Final Report

Medical Office Building

Brendon J. Burley Structural Option April 5, 2005

Advisor: Dr. Thomas Boothby

<u>Acknowledgements</u>

Kevin Matthews

For furnishing me plans to my building, allowing me to tour his facility, and answering all my questions along the way.

Jim Kerr

For helping me in the search for my building and introducing me to Kevin

The Architectural Engineering Faculty and Staff

Sharon Williams – For keeping track of everything and everyone, and always being someone to talk to.

Dr. Louis Geschwindner – For his excellent advising, and constant willingness to answer even the most inane questions I could imagine.

Dr. Jelena Srebric – For giving me the opportunity to grow in my studies through research.

Dr. Thomas Boothby – For carefully reading and evaluating my work on this project.

My Parents: Timothy A. Burley Ann E. Burley

For their tireless love, their constant support (both emotional and financial), and their confidence in the person I will become.

Table of Contents

Executive Summary	1
Introduction	2
Chapter 1: Shear Wall Analysis	7
Introduction	7
Preliminary Analysis	8
Secondary Analysis	9
Final Design	10
Conclusions	12
Chapter 2: Post-Tensioned Two-Way Slab	13
Introduction	13
Load Analysis	14
Shearhead Investigation	15
Post-Tension Investigation	16
Deflection Analysis	17
Conclusions	17
Chapter 3: Underfloor Air Distribution	19
Introduction	19
Environmental Comfort Analysis	19
System Layout	21
Conclusions	21
Chapter 4: Auditorium Lighting	23
Introduction	23
Lumen Method Analysis	24
System Layout	25
Task Lighting Layout	25
Conclusions	26
Conclusions	27
Appendices	28

Executive Summary

The Medical Office Building, in Malvern, PA is a six story concrete structure that is part of a larger corporate complex. As the third building in the growing complex, the Medical Office Building's design was largely influenced by its attached neighbors. In order to maintain the same exterior appearance as the two older buildings, the general design and construction methods were retained. In particular, the gravity system of concrete columns was continued, and the floor elevations were matched to make the transition between the buildings through the sky bridge unnoticeable. Despite the matching, some modifications were made to the non-visible systems.

The Medical Office Building introduces a raised floor on Filigree beams instead of a cast-in-place slab on beams system. In addition, open office spaces, and an auditorium were incorporated into the design. Although these systems all serve a purpose, some introduce unexpected complications, and others are not being used to their full potential. One example of a complication is that the Filigree beam system is proprietary, and thus cannot be designed for lateral loads by the engineer. This resulted in a complicated moment frame and system being overlaid to handle lateral loads.

In response to the complexity of this system, a shear wall alternative was suggested. The shear wall system was just as effective as the moment frames, and cost half as much, but it requires the addition of footings with underpinning, which may make the cost rise again. Another option to reduce the system complexity is to simply replace the Filigree beams.

A post-tensioned two-way slab was compared with the Filigree beam system to simplify the floor design. The proprietary nature of the Filigree system made it impossible to determine an actual cost and a comparison between the two-way slab and a banded beam system, which is similar to Filigree, was inconclusive. On the basis of simplicity, and reducing the overall floor depth, the two-way system is the better solution. The advantages of the two-way slab can also be carried to the mechanical system.

The mechanical system of the Medical Office Building is a conventional overhead system. Because the building already has a raised floor, implementing an underfloor air distribution (UFAD) system is a logical improvement. An effective UFAD system was designed for the open office area when the two-way slab had been implemented to increase the ceiling height by 2'-0" over the Filigree system. However, the system would not likely work correctly if the Filigree system were retained.

The last area considered by this project was the auditorium. As an alternative to traditional downlighting, a direct-indirect lighting system was designed. This system resulted in energy savings, which were used to add task lighting. At the same time, the system seems out of place in the auditorium because it is not the traditional design. In this case, the owner's opinion would have to guide the final decision.

Based on the results of the analyses, it is obvious that the current systems in the Medical Office Building are comparable to the new ones. Generally, optimizing the design requires that the whole building be investigated instead of its parts. For the Medical Office Building, both the existing and the proposed designs work just as effectively for the entire building.

Introduction

The Medical Office Building is part of an office complex spanning 111 acres of East Whiteland Township and 5 acres of Tredyffrin Township in Malvern, Pennsylvania. The complex was started in the 1970's with an office building and a data center. A second office building was added in the 1980's and a third office building and a parking garage were added in 1999. The complex has been designed to separate the data center from the office buildings, but the office buildings have been built in the same area and connected by sky bridges to form a single architectural monument (Figure I-1).

Figure I-1 Artist rendering of the sky bridge between The Medical Office Building (left) and its neighbor

The combined structure of the office buildings forms a helix around a sloping central park. The Medical Office Building holds the highest ground on the site and tries to bring the park into its bottom floor through a circular landing that is half occupied by the building's atrium (Figure I-2). This atrium, which resides on the curved southwestern façade, is the only disturbance to the otherwise alternating bands of pre-fabbed panels and windows. The aesthetic appeal of the consistency of these bands across all three office buildings also impacts the design of the interior spaces.

Figure I-2 The Medical Office Building atop of the sloping central park

In addition to matching the exterior components of the Medical Office Building with its neighbor, the designers matched the interior components as well. The most important of these matches was maintaining the same floor elevations so that stairs or ramps would not be need in the sky bridges. To further maintain consistency between the structures, the ceiling heights and visible structural systems were also mimicked. In particular, the large concrete columns (Figure I-3) not only serve as a gravity resistant system, but also as a visual continuation of the previous structures. Where visual continuity is not necessary, the Medical Office Building takes more liberties with its structural systems.

Figure I-3 Concrete columns that serve as the gravity system for The Medical Office Building and an architectural continuation from the existing office buildings

The structural systems of the Medical Office Building are composed of banded beams on columns to resist gravity loads and concrete moment frames to resist lateral loads. The banded beams chosen for this project are a proprietary system from Filigree that consists of 8' by 18" beams built integrally with 9" to 10" slabs (Figure I-4). The beams span 28' in the north-south direction while the slabs span 20' between the beam edges in the west-east direction. Cast-in-place columns, 26" in diameter and 11' high, spaced on a 28' by 28' grid, with additional points for the curved face, support the Filigree beams. Some of these columns also act as part of the moment frames in the building.

The lateral support system of the Medical Office Building is simple in theory, but complicated in practice. Lateral forces in the west-east direction are taken by two exterior and five interior moment frames spanning in that direction (Figure I-5). Interior beams running between torsional members in the west-east moment frame absorb lateral forces in the north-south direction. This system, which is inefficient compared to a direct frame, was necessary because the Filigree system is not intended to resist lateral loads. Although the Filigree system adversely affected the lateral system, it did provide other benefits because of the reduced slab and beam thickness.

