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Trend Mining for Predictive
Product Design’

The Preference Trend Mining (PTM) algorithm that is proposed in this work aims to
address some fundamental challenges of current demand modeling techniques being
employed in the product design community. The first contribution is a multistage predic-
tive modeling approach that captures changes in consumer preferences (as they relate to
product design) over time, hereby enabling design engineers to anticipate next genera-
tion product features before they become mainstream/unimportant. Because consumer
preferences may exhibit monotonically increasing or decreasing, seasonal, or unobserv-
able trends, we proposed employing a statistical trend detection technique to help detect
time series attribute patterns. A time series exponential smoothing technique is then used
to forecast future attribute trend patterns and generates a demand model that reflects
emerging product preferences over time. The second contribution of this work is a novel
classification scheme for attributes that have low predictive power and hence may be
omitted from a predictive model. We propose classifying such attributes as either stand-
ard, nonstandard, or obsolete by assigning the appropriate classification based on the
time series entropy values that an attribute exhibits. By modeling attribute irrelevance,
design engineers can determine when to retire certain product features (deemed obsolete)
or incorporate others into the actual product architecture (standard) while developing
modules for those attributes exhibiting inconsistent patterns throughout time (nonstan-
dard). Several time series data sets using publicly available data are used to validate the
proposed preference trend mining model and compared it to traditional demand modeling
techniques for predictive accuracy and ease of model generation.
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1 Introduction

Identifying and understanding changes in complex systems are
vital to developing efficient models that help to predict future
behavior. As data storage capabilities become more efficient and
affordable, so do the challenges of extracting meaningful knowl-
edge that may exist within these storage resources. Dynamic sys-
tems such as consumer electronics markets, cybersecurity
systems, and military network systems, all require reliable and ef-
ficient analysis tools for sound decision making objectives.

The ability to model emerging trends has broad applicability in
product development, ranging from researching and developing
new product technologies to quantifying changes in consumer
preferences in highly volatile markets. Traditional demand model-
ing techniques frequently employed in the product design commu-
nity typically generate predictive models using data from a single
snapshot in time (usually the most currently available data set)
and hence may not reflect the evolving nature of product trends.
The absence of a temporal demand model for product design
presents a challenge to design engineers trying to determine the
relevant product attributes to include/exclude in the next genera-
tion of products.

To overcome these challenges, we propose a time series model
that addresses specific product design problems relating to product
preference trend modeling. We introduce a subcategory of data
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change mining called Preference Trend Mining (PTM) that char-
acterizes attribute relevance over time. Once an attribute has been
deemed irrelevant, we propose three classification groups based
on its historical pattern; Obsolete attribute, Nonstandard attribute,
and Standard attribute. This novel classification helps to guide the
product architecture by indicating when certain product features
should be included or excluded in next generation product
designs. A cell phone example is used to demonstrate what each
classification option means to design engineers and to the overall
success of new product development efforts.

This paper is organized as follows. This section provides a brief
motivation and background; Sec. 2 describes previous works
closely related to the current research; Sec. 3 describes the meth-
odology; A cell phone case study is presented in Sec. 4 with the
results and discussion presented in Sec. 5; Sec. 6 concludes the

paper.

2 Related Work

2.1 Demand Modeling Techniques in Product Design. There
are several well established demand modeling/customer prefer-
ence acquisition techniques that have been employed in the prod-
uct design community such as conjoint analysis, quality function
development, discrete choice analysis, supervised machine learn-
ing models, to name but a few [1-4]. In this selective literature
review, we will limit our discussion to the discrete choice analysis
model and the decision tree classification model, in part due to
their popularity in the product design community and also due to
the research findings in a recent comparative study performed in
the product design community [5].

2.1.1 Discrete Choice Analysis. The discrete choice analysis
(DCA) approach has been employed extensively in the product
design community as an attribute quantification and demand
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modeling technique [6—8]. The model measures variations in con-
sumer preferences by employing a random utility function U,
that is comprised of a deterministic part W,; and an unobservable
random part ¢,,. Although there are many variations of the DCA
model, a popular technique employed in the product design com-
munity is the multinomial logit (MNL) model. The MNL model
assumes that the error terms (¢,,;) are independent and identically
distributed (i.i.d) and follows a Gumbel distribution [9]. Given a
set of choice alternatives i =1,...,m, the probability that a cus-
tomer n would choose alternative i is represented as

eW,l,/u

E eWH.//"
J=1

Here P,(i € C,,) is the probability that customer n would choose
alternative i within the choice set C,,, W,; =f (A;, J;, S,.: B.,) repre-
sents the deterministic part of the utility function U,;, A; repre-
sents the quantifiable attribute set for choice alternative i, J;
represents the price for a given product (choice alternative i), S,, is
the sociodemographic attributes of customer 7, f8,, is the unknown
coefficients representing a consumer’s taste preference, and u is
the scaling parameter set to 1, assuming all choice alternatives are
equally considered by customer n.

While several variations of the DCA model (e.g., multinomial
probit, nested logit, mixed logit, etc.) have been employed in the
product design community, they are primarily distinguished from
each other by the degree of sophistication with which the unob-
served error and heterogeneity in customer preferences are mod-
eled [10-12].

2.1.2  Data Mining Decision Tree Classification. Techniques,
such as the C4.5 algorithm, have been employed in the product
design domain to solve product concept generation problems
involving large scale consumer data [3,5]. This machine learning
algorithm gets its foundation from Shannon’s classical Informa-
tion Entropy [13]. For the rest of the paper, we will refer to infor-
mation entropy simply as Entropy. An example of entropy in
product design terms could represent the uncertainty that exists in
distinguishing one choice alternative from another in a choice set
within a data set T. The entropy of the set of k choice alternatives
can therefore be mathematically represented as [14]

k

— Y pler) - logap(ci) bits] ©)

i=1

Entropy(T) =

Here, p(c;) represents the probability (relative frequency) of a
class variable ¢; in the data set T and & represents the number of
mutually exclusive class values within the data set (discrete case).

