, and S. B. Joshi, “A shop floor control
architecture for computer integrated manufacturing,”IIE Trans., vol.
28, no. 10, pp. 783–794, 1996.

[22] T. J. Tsitsiklis, “On the control of discrete-event dynamic systems,”
Math. Contr., Sig. Syst., no. 2, pp. 95–107, 1989.

[23] F. Y. Wang and G. N. Dsaridis, “A coordination theory for intelligent
machines,”Automatica, vol. 26, pp. 833–844, Sept. 1990.

[24] R. A. Williams, B. Benhabib, and K. C. Smith, “A hybrid supervisory
control system for flexible manufacturing workcells,” inProc. IEEE
Inte. Conf. Systems, Man, Cybernetics, 1994, vol. 3, pp. 2551–2556.

[25] M. C. Zhou and F. DiCesare,Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems. Norwell, MA: Kluwer, 1993.

Robin G. Qiu (M’95–A’96) received the M.S. and
B.S. degrees from Beijing Institute of Technology,
Beijing, China, and the Ph.D. degree in computer
science and industrial engineering from Pennsylva-
nia State University, University Park, in 1996.

His disciplines cover industrial and manufactur-
ing engineering, computer science and engineering,
electrical engineering, and mechanical engineering.
He is currently a Research Scientist at Kulicke
and Soffa Industries, Inc., Willow Grove, PA. He
has more than ten years of working experience in

the field of computer-integrated manufacturing systems. He has had more
than 20 articles published or presented in journals or conferences. He is
actively serving as a referee and panelist for several international journals
and USA governmental agencies. His interests include control of automated
manufacturing systems, information technology, enterprise resource planning,
and manufacturing execution planning.

Sanjay B. Joshi (S’92–M’96) received the B.S.
degree from the University of Bombay, Bombay,
India, the M.S. degree from the State University
of New York, Buffalo, and the Ph.D. degree in
industrial engineering from Purdue University, West
Lafayette, IN.

His research and teaching interests are in the
area of CAD/CAM with specific focus on computer
aided process planning, control of automated flex-
ible manufacturing systems, and rapid prototyping
and tooling. He is currently Professor of industrial

and manufacturing engineering at Pennsylvania State University, University
Park. He is currently Department Editor forProcess Planning—IIE Transac-
tions on Design and Manufacturing, and also serves on the editorial board of
Journal of Manufacturing Systems, Journal of Intelligent Manufacturing, and
Journal of Engineering Design and Automation.

Dr. Joshi is the recipient of several awards, including the Presidential Young
Investigator Award from NSF in 1991, Outstanding Young Manufacturing
Engineer Award from SME in 1991, and Outstanding Young Industrial
Engineer Award from the IIE in 1993.