Figure I-4 Filigree beam system schematic

15 Lateral Desistant System Layout

Even though the floor elevations match between each office building, the Medical Office Building's finished slab elevation is 6" lower than its neighbor's. The difference in the height of the slabs is compensated for by a raised floor system. This system creates a plenum for all the electrical and telecommunications wiring in the building. This has several positive benefits, particularly in laying out the areas of open office space, since cubicles do not need to be clustered around the columns to reach the electrical outlets. Also, the suspended ceilings only have to support the lighting and heating ventilating and air-conditioning (HVAC) system, thus eliminating sag issues that plague the two older buildings.

The main reason why ceiling sag is such an issue is because of the massive amounts of wiring utilized by the offices in the complex. The Medical Office Building alone has over \$2.8 million in wiring. The daunting size of the wiring of the building is matched only by the massive redundancy of the electrical system (Figure I-6). Due to the importance of the information stored in the data center two 1500kVA power lines feed the complex. In addition, all the major circuits are protected by three hour uninterruptible power systems and by four diesel generators capable of providing power for two and a half days. Another benefit of the data center is that it acts as a free heat source.

Figure I-6 Switching board for the Medical Office Building

As an office, the Medical Office Building requires cooling year round from its HVAC system. This cooling is provide by four 50 ton, three 70 ton, and one 90 ton central heat pumps, which extract heat using a variable air volume (VAV) ventilation system. This system is networked to a central handling station, but can be overridden by local controls in each zone. In addition to the VAV system, the Medical Office Building takes advantage of the heat from the data center to control the building envelope heat transfer. This is accomplished through a heat recovery system, which uses heat from the data center to raise water to 100°F before running through 311 perimeter heat pumps (Figure I-7). These heat pumps absorb most of the envelope heating load during the year.

Figure I-7 A disassembled perimeter heat pump, heat pumps such as these control the interior envelope temperature and absorb most of the envelope heating load.

The mechanical systems of the Medical Office Building also include two fire protection systems. The first fire protection system is a wet sprinkler system. Sprinklers are placed in every zone of the building on a 12' by 12' grid to protect the general office spaces. The atrium is protected by a water curtain system that is triggered by laser smoke sensors. Both of these systems are connected to a Simplex 4100 Annunciation panel that monitors and controls each sprinkler head. Fire doors are also interspersed in the office spaces to divide the building in case of disaster.

The technology used by the systems in the Medical Office Building largely address the technological, safety, and serviceability concerns of the owner. However, these systems are not without their drawbacks. One such example is that the electrical outlets on the raised floor often crack from foot traffic. Although this does not have a severe impact on the building, it shows that minor modifications to the building could improve its overall quality. With this philosophy in mind, the following report will explore alternative designs to the structural, mechanical, and lighting systems in the Medical Office Building.

Shear Wall Analysis

Introduction

The current lateral system in the Medical Office Building consists of cast-in-place (CIP) concrete moment frames and torsion beams. Although the frame system is effective for the Filigree beam system, it detracts from some of the benefits of the Filigree beams and suffers certain inefficiencies because it has to work around the Filigree beams. In particular, the frame beams, which are up to 48" deep, divide the channeled plenums created by the Filigree system. These same beams are also 30" lower than the floor system beams, which generally means that the ceilings most be hung lower to hide the frames. In addition, the frames themselves are placed in such ways that lateral loads can generate significant torsion in the building. A careful redesign could alleviate some torsion and lead to a more efficient system.

Solution Overview

One alternative to moment frames as a lateral system is shear walls. Properly located shear walls would reduce the number of plenum channels that are interrupted, eliminate the deep beams and thus potentially increase usable space, and move the center of stiffness of the building to alleviate torsion. Another notable feature of shear walls is that they are typically located at the building's edges or around the stairwells. Because the current frame system is located along the stairwells there are already several bays that could have shear walls added without affecting the rest of the Filigree system.

Design Criteria

When considering the effectiveness of the shear wall system, there are several factors that need to be addressed:

- Can the shear walls meet code?
- Can the shear walls be constructed at no greater cost?
- Will the shear walls introduce more problems than they correct?

The first question will be addressed by designing the shear walls based on the IBC 2003 Building code. The second question will be addressed by running a cost analysis based on data provided by RS Means. The last question will be addressed by comparing and contrasting the utility of the building with frames and with shear walls. Regardless of the final conclusion, if the shear walls cannot meet the code requirements, they will be discarded as a solution. The majority of the conclusion will be weighted on the answers to the latter two questions. A savings in cost and schedule in addition to the introduction of few problems will be considered a great success. Combinations of higher costs and fewer problems or lower costs, but more problems will be considered successes based on the relative severity of the costs and benefits.

Preliminary Analysis

One of the major considerations in the design of any lateral system is trying to keep the center of rigidity near the center of gravity to limit the torsional moment generated by uneven wind loads. In considering the use of shear walls, it is necessary to evaluate not only the center of rigidity, but the effects on the architectural design and the other building systems. In the case of the Medical Office Building, the architecture of the façade makes the use of exterior shear walls impossible. However, a sound lateral system should include resistance along the exterior surfaces to efficiently resist torsion. For this reason, the two moment frames on the exterior walls were retained and shear walls were investigated for several internal locations.

In order to minimize the impact on the other building systems and the architecture, the shear wall locations were chosen to be around the stairwells and bathrooms (Figure 1-1). Based on these locations it was possible to determine the height and maximum depth of the shear walls. Once the heights of the walls were determined, the required thickness could be calculated based on the slenderness criteria that the thickness be greater than or equal to 1/30 the height. Knowing the dimensions of the shear walls it was possible to determine their stiffness. A STAAD analysis of the two existing moment frames also revealed their stiffness, the full details of these analyses appear in Table 1-1.

Figure 1-1 The schematic showing the potential shear walls in plan

Wall	b (in.)	d (ft.)	h(ft.)	l (in^4)	Aw(in^2)	k (k/in.)
N-Frame	-	-	-	-	-	111.00
S-Frame	-	-	-	-	-	36.00
NS-1	16.00	21.75	37.50	23706108.00	4176.00	1707.90
NS-2	16.00	21.75	37.50	23706108.00	4176.00	1707.90
NS-3	16.00	21.75	37.50	23706108.00	4176.00	1707.90
NS-4	16.00	28.46	37.50	53101997.83	5464.00	3370.93
NS-5	20.00	23.82	50.00	38938326.51	5717.50	1261.20
NS-6	20.00	23.82	50.00	38938326.51	5717.50	1261.20
WE-1	16.00	27.00	37.50	45349632.00	5184.00	2963.40
WE-2	20.00	9.58	50.00	2534791.67	2300.00	92.69
WE-3	16.00	26.08	37.50	40885729.33	5008.00	2719.79
WE-4	16.00	26.00	37.50	40495104.00	4992.00	2698.13
WE-5	16.00	9.58	37.50	2027833.33	1840.00	172.43

Table 1-1 Summary of shear wall and moment frame properties

Using the properties of the shear walls and moment frames it was possible to perform a stiffness analysis to determine the center of rigidity for various combinations of shear walls. The full excel spreadsheets detailing this analysis appear in Appendix I. A summary of the walls utilized in the analysis and their respective eccentricities appear in Table 1-2. Based on these results it can be seen that the least eccentricity results from the use of shear walls at the inside edges of the stairwells and around the bathroom walls. These walls were chosen for further analysis.