To determine the attribute (test attribute X) with the greatest
ability to reduce the uncertainty of the choice set, each attribute is
partitioned into all of its » mutually exclusive outcomes (discrete
case). The entropy, given a specific attribute test, is the summation
of entropies for each unique value of that attribute [14]

Entropy (T Z |‘ i -Entropy(7}) 3)

Here, T; represents a subset of the training data T that contains one of
the mutually exclusive outcomes of an attribute. For example, if the
attribute energy consumption has three mutually exclusive outcomes
(e.g., low, medium, and high), then the training set T, would be parti-
tioned into three data subsets (7; would contain all data instances
where attribute energy consumption is low and so on). n represents
the number of mutually exclusive outcomes for a given attribute.

The C4.5 decision tree classification algorithm defines the gain
metric which in essence, is the amount of uncertainty reduction
that an attribute provides in relation to the class variable. That is,

111008-2 / Vol. 133, NOVEMBER 2011

the lower the Entropy (7) for a particular attribute test, the higher
the overall gain(X) metric

gain(X) = Entropy(T) — Entropy .(T) 4)
The gain metric was later updated in the C4.5 decision tree algo-
rithm to reduce the bias toward attributes that may contain a greater
number of mutually exclusive outcomes and was redefined as [14]

gain(X)

Z |T| \Tj|
\T| |T|

Gain Ratio(X) = (5)

One of the assumptions of this model is that the data set can fit
into main memory as all data instances are required at least for the
first iteration. The definitions of entropy and entropy reduction
(gain) are important concepts that serve as the foundation for the
attribute irrelevance characterization presented later in this work.

2.1.3  Limitations of Current Demand Modeling Techniques. A
recent comparative study in the product design community
between the discrete choice analysis and decision tree (DT) classi-
fication models reveals that both techniques are quite comparable
in terms of model generation and predictive accuracy. However,
the decision tree classification model was found to be better suited
for large scale data analysis due to multicollinearity issues
reported while employing DCA for high dimensional data [5].
The DT model was capable of narrowing down the attribute space
to the relevant attributes influencing product choice share. To mit-
igate the multicollinearity issues of the DCA model, the DT model
could serve as a preprocessor, identifying the relevant attributes
for the DCA model [5]. Nevertheless, both demand modeling
techniques are limited in their ability to characterize evolving
product preference trends in the market space due to the static na-
ture of the models. Because the input of each model typically rep-
resents an instant in time, design engineers are faced with the
challenge of anticipating shifts in product preferences based on
personal experience, rather than quantitative customer feedback.

2.2 Time Series Modeling Techniques. In an effort to over-
come some of the challenges of static demand models, research
into time series modeling techniques have emerged, both in tradi-
tional utility theory based research and data mining and machine
learning research.

2.2.1 Time Series Utility Function Models. There have been
several time series, utility based models proposed in the literature
aimed at quantifying the evolution of customer preferences. Mela
et al. investigate the short term, medium term, and long term
effects of marketing actions on consumer choice behavior [15].
Mela et al. use first derivative information of the choice share in
the multinomial logit model to quantify the time sensitive nature
of customer preferences. Jedidi et al. propose a heteroscedastic,
varying-parameter joint probit choice and regression quantity
model that investigates the tradeoff between promotion and adver-
tising in the marketing domain [16]. Seetharaman proposes a
utility-theoretical brand choice model that accounts for four dif-
ferent sources of state dependence, incorporating lagged effects of
both consumer choices and marketing variables [17]. Lachaab et
al. build upon the temporal discrete choice research by proposing
a Bayesian state space framework that incorporates parameter-
driven preference dynamics in choice models [18].

While the aforementioned discrete choice analysis models
attempt to model evolving consumer preferences, the models are
primarily focused on variations in model parameters, rather than
the underlying evolution of attribute-class relationships (i.e., how
the evolution of a specific attribute influences the dependent/class
variable). Furthermore, these time series discrete choice models
do not provide engineers with quantifiable measures of attribute
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relevance/irrelevance to next generation product designs. Since
the proposed time series utility based techniques are developed in
the marketing domain, they are focused more on the economic
impact of customer preferences (evolution of brand preferences,
advertising implications, etc.). Consequently, engineers are left
with the challenge of determining the optimal attribute combina-
tions for evolving customer preferences without any direct rela-
tion to product architecture design.

PTM algorithm that is proposed in this work differs from time
series utility based choice models by having the ability to antici-
pate emerging attribute behavior whether the attribute exhibits a
monotonically increasing or decreasing trend, cyclical trend or no
trend at all. In addition to this, the PTM algorithm includes a tech-
nique to characterize attribute irrelevance by classifying attributes
based on their time series predictive power. This enables the PTM
model helps to guide the product design process by indicating
when certain product features should be included or excluded in
next generation product designs.

2.2.2 Time Series Data Mining Models. The area of data min-
ing dealing with dynamic information processing is relatively new
and has great potential to address many challenging areas of
research. Change Mining is the umbrella term used to describe
research involving data evolution in dynamic data bases [19].
Data Stream Mining is a subcategory of change mining that deals
more with the continuous flow of data that needs to be analyzed
with limited memory complications.

There have been several data mining algorithms proposed to
address continuously changing data streams. For example, the
very fast decision tree (VFDT) learner employs the Hoeffding sta-
tistic to build a decision tree classifier that has similar predictive
characteristics as a conventional decision tree learner (for exam-
ple, the C4.5 or gini based decision tree learners) but with a frac-
tion of the memory requirements [20]. Another example is the
concept-adapting very fast decision tree which extends the capa-
bilities of the VFDT by enabling it to accommodate time-sensitive
streaming data that may tend to exhibit concept drift, a phenom-
enon in dynamic information processing where the target variable
shifts over time and causes the data mining model to diminish in
its predictive accuracy [21]. While these models have the ability
to handle incoming data streams, they are more focused on gener-
ating/adapting a model based on incoming data, rather than
understanding how the data patterns evolve altogether.