Walls	X-	Y-
	eccentricity	eccentricity
All	-10.18'	1.22'
NS-1,2,5,6 & WE-2,5	-8.77'	-8.42'
NS-3,4 & WE-1,4	-10.08'	12.49'
NS-2,3,4,5 & WE-1,4,5	-9.21'	5.04'
NS-2,3,4,5 & WE-3,4	5.16'	5.04'

Table 1-2 Eccentricity Analysis of shear wall combinations

Secondary Analysis

Starting with the shear wall combination chosen from the preliminary analysis, a further evaluation of the least eccentric combination was performed to test the actual strength and size of the walls needed. Shear walls resist lateral loads on a building, predominantly those from wind. Earthquake forces also produce lateral loads, but the columns in the building would assist in carrying this load, and thus not be the controlling value in the design. The wind loads (Figure 1-2) on the Medical Office Building, as determined by guidelines in ASCE 7-02, are 267 kips in the North-South direction and 192 kips in the West-East direction.

Figure 1-2 Wind profiles for The Medical Office Building

These loads were distributed to the shear walls and frames through a stiffness analysis. The loads in the shear wall were then evaluated against the strength of an unreinforced masonry wall, using 3000 psi CMU blocks fully grouted:

$$\phi V_n = 0.8 * 3.8 A_n \sqrt{f_m}$$
 (1-1)

The walls were then resized to more closely match the depth required for strength. This redesign resulted in a change of stiffness, and thus the need for another distribution of the loads. Inevitably the process of redistributing the loads would result in the elimination of the shear walls altogether, as the reduced depths would mean more of the load enters the frames. For this reason, the frames were limited to carrying 10% of the shearing force from a symmetric load. In addition, the shear walls could not exceed an in-plane stress due to bending greater than 250 psi without reinforcing. With these requirements in place, several sizes of shear walls were checked using excel, the final results being shown in Table 1-3.

Wall	V_ult	f (psi)	ΦV_n
N-Frame	13.59	-	-
S-Frame	3.91	-	-
NS-2	75.48	54	174.56
NS-3	29.01	31	67.10
NS-4	118.05	230	273.01
NS-5	45.41	123	105.01
WE-3	109.14	231	252.40
WE-4	63.64	139	147.18

Table 1-3 Summary of shear wall analysis showing the carried load, the bending stress and the allowable shear

Final Design

In order for the shear walls to perform effectively they must have a proper foundation. In this case it was assumed that the shear walls would take a portion of the floor loads, as determined by tributary area, in addition to the lateral loads. Moments of overturning were approximated by applying the final shear at 2/3 the height of the shear wall. Based on the maximum stress due to the gravity loads

Wall	M_o (ft-k)	P (k)	e (ft)	B (ft)	L (ft)	q (ksf)	kern
NS-2	1887.06	221.87	8.51	24.00	6.00	4.82	4.00
NS-3	725.36	158.48	4.58	15.00	6.00	4.98	2.50
NS-4	2951.34	253.57	11.64	26.00	7.50	4.79	4.33
NS-5	1513.60	304.98	4.96	24.00	6.00	4.75	4.00
WE-3	2728.54	316.96	8.61	30.00	6.00	4.79	5.00
WE-4	1591.04	253.57	6.27	23.00	6.00	4.85	3.83

and the moments, the initial size of the footings was determined. Once the initial size was known, an analysis of overturning was performed (Table 1-4).

Table 1-4 Overturning analysis of footings

Based on this analysis it becomes clear that overturning becomes a serious issue with the shear wall footings. There are several means of remediation for this problem, including using underpinning, increasing the size of the footing, or burying the footing. Increasing the footing size would be inefficient, and burying the footing would require excessive excavation, therefore, the best solution is to underpin the footings. The analysis of the necessary underpinning was not conducted as part of this work, but the footings were designed using the above loads after modification for strength design. A general schematic of the slab design, and the results of the analysis for each shear wall appear in Figure 1-3.

\\/all	q_design	d	h	A_s (in^2)	Bars Long	Bars Short
vvan	(ksf)	(in)	(in)	Long	Short	Dars – Long	Dars -Short
NS-2	8.62	36	39	0.84	0.84	#6's @ 6"	#6's @ 6"
NS-3	6.60	17	20	0.44	0.43	#6's @ 12"	#6's @ 12"
NS-4	7.85	45	48	1.04	1.04	#6's @ 5"	#6's @ 5"
NS-5	6.11	27	30	0.69	0.65	#6's @ 7"	#6's @ 8"
WE-3	7.07	29	32	0.73	0.69	#6's @ 7"	#6's @ 7"
WE-4	6.38	21	24	0.60	0.52	#6's @ 8"	#6's @ 9"

Figure 1-3 Footing Design for shear walls

11

Conclusions

The proposed shear wall design requires the construction of six masonry walls and their foundations. Each wall was designed using applicable code, and therefore meets the legal requirements for use. The existing system that can be removed as a result of the redesign includes 60 beams, from the moment frames, and their reinforcing. The columns and footings would be retained as party for the gravity structure, therefore, no savings can be recovered from the existing footings. A cost comparison through R.S. Means is presented in Table 1-5. This data shows that there is a \$70,000 benefit from the use of the shear wall system.

	Shear Wall	Moment Frame
CMU Block	\$35,728	\$0
Footing Formwork	\$4,301	\$0
Footing Rebar	\$2,895	\$0
Footing Concrete & Placement	\$21,904	\$0
Beam Formwork	\$0	\$3,960
Beam Rebar	\$0	\$33,780
Beam Concrete & Placement	\$0	\$96,540
TOTAL	\$64,828	\$134,280

Table 1-5 Cost Comparison of Shear Walls to Moment Frames

Before drawing a final conclusion though, it is necessary to consider the effects the shears walls have on other systems. Although the shear walls were placed to avoid impact, they still represent an impenetrable barrier between certain areas. In one respect, this creates additional sound damping, particularly important around bathrooms and stairwells, where the walls were located. In another respect, the shear walls around the bathroom may interfere with runs of pipe, electrical lines, and mechanical ducts. There is no clear cost benefit to the improved sound damping, but there is a calculable deficit if additional amounts of mechanical, electrical, and plumbing work are required. The cost estimate also ignores the cost of underpinning the shear wall foundations to prevent overturning.

Despite the possible related costs to the shear walls, they are still the more economical system and are recommended as a replacement system for the moment frames.

Post-Tensioned Two-Way Slab

Introduction

The Filigree beam system creates a thin lightweight floor system that leaves plenty of open plenum space for mechanical and electrical equipment. However, the beams divide the plenum space into channels, reducing the overall utility. In addition, the system is designed by Filigree Incorporated, making it a black box for the engineer of record. A preliminary investigation showed that a conventional two-way slab system can provide slabs that are just as thin, and bring the design back into the hands of the engineer of record. It may be possible to achieve even thinner slabs by introducing pre-stressing or post-tensioning to the system.

Solution Overview

Proprietary systems have costs and benefits in addition to those assumed by conventional systems. In this case a conventional two-way slab provides a nearly identical product to the proprietary Filigree system. Considering that the two-way slab does not have the additional costs of using a proprietary system, it appears to provide a better value. This value can be improved by using prestressing or post-tensioning to reduce the overall slab depth, thus increasing the usable space. Therefore, a pre-stressed two-way slab may be a very effective alternative to the proprietary Filigree beam system. In addition to creating more usable space, the two-way slab system will also eliminate the channeling of the plenum and allow the free placement of lateral resisting systems.

Design Criteria

The following questions must be addressed regarding the effectiveness of the two-way slab:

- Can the two-way slab meet code?
- Can the two-way slab be constructed at no greater cost?
- Will the two-way slab introduce more problems than it corrects?

The code governing the design of the two-way slab will be IBC 2003. The cost analysis will be based on data provided by RS Means. The last question will be addressed by comparing the benefits and disadvantages of the two-way slab to the Filigree beam system. For the two-way slab to be considered, the first question must be answered in the affirmative. The remaining two questions should also be answered in the affirmative if the two-way slab is optimal. If the two-way slab is not optimal, then the relative success and failure compared to the Filigree system will determine the final decision on whether or not the two-way slab is a reasonable alternative.

Load Analysis

When considering two-way slabs in a post-tensioned system, it is important to perform an advanced analysis of the loads and their effects at different locations in the building. For the Medical Office Building, there were three locations considered to determine the worst case loading for a two-way slab system; the longest interior span, an exterior span with edge beams, and an exterior span without edge beams (Figure 2-1). Each of these areas has a different set of design criteria based on code, and has to be evaluated to ensure the safety of the slab at all locations. In order to simplify the construction of the design, modification of the design to respond specifically to each support was forgone in favor of evaluating only the maximum condition in each of the three slab areas and applying the resultant design to all similar locations.

Figure 2-1 Typical floor plan highlighting the three areas of the slab evaluated for design

In order to determine the requisite loads for the slab an initial guess at the slab thickness was taken as 1/36th the clear span of the slab, which is 25'-10". The resulting slab depth of 9" leads to a dead load for normal wiehgt concrete of 112.5 psf, an additional 15 psf was added for mechanical electrical and plumbing (MEP) equipment, and an additional 10 psf was added for the combined raised floor and hung ceiling weights. The live load for a typical office building is 80 psf according to ASCE 7-02, but this value was increased to 100 psf to account for additional loads related to open planning, such as movable partitions and corridors.

The evaluation of the three loads was performed using ADOSS, the full results can be found in Appendix II. A summary of the critical results for each section appears in Table 2-1.

Slab	M _{col}	M _{mid}	M _{beam}	v
	(ft-k)	(ft-k)	(ft-k)	(psi)
Edge with beams	45.3 (-)	37.6 (-)	256.5 (-)	155.84
	33.0 (+)	27.4 (+)	186.9 (+)	
Edge without beams	233.3 (-)	77.8 (-)	-	330.69
	136.5 (+)	91.0 (+)		
Interior	399.3 (-)	133.1 (-)	-	328.03
	216.5 (+)	144.3 (+)		

Table 2-1 Critical Shear and Moment as calculated by ADOSS

ADOSS does not cover wide beam shear analysis, but a brief investigation reveals that the per foot strength is roughly 9.5 kips. Based on the aforementioned loads, the shear on a per foot basis is only 4.5 kips, so wide beam shear does not control.

Shearhead Investigation

The ADOSS analysis showed that the majority of cross-sections did not meet the necessary requirements for shear strength. The ACI code states this strength as:

$$\phi v_n = 0.75 * 4\sqrt{f_c}$$
 (2-1)

For 5000 psi concrete, this value is 212.13 psi. The code also states that the strength can be taken as:

$$\phi v_n = 0.75 * 7 \sqrt{f_c}$$
 (2-2)

if shearheads are used. The shear strength developed on the new shear plane created by the shearheads must still meet the first strength requirement. The new capacity for shear in 5000 psi concrete is thus 371.23 psi at the standard shear plane, and 212.12 psi at the extended shear plane. The size of the shearheads required to generate the necessary secondary shear plane were determined using a program written in EES (Appendix III). The results of this program show that the exterior shearheads must extend 4'-3" from the center of the columns, and that the interior shearheads must extend 3'-9" from the center of the columns (Figure 2-2).

Figure 2-2 Shearhead details for interior (left) and exterior (right) columns

Post-Tension Investigation

Besides shear strength it is also important to consider the moment capacity of each of the sections. An analysis of the bulk cross section of each segment of slab is summarized in Table 2-2.

Segment		As	Bars	Spacing
		(in^2)		(in)
Interior Column	Тор	12.74	64 # 4's	2.55
Strip	Bot	6.66	34 # 4's	4.67
Interior Middle	Тор	4.03	21 # 4's	7.30
Strip	Bot	4.38	22 # 4's	7.00
Exterior Beam	Top	1.56	8 # 4's	9.60
Column Strip	Bot	1.56	8 # 4's	9.60
Exterior Beam	Top	2.72	14 # 4's	10.50
Middle Strip	Bot	2.72	14 # 4's	10.50
Exterior Beams	Top	2.01	3 # 8's	5.00
	Bot	2.79	3 # 9's	5.00
Exterior	Top	13.60	68 # 4's	1.37
Column Strip	Bot	4.22	22 # 4's	4.00
Exterior Middle	Top	2.72	14 # 4's	10.50
Strip	Bot	2.74	14 # 4's	10.50

Table 2-2 Analysis of slab sections

From this analysis, it can be seen that the sections that will most benefit from post-tensioning are the column strips on the exterior surfaces without beams and in the interior. Tensioned reinforcement must provide the same force as the untensioned reinforcement for the design to be valid. The code limits the pressure allowed in tension cables in two ways:

$$f_{ps} = f_{pu} \left(1 - \frac{\gamma_p}{\beta} \left[\rho_p \frac{f_{pu}}{f_c} - \frac{d}{d_p} (w - w') \right] \right)$$
(2-3)

$$f_{ps} = f_{se} + 10 + \frac{f_c}{300\rho_p}$$
 ksi (2-4)

Using these limitations and choosing cables with an ultimate strength of 275 ksi and a yield strength of 240 ksi, an iterative design process was used to find the required area of cable and their posttensioning force. This process found that for the interior columns, 4 in^2 of cable tensioned by 920 kips was adequate, and for exterior columns, 4 in^2 of cable tensioned by 900 kips was adequate. Both of these designs are detailed in Figure 2-3.