Research domains more interested in data trends, rather than
the speed of the data streams also present another interesting area
of study. For example, the RePro classifier is a data streaming
algorithm that applies both proactive and reactive predictions dur-
ing model generation [22]. The algorithm attempts to alleviate the
problems of concept drift by anticipating concept changes and
making predictions that if incorrect, causes the model to readjust
and revert back to a previous model. Another example is the Pre-
Det algorithm that fits a polynomial regression model to the
monotonically increasing or decreasing time series attribute rele-
vance statistics. The resulting time series model anticipates future
attribute patterns that are inherent in the evolving data [19].

Although the aforementioned change mining algorithms gener-
ate models using time series data, they suffer from a limitation
similar to the DCA models described above. That is, their inability
to quantify the irrelevant attributes in the resulting model. Further-
more, the change mining algorithms fail to model seasonality
which can have dramatic effects on the model predictive accuracy.
The PTM algorithm that we propose in this work differs from the
PreDet and other change mining algorithms by having the ability
to anticipate emerging attribute behavior whether the attribute
exhibits a monotonically increasing or decreasing trend, cyclical
trend or no trend at all. In addition to this, the aforementioned
change mining algorithms do not suggest approaches to character-
ize attributes that may exhibit weaker predictive power over time.
We propose an approach to handle the notion of attribute irrele-
vance by classifying attributes based on their time series predic-
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tive power. This enables the PTM model to quantify attributes
that may be experiencing changes in the distribution of the attrib-
ute values themselves or novel/emerging attributes. The goal of
the proposed PTM algorithm is to enable design engineers to
understand changing customer preferences and anticipate emerg-
ing product designs trends in a timely and efficient manner.

3 Methodology

Figure 1 presents the overall flow of the preference trend min-
ing algorithm, starting with the acquisition of n time-stamped data
sets. For each time stamped data set () and subsequent data subset
(j), the interestingness measure (IM) is calculated for each attrib-
ute (/) until the final attribute (k). There have been many proposed
measures for evaluating attribute interestingness (relevance) such
as the information gain metric, gini index, Cosine measure, sup-
port measure, confidence measure, to name but a few [23,24]. In
this work, we will limit our definition of attribute interestingness
to an attribute’s ability to reduce the nonhomogeneity of the class
variable. In Sec. 3.2, we will highlight the inconsistencies that
exist among different definitions of relevance and propose an
approach to mitigate these inconsistencies by evaluating attribute
interestingness through time. That is, an attribute that is truly rele-
vant, will have consistently high relevance scores throughout time
and vice versa.

For each time step in Fig. 1, we calculate the IM for each attrib-
ute and then employ a seasonal time series predictive model to
forecast the trend patterns (monotonically increasing, decreasing
or seasonal trend patterns) for each attribute. The attribute with
the highest predicted IM is selected as the split attribute for the
future (unseen) time period and all time stamped data sets are par-
titioned based on the unique values of this attribute. The process
continues until a homogenous class value exists in the model. The
flow diagram in Fig. 1 ends with the classification of attributes (as
either obsolete, standard, or nonstandard) that are omitted from
the resulting model.

Sections 3.1-3.3.2 of the paper will expound on the steps of the
flow diagram in Fig. 1.

3.1 Discovering Emerging Trends for Product
Design. Trends within a data set can be characterized as monot-
onically increasing or decreasing, seasonal (where data exhibit
some type of cyclical behavior) or both. There may also be

_Pl n- time stamped data sets ]

g |

i=i+1

Calculate
Attribute (i), Data Set (t

Yes .
i=i+1

| Predict IM(Attribute (i) for time step n+1 |J

v

Split Data Sets 1,...,n based on Max
Predicted IM (Attribute(1),... Attribute (k))

No

No

For Data subset (j),
homogeneous class distributiog

End TREE, Classify Irrelevant Attributes
(Obsolete, Standard or Nonstandard)

Fig.1 Overall flow of preference trend mining methodology
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Time Period 1 Time Period 2 Time Period 3 Time Period 4 Time Period 5

|Attribute 1| Attribute 2 Class |Attribute 1| Attribute 2 Class Attribute 1| Attribute 2 Class Attribute 1| Attribute 2 Class Attribute 1| Attribute 2 Class
al,1 a2,2 Cc1 all a2,2 c1 a1l a2,1 Cc1 al,l a2,2 c1 al,l a2,1 c1
al,l a2,1 C1 al,l a2,1 (il al,l a2,2 C1 al,l a2,2 C1 al,1l a2,1 c1
al.2 a2,1 c2 all a2,2 2 a1l a2,2 c2 al,l a2,2 c2 all a2,2 c2
al2 a22 Q2 al2 a22 Q2 a1l a2,2 c2 a1l a2,2 c2 a1l a2,2 c2
al2 a2,1 a3 al2 a2l &) al,2 a2,2 c3 al,l a2,2 c3 al,l a2,2 c3
al2 a2l e3 al2 a2l c3 al.2 a2,2 c3 al2 a2,2 c3 all a2,2 c3
al2 a22 a al2 a22 a a1,2 a2,2 a al2 a2,2 [ a1,2 a2,2 &)
al2 a2l c4 al2 a2l c4 a12 a2,1 c4 a1,2 a2,1 ca a12 a2,1 c4
al,2 a2,2 (] a1,2 a2,2 (] a1,2 a2,1 c5 a1,2 a1 [ a1,2 a2,1 [
al,2 a2l G a1,2 a2l e al,2 a2,1 s a1,2 a2,1 c5 al2 a2,1 [

a @ a ® o a® o
a2,2 a22 C2 a2,2| a2,2 a g a2,2 c3
c1 Cc1
a21| < a1 < a2l ¢ a2,1 a21| <
al,l al,2 al,l al2 al,l al2 al,l al,2 all al2