Figure 2-3 Details of the two-way slab: Interior (left), Exterior (right)

Deflection Analysis

The final consideration in the design of the two-way slabs is deflection. According to ADOSS, the interior spans due not meet the code requirements to neglect deflection. Therefore a deflection analysis was performed on the interior slab section to determine whether the slab meets the serviceability requirements. The tension in the cables generated an initial camber of 0.95" upward. This camber leads to an immediate and long-term deflection of 0.11" downward, which is less than the limits of 0.93" and 0.70" for immediate and long-term deflection respectively.

Conclusions

The two-way slab meets all the design and serviceability requirements for code. Therefore, the system can be a reasonable alternative to the Filigree beam system. A direct cost comparison is not possible between the two systems because of the proprietary nature of the Filigree system. However, comparing the cost of the post-tensioned two-way slab to a typical banded beam system (Table 2-3) should provide a reasonable comparison.

	Two-way	Banded
Slab Formwork	\$457,050	\$457,050
Slab Reinforcing (w/ shearheads)	\$161,020	\$33,083
Slab Post-tensioning	\$165,000	\$0
Slab Concrete and Placement	\$839,237	\$839,237
Beam Formwork	\$0	\$173,765
Beam Reinforcing	\$0	\$63,000
Beam Concrete & Placement	\$0	\$275,229
TOTAL	\$1,622,307	\$1,841,364

Table 2-3 Cost comparison of a two-way slab and a banded beam system

The difference in cost between the two systems is \$219,000, which is nearly the cost of the concrete in the beams. In fairness to the Filigree system, less concrete is used than in cast-in-place construction. Assuming that the Filigree beams use 30% less concrete, would result in a \$334,000 savings. This makes the Filigree system more favorable by \$115,000. However, factory costs, transportation costs, and other fees associated with the Filigree technology, including the charges of the contractor for working with an unfamiliar system may eat up these savings. Due to these speculative expenses, it is difficult to discern which system is of better economic value. Fortunately, the economic value alone is not a deciding factor.

Although the Filigree system provides a thin floor structure, it is still twice the overall depth of the two-way slab due to the beams. The direct consequence of the deeper system is the loss of usable space in the building. The indirect consequence of the beams hanging down is that they divide the plenum space of the building into strips, which means the ceilings must be hung deeper to allow enough clearance for ductwork and wiring in areas directly beneath the beams. Because the two-way slab system is flat, there is no division of the plenum, and the hung ceiling may be hung much closer to the bottom of the slab, thus recovering even more usable space.

Despite an uncertain cost advantage, the additional benefits of a two-way slab system make it an appealing alternative, particularly because they can be used to optimize the building for Underfloor Air Distribution.

3 Underfloor Air Distribution

Introduction

The Medical Office Building makes use of a raised floor system as an electrical and telecommunications plenum. It does not utilize this space as a mechanical plenum, instead sticking with a traditional overhead ventilation system to provide air for the space. Because the raised floor already exists in the building, it makes sense to maximize the use of this space by introducing an underfloor air distribution (UFAD) system.

Solution Overview

There are several varieties of underfloor air distribution systems. The system most adaptable to an existing raised floor would be a fully ducted system. However, this does not generate any savings compared to an overhead system, as just as many ducts, if not more, would be required. A better alternative is a pressurized plenum. Although this system may require a different raised floor to prevent leaks, it would not interfere with the current use of the plenum. Therefore the UFAD system redesign will be a pressurized plenum system.

Design Criteria

The purpose of heating ventilating and air conditioning (HVAC) systems is to provide for human health and comfort in buildings. For this reason the system should be judged on:

- The ability to provide a thermally comfortable environment
- The ability to provide enough air for a healthy environment

If the system can meet both of these requirements then it should be termed an acceptable alternative. The issue of cost is also important, but since the raised floor is already present in the building and there will be less ducts with a pressurized system, cost savings are already assumed.

Environmental Comfort

The design of UFAD systems takes into account the same loads as conventional HVAC systems. However, because UFAD systems rely on convection from heat sources in an occupied zone, the thermal load they are expected to remove is calculated only to a height of 6 ft. Any heating load that acts only in the unoccupied zone does not have to be taken into account when determining the amount of ventilation required for thermal comfort.

For the purposes of this investigation, an area of open office space (Figure 3-1) was chosen as a basis for the system design. For the sake of simplicity, it was assumed that the surrounding interior

environments are kept at the same temperature as the open office, and therefore have a negligible effect on the loads in the space. The exterior window still effects the loads in the Medical Office Building through conduction from and infiltration of the outside air. A full list of the loads and their contribution to each of the zones is summarized in Table 3-1.

Figure 3-1 Plan of area for proposed UFAD system

Source	Unoccup (Btu	vied Load 1/hr)	Occupied Load (Btu/hr)		
	Winter	Summer	Winter	Summer	
Lighting	7400	7400	29600	29600	
Occupants	0	0	10800	10800	
Computers	0	0	13226	13226	
Infiltration	-586	199	-4102	1390	
Conduction	-2213	750	-6935	2349	
TOTAL	4601	8349	42589	57365	

 Table 3-1 Summary of loads in both the occupied and unoccupied zones

The amount of air required to remove heat from a space can be determined from:

$$q = 1.08\dot{V} \left(T_{\text{sup } ply} - T_{exhaust} \right)$$
(3-1)

For typical UFAD systems, air is supplied at 65°F. On average, most people are comfortable in an environment that is 72°F, this condition will be assured if the exhaust temperature is at this temperature. Based on thermal comfort, the required ventilation for the space is 7588 cfm. However, thermal comfort alone does not make an adequate ventilation system. Human health is also an important requirement. ASHRAE Standard 62 sets a requirement that outdoor air be provided to maintain a healthy environment. For this office space, the required ventilation for human comfort is 585 cfm.

Knowing the required ventilation for the office space, it is possible to layout a system of diffusers. There are several diffusers available on the market for UFAD systems. However, most of these systems require an 8" raised floor. The current raised floor in the Medical Office Building is only 6", therefore it is necessary to raise the floor another 2" to accommodate the diffusers. Typically, this would be problematic, as higher ceilings are beneficial to UFAD systems. Fortunately, the use of two-way flat slabs can be used to provide an additional 9" of usable space. With the floor now at an appropriate height, a Trox swirl diffuser (Appendix IV) that can provide 110 cfm was chosen for the system. Assuming that these diffusers would operate at 100 cfm, it would be necessary to place 76 diffusers.

For the sake of even spacing in the floor grid 77 diffusers were distributed across the open office area. Because the chosen UFAD system operates based on a pressurized plenum, it is important that each diffuser have an equal pressure differential. Research has shown that the best way to ensure an even pressure differential is to limit the distance from the duct outlet to any diffuser to 80' or less in an 8" plenum¹. The dimensions of the open office area are small enough that a duct feeding the center of the space could meet this design requirement. A schematic of the final system showing the duct position and the diffusers appears in Figure 3-2.

Figure 3-2 Layout of the final UFAD system for the open office area

Conclusions

The UFAD system provides an adequate level of thermal comfort and meets the standards for providing fresh air to the space. Based on the amount of ventilation for air quality compared to the amount required for thermal comfort, it would seem possible to recirculate as much as 94% of the indoor air. However, because of the stratification caused in rooms with UFAD the air in the unoccupied zone is not nearly as adequately ventilated as the air in the occupied zone. Even so, it

would still be reasonable to introduce some level of recirculation to the UFAD system. This, along with the energy savings related to supplying air at 65°F instead of 55°F, make the UFAD air distribution a very good alternative to an overhead air system.

Unfortunately, simply applying a UFAD system indiscriminately could be disastrous. The design for this system took advantage of the higher ceiling created by switching to a two-way slab system. If the Filigree system were still in use, the floor to ceiling height would leave only 2'-6" in the unoccupied zone, instead of the 4'-6" in the new system. This would likely result in more circulation of contaminated air from the unoccupied zone into the occupied zone. Therefore, it is important that the UFAD system only be applied if the two-way slab system is introduced.

¹ Bauman, Fred S. <u>Underfloor Air Distribution (UFAD) Design Guide</u>. ASHRAE. Atlanta, GA. 2003

Auditorium Lighting

Introduction

One of the unique features of the Medical Office Building is its Auditorium. Located on the ground floor of the building, the auditorium is a general meeting place for stockholder conferences, employee workshops, and press conferences. The space is designed to be divided into three parts when necessary to allow for multiple smaller presentations, but is generally used as a whole space. The current lighting system of the auditorium (Figure 4-1) consists mainly of downlights assisted by recessed lighting in the coves to improve the light at the ceiling. This is a conventional and effective lighting solution to general use spaces such as this auditorium. However, a conventional system may not always be the best solution.

Figure 4-1 The existing lighting of the auditorium

Solution Overview

A direct-indirect lighting system may be able to create the same environment as the downlight system with coves. Properly placed, this system would not have a serious impact on the architecture, and would likely require less fixtures, making the maintenance of the space easier. However, this system may create an undesirable lighting effect for the presenter. In order to reap the benefits of a direct-indirect system and still maintain the quality lighting needed for presentations, a combined system is proposed. This combined system would include direct-indirect luminaires for the general lighting, and adjustable downlights for the presenter.

Design Criteria

The value of the lighting redesign is largely a decision of aesthetics. However, the system must still meet requirements for quality and energy consumption. The new lighting system will be deemed acceptable if it:

- Provides an environment with sufficient light quality (as set forth by IES)
- Consumes less than 1.0 W/ft²

Based on these criteria, the system will be deemed acceptable. A direct comparison to the existing lighting system for cost and luminance was not possible due to insufficient information. However, a rough estimate of costs will also be considered using typical wattage values of downlights.

Lumen Method Analysis

The standard method for determining the level of luminance in a space through hand calculations is the Lumen Method. A worksheet in the IES Handbook (Appendix V) assists designers in using this method to decide how many luminaires to place in a given space. It is still left to the designer to select the luminaire and ensure that they are properly placed in the room based on the manufacturer's data for spacing. The luminaire chosen for consideration in this design was Lithonia's Avante Surface/Suspended luminaire. With the luminaire and room both known, the lumen method may be begun.

The first piece of information asked for in the lumen method is the lumens per a luminaire, 5700 for the Avante. The next piece of information involves the dimensions and reflectance of the room. Because the actual values of the reflectance were unknown, values of 80%, 50%, and 20% were chosen for the ceiling, walls, and roof respectively. These values represent average numbers for the materials in the room and are likely conservative because the existing lighting system takes advantage of indirect lighting, which requires higher reflectance. Once the values of the room are known, it is necessary to calculate the cavity ratios for the zones of the room. The cavity ratio for a space is defined as:

$$CR = \frac{5h(W+L)}{W*L} \tag{4-1}$$

Once the cavity ratios have been determined, and the reflectance known, it is possible to determine the coefficient of utilization (CU) of the luminaire. The process involves the use of charts and tables found in the IES Handbook, the reproduction of these charts found in <u>Electrical Systems in</u> <u>Buildings</u> by S. David Hughes were used for this analysis. According to these charts the CU for the room is 0.74. Further charts and tables help to define the light loss factor, which is 0.63. At this point the only piece of information needed to complete the calculation is the required luminance, which is between 2 and 20 foot-candles for auditoriums.

Choosing the high end value of 20 foot-candles leads to the requirement of 39 luminaires. Spacing 39 luminaires evenly across the auditorium would be difficult, so 40 luminaires were chosen instead. The illuminance from 40 luminaires is 20.7 foot-candles, which is better than the most stringent requirements of IES.

System Layout

The Lumen Method analysis determined that 40 luminaires would be necessary to provide the desired illuminance in the auditorium. The spacing criteria of the manufacturer states that the luminaires must be within 1.14 their height above the work plane along the lamp, and 1.43 their height above the work plane perpendicular to the lamp. In the case of the auditorium, the work plane is the floor, which is roughly 15'-6" below the luminaire. This means that the luminaires should be arranged in at least a 3x5 pattern to fill the 61' x 84' area. With 40 luminaires, the nearest comparable arrangement is 5x8. This pattern is shown in Figure 4-2, with the lights shifted away from the south wall, where presentations occur.