Fig.2 Attribute-class distributions over time (attribute a1,1 is highlighted although both attribute patterns change over time)

instances where the time series data set does not exhibit a discern-
able pattern suitable for statistical modeling. In the context of
product design, we will consider each of these different preference
trend scenarios in our methodology. The time series data set repre-
sented in Fig. 2 will be used to illustrate the notion of attribute
trends within a raw data set. Figure 2 comprises of 5 time periods.
Attribute 1 comprises of two unique values {a; ;, a;»} and simi-
larly for attribute 2 {a,, @2}. The last column in Fig. 2 repre-
sents the class (dependent) variable which has five mutually
exclusive outcomes {¢1,¢2,¢3,c4,¢5}. As we observe from time pe-
riod t; to ts, the number of instances of attribute 1’s value a; ;
increases from 2 at time period #; to 6 at time period #s. Looking
closer at the square graphs in Fig. 2, we observe that at time pe-
riod ¢, although attribute 1’s a, ; value only has a total count of 2,
it represents a homogenous distribution of class value ¢; (lower
left quadrant in time period ;). Moving through time to time step
ts, we observe that the same attribute value a, ; has a count of 6
but with a nonhomogeneous distribution of the class variable (the
lower left quadrant in time series 75 has a mixture of ¢y, ¢,, and
c3). The change in the predictive power of each attribute can be
quantified by calculating the attribute IM over time which in this
case is the gain ratio. Figure 3 presents a visual representation of
each attribute’s gain ratio over time. In Fig. 3, although attribute 1
starts out with a higher gain ratio (predictive power) than attribute
2, by time period 4, attribute 2 has over taken attribute 1 in rele-
vance to the class variable. If we had generated a predictive model
at time period 3, we would not have realized the emerging prefer-
ence trend of attribute 2. To overcome these challenges, we
employ the Holt-Winters exponential smoothing model that uses a
weighted averaging technique, taking into account the local level,
the trend, and the seasonal components of the time series data
[25,26].

Time Period 1 Time Period 2

Freq Freq Ent Ent Gain
al,l al,2 al,1al,2 Al

Freq Freq Ent Ent
al,l al,2 al,1al,2

Time Period 3

3.1.1 Holt-Winters Exponential Smoothing Model. Holt-Win-
ters is a nonparametric, exponential smoothing model that can be
used to forecast each attribute’s predictive power for the kth step
ahead so that emerging preference trends can be anticipated in
the market space. Nonparametric statistical tests may be pre-
ferred in machine learning scenarios due to the relaxation of the
normality assumption that many parametric statistical trend tests
require [27]. Since we assume no prior knowledge of the distri-
bution of the incoming data, a relaxation of the data normality
constraint is preferred. The (k) step ahead forecasting model is
defined as

Vilk) =L, + KT, + 1,5k (6)
where
Level L, (the level component)
L=y, —I—) + (1 — o) (L1 + T—1) 7
Trend T, (the slope component)
Ty =y(Li —Li-1) + (1 = 9)Ti- ®)
Season /, (the seasonal component)
I =0y, — L)+ (1 = 0)],—s )

Here, y, represents the data point at the most recent time period
(1), yi(k) represents the kth time step ahead forecasted value
beyond y, (i.e., y;(k) = yrx), s represents the frequency of the sea-
sonality (monthly, quarterly, yearly, etc.)

Time Period 4 Time Period 5

Freq Freq Ent Ent Gain

Freq Freq Ent Ent Gain

al,l al,2 al,1al1,2 Al al,l al,2 al,1al,2 Al

Attribute 1 Frequency Over Time

Attribute 1&2 Gain Over Time
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Fig.3 Characterizing attribute preference trend over time
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The smoothing parameters «, y, and ¢ are in the range {0,1}
and are estimated by minimizing the sum of squared errors for
one time step ahead [25,26].

Several well established statistical techniques (both parametric
and nonparametric) exist for modeling time series data including
the seasonal-trend decomposition procedure based on loess regres-
sion, variations of the Box-Jenkins models which include the
autoregressive moving average and autoregressive integrated
moving average, to name but a few [28,29]. Research studies on
the predictive accuracies of these models reveal no conclusive
evidence to suggest one model being superior for all data struc-
tures [29].

Based on the results in Fig. 3, we can observe that attribute 2
would be selected as the relevant attribute in time period 6 (since
at each iteration, we always select the attribute with the highest
gain ratio). Under the gain ratio definition of attribute relevance,
attribute 1 would now be considered irrelevant at iteration 1 of
the decision tree induction algorithm. Based on the irrelevance
characterizations presented in Sec. 3.2, attribute 1 could either be
an obsolete attribute, a nonstandard attribute, or a standard at-
tribute. In order to determine the assignment of attribute 1, the
temporal behavior of each mutually exclusive value of attribute 1
(ay1 and a; ) needs to be determined. Section 3.2 details the pro-
posed attribute quantification methodology.

3.2 Quantifying Attribute Relevance. One of the major
challenges in predictive model generation is understanding the
design implications of the resulting model in terms of attribute
relevance or irrelevance. To understand some of the challenges
that arise in demand models, the following example is presented.

Let us define a set of attributes {Ay,..., As} each with a set of
mutually exclusive outcomes «; ;, where i corresponds to the specific
attribute A;, and j corresponds to the attribute value. For simplicity,
let us assume that j = 2 for all attributes. We also define a class vari-
able that is conditionally dependent on one or several of the defined
attributes. The class variable is also binary with values {c, ¢5}.

Figure 4 is a visual representation of a resulting data mining de-
cision tree structure employing the gain ratio metric described in
Sec. 2.1.2. The following decision rules can be obtained by tra-
versing down each unique path of the tree in Fig. 4.

1. If Ay =a, and As=as then Class =c,

2. IfA2 =das and A5 =dsp and A3 =das then Class = Cq
3. If A,=a»,; and As = as, and A3 = a3, then Class = ¢,
4. If A =a,, then Class = ¢,

Looking at the four decision rules above, we observe that attrib-
utes A; and A4 are not part of the model. Some immediate ques-
tions arise based on these findings:

1. What does the absence of attributes A; and A, tell design
engineers about their relevance to future product designs?

2. How long into the future will the current decision rules be
valid? (i.e., maintain high predictive capability)

3. Are there any emerging attribute trends that are not repre-
sented by the decision tree that may be useful to design
engineers?

To address these research questions concerning attribute rele-
vance [irrelevance, let us first introduce several well established
definitions of attribute relevance that exist in the literature
[30,31].