Figure 4-2 Layout of the direct-indirect lighting system

<u>Task Lighting Layout</u>

The goal of the task lighting within the space is to provide more lighting options for the presenter. As there are no calculable requirements for this space, the proposed design must be judged solely on appearance. Because of the projector, it is important to keep light off of the walls, in order to prevent washing the images. At the same time, having light on the podium can be dramatic and helpful to the speaker. Another nice touch for presentations would be having some simple stage lighting to control color and brightness at the podium. This could be hidden in the coves, which are no longer used in the direct-indirect system. The final design, with a single downlight for the podium and a small set of basic stage lights in the cove is presented in Figure 4-3.

Figure 4-3 Rendering of the proposed task lighting design

Conclusions

The analysis of the new lighting system has shown that the auditorium will have a lighting level acceptable for auditoriums. An evaluation of the power usage also reveals that for the Avante Luminaires alone the power density is only .45 W/ft2. Since the system meets both of the design criteria it is an acceptable alternative. In addition to meeting the design criteria, the new system may also be of greater value. The current design uses 112 downlights. Using data for a typical Lithonia downlight with compact fluorescent bulbs (~25 W per downlight) the current power density would be .55 W/ft2. The energy savings alone are ample justification to change the system, but even more money could be saved because only a third of the luminaires and ballasts would have to be installed.

The additional savings resultant from the new system can be used to justify the expense of the presenter specific task lighting. Given that this lighting adds value to the auditorium space and can be bought back by savings in the general lighting system, there is no financial reason why the new system should not be chosen. However, the new system does place luminaires in the auditorium space, and although they are a small intrusion, they do somewhat detract from the overall appearance compared to the original design. The final evaluation of this system should rest with the owner and their perception, as the difference in cost is relatively small.

Overall Conclusions

This report presented the analysis of several different systems in the Medical Office Building, including the lateral resistance system, the floor system, the mechanical system, and the lighting system. For each system an alternative solution was proposed, designed, and compared to the existing system. In all of the analyses, the relative costs and benefits of the new system did not make it clearly superior to the existing system. Certain qualifications were necessary to make any decision regarding the systems chosen for the building.

In the case of the lateral resistance system, the shear walls showed a clear cost advantage to the concrete moment frames. However, the foundations under the shear walls are subject to large overturning moments and would thus require potentially expensive underpinning. In addition, the shear walls interfere with plumbing and mechanical systems in ways that the beams of a moment frame do not. However, under the condition that the cost of underpinning does not exceed the savings from using shear walls, the shear walls are the optimum system.

In the case of the floor design, the existing Filigree beam system was compared to a post-tensioned two-way slab. Because the Filigree system is proprietary, there is no specific cost data available for it, therefore a banded beam system was analyzed as a close replica. The cost comparison between the two-way slab and the banded beam system, favors the two-way slab, but when the consideration that the Filigree system uses less concrete is considered, the Filigree system wins out. However, since there may be additional costs associated with the Filigree system in decreasing the overall floor depth and creating a more open plenum space give it an edge. Nevertheless, unless the owner is planning to take advantage of the higher ceilings, there is no incentive to change the system.

The mechanical system of the Medical Office Building is presently an overhead air distribution system. Since the building already has raised floors, it seemed logical to test the effectiveness of an underfloor air distribution (UFAD) system. Some of the benefits of a UFAD system are that air is supplied at a higher temperature, it is possible to build with few ducts, and less air is required because of natural convection effects. The analysis showed that the UFAD system could be effectively implemented, but only if the two-way slab system was used. If the Filigree system were retained, there may not be sufficient height in the office area to effectively remove air contaminants by natural convection.

The lighting system in the auditorium follows conventional design practices and uses downlights to provide illuminance. As an alternative to downlighting, a direct-indirect lighting system was implemented. The new system provided the same quality environment as the existing lighting system and at a lower power density. These energy saving were applied to add more task specific lighting for the presentation area. Unfortunately, the new system seems out of place in the auditorium. Therefore, unless the owner sees an advantage to having the new task lighting, it is probably better to retain the existing lighting system.