Definition 1. An attribute A; is said to be relevant to a concept
(decision rule) C if A; appears in every Boolean formula that
represents C and irrelevant otherwise.

Definition 2. A; is relevant iff there exists some attribute value
a;; and class value c; for which p(A;=a;) >0 such that
p(Class=c; | A;=ay;) # p(Class = c;)

Definition 3. A; is relevant if each unique value varies system-
atically with category (class) membership

Definition 4. A; is relevant iff there exists some a;;, ¢;, and s; for
which  p(A;=a;) >0 such that p(Class=c; S;=s;
|A,-:a,-j) # p(Class= c;, S;=s;), where S; represents the set
of all attributes not including A;

Iteration 1 a, , Data Subset a, , Data Subset
1 2 ib 3 a4 5| Class Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4 | Attribute 5| Class
a1 A1 | 831 | 841 | 81 | O ® Q11 | @2 | @3 | & | 8y | O
a a a a a C
11 2,1 3,1 4,2 5,2 1 ~ > A1 | @ | @y | A1 | 8, | &
a1 a1 a3 Q2 Gy | & N 'O
a1 a1 1 | Q1 | A1 | G Y
CIW) a1 as; a2 a,; | G
CIW) a1 as CY¥) Ay | & T
Q1o | A1 | @32 | Q1p | A1 | G 1 G
a1 a1 CER) a1 a1 | &
------------*----------------------------------------

Iteration 2
a; , Data Subset a, , Data Subset
a1,1 i 32’1 2 a‘;’l 2 34’1 2 a5,1 2 C(I:a;s ")'\ ? Anéll;u;el Attéll;n;ez An;;u;e:{ Anélt;u;ell Anélgu;es C(I:a:s
A1y | @1 | @1 | @1 | A1 [ G v N 811 | @21 | @3, | A2 | @52 | G
CEP a1 as ) ) a1 | G A1 | A1 | @32 | @42 | @5, | &
EEP a1 as, a, as; | G c c,
a1, a1 as ) ag as; | G | Cy . |

Iteration 3
a, ; Data Subset
bute 1 [ 2 | Attribute 3 bute 4 bute 5| Class
A1 | A1 | @331 | A2 | 3 | G

A;, Data Subset

Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4 | Attribute 5| Class
Q11 | 31 | 832 | A | 3p | O

c, Q12 | A1 | 8 | o | 3y | &

¢y
m | inl

Fig.4 Example decision tree result for product design
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Definition 5. A; is strongly relevant iff there exists some a;;, ¢;
and. s; for which p(A; = ay;, S; = s;) > 0 such that p(Class = c;
| A,‘ =ajj, S,‘ =s;) # p(Class: Ci ‘ S,‘ =s;)

Based on the results from Table 1, there exists the possibility
that an attribute evaluation metric may omit relevant attributes in
the model due to inconsistencies in how attribute relevance is
defined [30]. For design engineers, omitting a key attribute due to
an irrelevance characterization could mean the subsequent failure
of a product as customer needs may not be fully captured. We aim
to minimize the inconsistencies in attribute characterization by
looking at the problem from a time series perspective. That is,
attributes that are truly relevant to a product design should consis-
tently show up in the predictive models through many time steps
and attributes that are indeed irrelevant to a product design would
remain absent in the predictive model over time.

Section 3.3 relates the concepts of attribute relevance to product
design where we expand on the definition of attribute relevance-
irrelevance to aid design engineers determine when to include or
exclude certain attributes for next generation product design.

3.3 Characterizing Attribute Irrelevance in Product
Design. For design engineers, determining how attributes within
a given data set influence future consumer purchasing decisions is
paramount and could mean the market success or failure of a new
product. The definitions of attribute relevance presented in
Sec. 3.2 may not capture all of the concepts relating to product
design. For example, in the decision tree in Fig. 4, we have deter-
mined that attributes A; and A4 are not part of the decision tree
and are therefore considered irrelevant based on the pertaining
definitions of attribute relevance presented in Sec. 3.2. That is,
their inclusion/exclusion does not significantly influence the val-
ues of the class variable. Should attributes A; and A, therefore be
omitted from future product designs and if so, what consequences
would this have in the consumer market space?

To address these issues in product design, we propose several
subcategories of attribute irrelevance with the goal of ensuring
that vital attributes are not omitted from a product design simply
based on an irrelevance characterization.

1. Obsolete attribute (OA): An attribute A; is defined as obso-
lete if it has been deemed irrelevant at iteration j (given time
periods #,...,t,) and its inclusion/exclusion over time does
not systematically influence the values of a class variable.
The measure of systematic influence is determined by the
time series entropy trend of A;. If A; exhibits a monotonically
increasing entropy trend (determined by the Mann-Kendall
trend detection test introduced in Sec. 3.3.1), then this indi-
cates that attribute A; is consistently losing predictive power
over time. If an attribute falls under this classification at the
end of a given time series, it can be omitted from the next
generation product designs as seen in Fig. 5.

2. Standard attribute (SA): An attribute A; is defined as stand-
ard if it has been deemed irrelevant at iteration j (given time
periods 7y,...,t,) and its inclusion/exclusion over time sys-
tematically influences the values of a class variable. As with
the previous definition, the measure of systematic influence
will be quantified based on the time series entropy trend
of A;. If A; exhibits a monotonically decreasing entropy
trend (determined by the Mann-Kendall trend detection test

Table 1 Attribute characterization based on attribute definition

Attribute DI D2 D3 D4 D5
Attribute 1 — X — X —
Attribute 2 X X — X —
Attribute 3 — X — X X
Attribute 4 — X — X —
Attribute 5 X X — X X
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Product Architecture
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yobsolete Design

(Obsolete Classification)

Fig. 5 Product design implications of attribute irrelevance
classification

introduced in Sec. 3.3.1), then this indicates that attribute A;
is consistently gaining predictive power over time (despite
its initial irrelevant characterization). If an attribute falls
under this classification at the end of a given time series, it
should be considered vital to a product design, despite its
seemingly irrelevant characterization as seen in Fig. 5. An
example of such an attribute would be an airbag in an auto-
mobile. Since almost every vehicle is now equipped with an
airbag, customers may not consider this attribute while mak-
ing a vehicle purchase because it is assumed to be a standard
to the vehicle. If, however, the airbag were removed from
the vehicle design, this may significantly alter a customer’s
purchasing decision.

3. Nonstandard attribute (NA): An attribute A; is defined as
nonstandard if it has been deemed irrelevant at iteration j
(given time periods 1y,...,t,), and its inclusion/exclusion
does not reveal a discernible relation to the class variable.
This is determined by the absence of a monotonically
increasing or decreasing entropy trend as determined by the
Mann-Kendall trend detection test introduced in Sec. 3.3.1.
Attributes that may exhibit this type of behavior in product
design may be novel attributes that consumers may not yet
fully be aware of or existing attributes that have variations
within the market space. Such attributes should not be over-
looked and may either turn out to be a short term consumer
hype or may eventually become standard expectations. Con-
sequently, we propose that modular components be designed
for attributes exhibiting this type of pattern (as seen in
Fig. 5) as these modules can be upgraded or eliminated all
together based on future market demands.

3.3.1 Mann-Kendall Trend Detection. To detect trends for
each Attribute A; that has been deemed irrelevant at iteration j, we
employ the nonparametric Mann-Kendall statistic [32,33]. The
Mann Kendall trend test does not provide us with the magnitude
of the trend, if one is detected. Rather, it simply quantifies the pre-
sence/absence of a trend which is all we need to classify each at-
tribute within the data set. The Mann-Kendall test is based on the
statistic S defined as [27]

n—=1 n

S = Z Z sgn(x; — x;)

i=1 j=it1

10)

Here, n represents the total number of time series data points, x;
represents the data point one time step ahead and x; represents the
current data point

1 if (g —x;) >0
sgn = 0 if (xj —x;) =0
—1 if (5—x) <0

(11)
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The corresponding Kendall’s Tau is related to the S statistic as
follows:

S (12)

=7
En(nfl)

The null hypothesis is that there is no trend within the data. There-
fore, if the resulting p-value is less than the significance level («
=0.05), we reject the null hypothesis and assume a positive (posi-
tive 1) or negative (negative 1) trend. For more complex trend pat-
terns that may also exhibit seasonality, the seasonal Kendall test
can be employed [34].

The characterization of attribute irrelevance (as either obsolete,
nonstandard, or standard) is determined by looking beyond a sin-
gle data set and generating models based on multiple time steps
that quantify attribute relevance/irrelevance over time. Given a
time series data set #; to ¢, as illustrated in Fig. 6, we analyze each
data set from #; to ¢, and based on the gain ratio relevance defini-
tion, characterize the test attribute A; as either relevant or irrele-
vant at iteration j. If an attribute is deemed irrelevant, we then
employ the Mann-Kendall test to analyze the histories of each at-
tribute entropy value from #; to #,. An attribute value exhibiting
increasing predictive power (lower entropy) over time would be
deemed potentially useful in future iterations. The resulting char-
acterization of the predictive model generated in time period 7,4
will therefore assign an attribute irrelevance characterization
based on the trends of the historical entropy data.

Each of the attribute irrelevance definitions will be represented
as a binary variable; 1 implies that an attribute is characterized as
either Obsolete, Nonstandard, or Standard at a given iteration j
and 0O, otherwise. At each iteration, an attribute deemed irrelevant
can only assume one of the three possible irrelevant characteriza-
tions. The final classification of an irrelevant attribute is assigned
after the final iteration m. The final iteration m is reached after a
homogeneous class distribution is attained for one of the subsets
of the data (a leaf node in the decision tree structure). A variable
is defined for each irrelevant characterization (OA,—_; .,
NS,_y. . and SA,_, ) and its value, determined by summing
across all iterations (j = 1,...,m) as described below

. Tj

OArr,.n = ;OA,- o (13)
m T

NSt =) NS = (14)

Attribute A,
Iteration 1 obsolete
irrelevant nonstandard
{tuty.t) standard
relevant
Attribute A,
Iteration m —_ obsolete
irrelevant nonstandard
{tutyt b standard
relevant

Fig. 6 Attribute (A) characterization (relevant and irrelevant
categorization) from iteration 1 to iteration m (each iteration
contains a total of n time series data sets)

Journal of Mechanical Design

! (15)

~|

m
SAt:l,...,n = ZSA] :
=

Here, T; represents the number of data instances used to calculate
the gain ratio statistics at iteration j and T represents the total
number of data instances in the entire data set.

At iteration j, each attribute characterization is weighted based
on the proportion (T;/T) of instances. Therefore, the initial charac-
terization at iteration 1 (containing the entire data set) carries the
most weight due to the presence of all instances of the data. The
classification of an attribute at time step f,,; is determined by
selecting the irrelevant characterization with the highest variable
value ((OA,_;. . . NS,—1. » and SA,_; _,)). Given time steps
t1,...t,, the pseudo code for the irrelevant attribute characteriza-
tion for attribute A; is as follows:

1. Start: iteration j =1

2. If predicted Gain Ratio of Attribute A; is not the highest,
Attribute A; is considered irrelevant

3. Employ Mann Kendall (MK) trend test for Attribute A;

4. If MK 1 is negative (with p-value < alpha), irrelevant
classification = Standard

5. Else If MK 7 is positive (with p-value < alpha), irrelevant
classification = Obsolete

6. Else If MK 1 is positive/negative (with p-value < alpha),
irrelevant classification = Nonstandard

7. While data set/subset does not contain a homogeneous
class

8. Split the data set into subsets based on the number of mutu-
ally exclusive values of the attribute with the highest Gain
Ratio from Step 2

9. j=j+1 and revert to Step 2 for each data subset

10. End Tree, Classify Irrelevant Attribute A; based on highest

variable value ((OA,—1,...»» NSi—1,....n» SAi=1.....n)

3.3.2  Product Concept Demand Modeling. Once the time se-
ries decision tree model has been generated and irrelevant attrib-
utes characterized, a fundamental question that still remains is
how to estimate the demand for the resulting product concepts
(unique attribute combinations). If we take for example the result-
ing product concept {Hard Drive =16 GB, Interface = Slider,
Price=$179} in the left branch of Fig. 9, enterprise decision mak-
ers would want to know the overall market demand for this partic-
ular product so that potential product launch decisions can be
made. With a traditional decision tree model (using a static data
set for model generation), the demand for this particular product
concept will be a subset of the original training data set used to
generate the model (T,,/T, where T,, denotes the number of sup-
porting data instances after m iterations/data partitions) [3]. This
is analogous to a product’s choice share (discrete choice analysis
case) which has been used extensively by researchers in the design
community to estimate product demand [5,6,8]. Since the pro-
posed trend mining algorithm is making predictions about future
product designs, the demand for a resulting product concept is
estimated based on the time series trend of the supporting instan-
ces T, using the Holt-Winters forecasting approach presented in
Sec. 3.1.1. This will enable to design engineers to anticipate future
product demand for the predicted trend mining model.

4 Product Design Example

4.1 Cell Phone Design Study. To validate the proposed
trend mining methodology, we test several well known data sets
and compare the results of the proposed preference trend mining
algorithm with traditional demand modeling techniques. For con-
ciseness, we will present a detailed explanation of the cell phone
case study, while only providing the results for the remaining data
sets used in our evaluation. The original cell phone case study was
based on a University of Illinois online survey of cell phone attrib-
ute preferences originally created using the uiuc webtools
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Fig. 7 Time series gain rRatio at iteration 1 (Period 1-12 with Period 13 predicted by employing

the Holt-Winters predictive model)

interface [3,4]. To accommodate the time series nature of the pro-
posed methodology, the product design scenario is presented as
follows:

Enterprise decision makers within a cell phone company are
looking to launch their next generation cell phone early in the first
quarter of 2010. To guide their product design decisions, 12 data
sets (representing monthly customer preference data for fiscal
year 2009) are available through online customer feedback. Based
on the time series data, design engineers want to integrate cus-
tomer preferences directly into the next generation product design.
The goal of the new cell phone project is for the functionality of
the next generation cell phone design to anticipate the preferences
of the customers at the time of product launch; preferences that
are constantly evolving within the market space.

For each monthly data set, there are six product attributes and
one dependent variable. There are a total of 12,000 instances (cus-
tomer response) for the entire 12 month time period, partitioned
into 1000 instances of customer feedback per month. The attrib-
utes, along with their corresponding values are as follows:

Hard Drive: {8 GB, 16 GB, 32 GB}

Talk Time: {3 h,5h, 7 h}

Camera: {2.0 MP, 3.1 MP, 5.0 MP}

Interface: {Flip Phone, Slider Phone, Touch Screen Phone}
Connectivity: {Bluetooth, Wifi}

2G Processor: {Limited, Capable}

The class variable is the price category of the given cell phone
design within the time series data: Price: {$99, $149, $179, $199,
$249}. The class variable for product design problems can be set
by enterprise decision makers regarding the overall enterprise
objective. For next generation product design, enterprise decision
makers may be interested in quantifying the price customers will
be willing to pay, given a combination of product attributes. Other
class variables in product design could be product brands, binary
purchasing decisions, and environmental impact metrics, to name
but a few.

The structure of the data is similar to that presented in Fig. 2
with the attribute names indicated by the first row of each column
(except for the last column which represents the class variable,
price). In the time series data, the distribution of the attributes as
well as the class values associated with each attribute value
changes over time.

Up until now, demand modeling in product design had focused
on utilizing the most recent data set to generate predictive models
about future customer behavior. Our research findings presented

111008-8 / Vol. 133, NOVEMBER 2011

in Sec. 5 reveal that such techniques may not fully capture emerg-
ing consumer preference trends and may ultimately mislead future
product design decisions.

5 Results and Discussion

The results of the cell phone case study introduced in Sec. 4
provide valuable insight into the challenges of designing products
for volatile consumer markets. We begin by presenting the time
series gain ratio statistics for each attribute (at iteration 1) shown
in Fig. 7. In the proposed trend mining methodology, we want to
take into consideration all possible scenarios for the attribute gain
ratio statistics over time; that is, we want to capture attributes that
display a monotonically increasing or decreasing trend, a seasonal
trend or no trend at all which we model using the Holt-Winters
technique presented in Sec. 3.1. Based on the level of seasonality
or trend within the data, the one time step ahead predictions (pe-
riod 13) are modeled. At period 12 in Fig. 7, we observe that the
Interface attribute has a higher gain ratio than the Hard Drive.
However, based on the emerging trends of these two attributes, it
can be observed that the Hard Drive attribute will have a higher
gain ratio in future time periods, which the Holt-Winters model
predicts in time period 13.

New design insights obtained by preference trend mining. In
order to understand the product design implications of these find-
ings, let us take a look at the predictive model results that are gen-
erated using the most recent data set (period 12). In Fig. 8, the
only relevant attributes to the price variable are: Interface, Con-
nectivity and Camera, with the associated decision rules acquired
by traversing down the appropriate paths of the decision tree. In
contrast, when the proposed time series preference trend mining
algorithm is employed using the data from periods 1 to 12, there

Qnterface>

Slider Touch Screen

CCamera>

5.0 MP

Flip Phone

Bluetooth Wifi 2.0 MP 3.1MmP

[[s199 | [[s179 ] [[s279 ] [[s299 ] [[s199 ]

Fig. 8 Decision tree model using Period 12, 2009 data set only
for model generation (results attained using Weka 3.6.1 [35])
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Fig. 9 Trend mining model using Periods 1-12, 2009 data for
model generation (results attained using ESOL developed Java
Based PTM code compatible with Weka) [35])

are noticeable differences in the resulting attributes that are con-
sidered relevant (Fig. 9). From the resulting decision trees in Figs.
8 and 9, we observe that the common attributes between the two
models are the interface and connectivity attributes. However,
even with the interface attribute being common between the two
models, we observe that the Flip Phone interface design found in
Fig. 8 is not included in Fig. 9, providing engineers with the
knowledge that this particular attribute value is not desired in
future time periods. Given the differences between these two deci-
sion tree structures, entirely different product design decisions
may result to address the needs of the market.

Furthermore, for those attributes that are considered irrelevant
to the classification of price (and are therefore omitted from the
decision tree model in Figs. 8 and 9), design engineers have no
direct way of deciding whether these attributes should be omitted
from all future cell phone designs. As a reminder, an irrelevant at-
tribute simply means that at iteration j, an attribute does not have
the highest gain ratio, not necessarily that it does not have any
predictive power whatsoever, as illustrated in Fig. 7. At iteration
1, since the PTM algorithm predicts that the Hard Drive attribute
will have the highest gain ratio at time period 13 (see Fig. 7), we
characterize the remaining attributes as either obsolete, nonstan-
dard, or standard. The entropy histories along with the results
from the Mann Kendall trend test in Fig. 10 indicate that the 2G
Processor is characterized as obsolete (positive t values and p
value within tolerance limit), while the remaining attributes are
characterized as Nonstandard (due to p values exceeding the toler-
ance limit). After subsequent iterations of the PTM algorithm, the

Mann-Kendall
MEJ

Hard Drive Entropy

Talk Time Entropy

Cell Phone Data Set Model Accuracy Comparisons
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Fig. 11 Comparison of predictive accuracies between the PTM
and DT models using 12 unseen time stamped data from 2010)
[35])

attributes that do not show up in the tree are therefore classified as
shown in Fig. 9, with the accompanying demand (# supporting
predicted instances) accompanying each branch of the tree.

5.1 Model Validation. In addition to the structural differen-
ces of the resulting decision tree models, there are also noticeable
differences in the predictive accuracies. Figure 11 presents the
predictive accuracy results between the proposed PTM model and
the traditional DT classification model. The predictive accuracies
are calculated using 12 monthly data sets from 2010. For each
instance in a given monthly data set, the attribute combinations
resulting in a class value are tested against the decision tree pre-
dictions by traversing down the path of the decision trees in
Figs. 8 and 9. If the class value predicted by the decision tree
model matches the actual class value in the monthly data set, a
value is incremented in the correct predictions category; other-
wise, a value is incremented in the incorrect predictions category.
The summary predictive accuracies in Fig. 11 reveal that the PTM
model attains a higher predictive accuracy for many of the time
periods, compared to the DT model.

To obtain a statistically valid conclusion on the predictive accu-
racies of the two models, we employ the Wilcoxon signed rank
test which has been proposed in the data mining/machine learning
literature as a suitable approach for comparing two models against
multiple data sets [36]. The null hypothesis of the test is that the
median difference between the two model accuracies is zero. The
alternate hypothesis is that the accuracy of the DT model is less
than that of the PTM model. Using a significance level of
o =0.05, the null hypothesis (data in Fig. 11) is rejected with a p
value of 0.0224, providing statistical evidence that the accuracy of
the PTM algorithm exceeds that of the DT for the Cell Phone data
set. We see that the predictive accuracy of both models diminishes
over time with slightly above 50% in period 12. The PTM accu-
racy may be enhanced in future time periods by changing the k
value of the k-ahead time predictions from 1 (in the cell phone
model) to the specific future period of interest (1-12).
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Fig. 10 Time Series Attribute Entropy values for irrelevance characterization
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Table2 Comparison of predictive accuracies between the PTM and DT models using time series data

Model validation characteristics

Predictive model Data set # Attributes  #Instances/Period  # Periods to Train ~ # Periods to Test ~ Higher % Accuracy  p-value
PTM Car Evaluation 7 1728 24 12 X 0.00507
FI?"I"FM Cylinder Bands 10 540 36 24 X 0.00007
PD";FM Automobile Brand 9 205 24 12 X 0.00008
DT

Additional data sets from the UC Irvine machine learning reposi-
tory were employed to further validate the two models. The UC
Irvine machine learning repository is a collection of databases that
have been used extensively in the machine learning community for
empirical analysis and validation of data mining/machine learning
algorithms [37]. To accommodate the time series nature of the pro-
posed methodology, additional time series data for each UC Irvine
data set were generated with varying data set conditions (attribute
space, number of instances, number of time periods, etc.). The time
series data sets were then tested against the two models for model
accuracy, with the results presented in Table 2. The results from
Table 2 emphasize the robustness of the proposed PTM algorithm
in handling different types of time series data while still maintain-
ing greater predictive accuracies, compared with the traditional de-
cision tree model. Due to the variation in data set structure, size,
etc., it is rare for an algorithm to outperform on every metric of
performance [38]. Therefore, the proposed PTM model is well
suited for data sets that exhibit monotonically increasing/decreas-
ing or seasonal trends similar to the test data sets presented. In sce-
narios where no discernable trends exist in the data set, the PTM
algorithm was found to perform comparable to traditional demand
modeling techniques which should not be surprising, given the
underlying formulation of the proposed PTM algorithm.

6 Conclusion and Path Forward

The major contribution of this research is to propose a machine
learning model that captures emerging customer preference trends
within the market space. Using time series customer preference
data, we employ a time series exponential smoothing technique
that is then used to forecast future attribute trend patterns and gen-
erate a demand model that reflects emerging product preferences
over time. The Mann Kendall statistical trend detection technique
is then used to test for attribute trends over time. An attribute
irrelevance characterization technique is also introduced to serve
as a guide for design engineers trying to determine how the classi-
fied attributes are deemed irrelevant by the predictive model. The
insights gained from the preference trend mining model will ena-
ble engineers to anticipate future product designs by more
adequately satisfying customer needs. Future work in customer
preference trend mining will include expanding the current
approach to handle the continuous attribute and class domain.
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Nomenclature
PTM = preference trend mining
DT = decision tree
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OA = obsolete attribute classification
SA = standard attribute classification
NS = nonstandard attribute classification
Tj = subset of the training data T that contains one of the mutu-
ally exclusive outcomes of an attribute
t = A given instance in time
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