<u>Appendix I</u>

Center of M	Vlass	x= y=	89.308 128.136		f	'm= E=	3000 j 2700 l	osi (si			
A / - 11	h (in)	d (#)	h/ft)	L (in^4)	Aw(in^2)	x (k/in.)	(v (k/in.)	(ft.)	y (ft.)	x*x	(y*y
VVali N Eramo	D (III.)	u (it.)	-	-	-	111.00	0.00	0.00	0.00	0	0
S-Frame	-	-	2	-		36.00	0.00	210.00	0.00	7560	0
NS-1	16.00	21.75	37.50	23706108.00	4176.00	0.00	1707.90	0.00	44.50	0	76001.77
NS-2	16.00	21.75	37.50	23706108.00	4176.00	0.00	1707.90	0.00	54.08	0	92369.19
NS-3	16.00	21.75	37.50	23706108.00	4176.00	0.00	1707.90	0.00	68.83	0	117560.8
NS-4	16.00	28.46	37.50	53101997.83	5464.00	0.00	3370.93	0.00	1/7.00	0	265220 4
NS-5	20.00	23.82	50.00	38938326.51	5717.50	0.00	1261.20	0.00	210.29	0	277306.9
NS-6	20.00	23.82	50.00	38938326.51	5717.50	0.00	1261.20	49.75	219.00	144465.8	211000.0
WE-1	16.00	27.00	37.50	45349632.00	5184.00	2963.40	0.00	72 57	0.00	6726.654	0
WE-2	20.00	9.58	50.00	2534/91.07	2300.00	2719 79	0.00	77 21	0.00	209990.3	0
WE-3	16.00	26.08	37.50	40885729.55	4992.00	2698.13	0.00	114.21	0.00	308149.4	0
WE-4	16.00	26.00	37.50	2027833.33	1840.00	172.43	0.00	109.63	0.00	18902.15	0
VVE-0	10.00	3.00	07,00		Constantine (8793.44	11017.05			695794.2	1425114
		e_x=	-10.1815								
		e_y=	1.219297								
All Walls											
Contor of	Maee	x=	89,308	P x=	267.05	f'm=	3000	psi			
Center or	141633	y=	128.136	P_y=	191.99	E=	2700	ksi			
		67 T			A(-AO)	las (klip)	ky (klin)	v /ft)	v (ft)	kv*x	kx*v
Wall	b (in.)	d (ft.)	h(ft.)	I (in^4)	AW(111-2)	111.00	0.00	0.00	0.00	0	0
N-Frame				-	-	36.00	0.00	210.00	0.00	7560	0
3-Flame	8					147.00	0.00			7560	0
		e_x=	-37.8794		T_x=	-7272.47					
		e_y=	#DIV/0!		1_y=	#DIV/0!					
Frames C	Only										
Center of	Mass	x=	89.308	P_x=	267.05	fm=	3000	psi			
R.330002 20		y=	128.136	P_y=	191.99	E=	2700	ksi			
	h (1-)	-1 (Ft)	b/ft)	1 (in^4)	Aw(in^2)	ky (k/in.)	kx (k/in.)	x (ft.)	y (ft.)	ky*x	kx*y
VVall	D (III.)	u (ii.)	n(n.)		-	111.00	0.00	0.00	0.00	0	0
S Eramo		-	2		-	36.00	0.00	210.00	0.00	7560	0
NS-1	16.00	21.75	37,50	2.37E+07	4176.00	0.00	1707.90	0.00	44.50	0	76001.77
NS-2	16.00	21.75	37.50	2.37E+07	4176.00	0.00	1707.90	0.00	54.08	0	92369.19
NS-5	20.00) 23.82	50.00	3.89E+07	5717.50	0.00	1261.20	0.00	210.29	0	205220.4
NS-6	20.00) 23.82	50.00	3.89E+07	5717.50	0.00	1261.20	0.00	219.88	6726 654	211500.5
WE-2	20.00	9.58	50.00	2.53E+06	2300.00	92.69	0.00	100.63	0.00	18902 15	0
WE-5	16.00	9.58	37,50	2.03E+06	1840.00	112.43	5938 21	109.00	0.00	33188.8	710898.3
						412.11	5550.21				
		e x=	-8,77489	1	T_x=	-1684.69					
		e_y=	-8.42018	1	T_y=	-2248.61					
Stairwell	6	100000									
			00 200	D	267.05	fm=	3000	nsi			
Center of	f Mass	x=	89.308	P_x=	267.05 191.99	f'm= E=	3000 2700	psi ksi			
Center of	f Mass	x= y=	89.308 128.136	8 P_x= 8 P_y=	267.05 191.99	fm= E=	3000 2700	psi ksi			
Center of Wall	f Mass b (in.)	x= y= d (ft.)	89.308 128.136 h(ft.)	3 P_x= 3 P_y= 1 (in^4)	267.05 191.99 Aw(in^2)	f'm= E= ky (k/in.)	3000 2700 kx (k/in.)	psi ksi x (ft.)	y (ft.)	ky*x	kx*y
Center of Wall N-Frame	f Mass b (in.)	x= y= d (ft.)	89.308 128.136 h(ft.)	B P_x= S P_y= I (in^4)	267.05 191.99 Aw(in^2)	f'm= E= ky (k/in.) 111.00	3000 2700 kx (k/in.)	psi ksi x (ft.)	y (ft.)	ky*x 0	kx*y 0
Center of Wall N-Frame S-Frame	f Mass b (in.)	x= y= d (ft.)	89.308 128.136 h(ft.) - -	3 P_x= 5 P_y= 1 (in^4)	267.05 191.99 Aw(in^2)	f'm= E= ky (k/in.) 111.00 36.00	3000 2700 kx (k/in.) 0.00 0.00	psi ksi x (ft.) 210.00	y (ft.) 0.00 0.00	ky*x 0 7560	kx*y 0 117560.8
Wall N-Frame S-Frame NS-3	f Mass b (in.) - - 16.00	x= y= d (ft.) - - 21.75	89.308 128.136 h(ft.) - 5 37.50	3 P_x= 5 P_y= 1 (in^4) 2.37E+07	267.05 191.99 Aw(in^2)	f'm= E= ky (k/in.) 111.00 36.00 0.00	3000 2700 kx (k/in.) 0.00 0.00 1707.90	psi ksi x (ft.) 210.00 0.00	y (ft.) 0.00 0.00 68.83	ky*x 0 7560 0	kx*y 0 117560.8 596654.9
Vall N-Frame S-Frame NS-3 NS-4	f Mass b (in.) - - 16.00 16.00	x= y= - 0 21.75 0 28.46	89.308 128.136 h(ft.) 5 37.50 5 37.50	3 P_x= 5 P_y= 1 (in^4) 2.37E+07 5.31E+07 5.31E+07 5.31E+07	267.05 191.99 Aw(in^2) - - 4176.00 5464.00	fm= E= ky (k/in.) 111.00 36.00 0.00 0.00	3000 2700 kx (k/in.) 0.00 1707.90 3370.93 0.00	psi ksi x (ft.) 210.00 0.00 0.00 48.75	y (ft.) 0 0.00 0 0.00 0 68.83 0 177.00 5 0.00	ky*x 0 7560 0 0 144465.8	kx*y 0 117560.8 596654.9 0
Wall N-Frame S-Frame NS-3 NS-4 WE-1	f Mass b (in.) - - 16.0 16.0 16.0	x= y= d (ft.) 0 21.75 0 28.46 0 27.00	89.308 128.136 h(ft.) 5 37.50 5 37.50 0 37.50	3 P_x= 5 P_y= 1 (in ⁴) 2.37E+07 5.31E+07 4.53E+07 0 4.53E+07 0 4.53E+07	267.05 191.99 Aw(in^2) - - 4176.00 5464.00 5184.00	f'm= E= ky (k/in.) 111.00 36.00 0.00 0.00 2963.40 2698.13	3000 2700 kx (k/in.) 0.00 1707.90 3370.93 0.00 0.00	psi ksi x (ft.) 210.00 0.00 48.75 114.21	y (ft.) 0.00 0.68.83 0.177.00 5.0.00 0.00	ky*x 0 7560 0 144465.8 308149.4	kx*y 0 117560.8 596654.9 0 0
Wall N-Frame S-Frame NS-3 NS-4 WE-1 WE-4	f Mass b (in.) - - 16.00 16.00 16.00 16.00	x= y= 0 21.75 0 28.46 0 27.00 0 26.00	89.308 128.136 h(ft.) 5 37.50 5 37.50 0 37.50 0 37.50 0 37.50	<pre>3 P_x= 3 P_y= 1 (in⁴) 2.37E+07 5.31E+07 0 4.53E+07 0 4.05E+07</pre>	267.05 191.99 Aw(in^2) - - 4176.00 5464.00 5184.00 4992.00	f'm= E= ky (k/in.) 111.00 36.00 0.00 2963.40 2698.13 5808.53	3000 2700 kx (k/in.) 0.00 1707.90 3370.93 0.00 0.00 5078.84	psi ksi x (ft.) 210.00 0.00 0.00 48.75 114.21	y (ft.) 0.00 0.00 0.68.83 0.177.00 5.0.00 0.00	ky*x 0 7560 0 144465.8 308149.4 460175.2	kx*y 0 117560.8 596654.9 0 0 714215.7
Vall N-Frame S-Frame NS-3 NS-4 WE-1 WE-4	f Mass b (in.) - - 16.00 16.00 16.00 16.00	x= y= d (ft.) 0 21.75 0 28.46 0 27.00 0 26.00	89.308 128.136 h(ft.) 5 37.50 6 37.50 0 37.50 0 37.50	3 P_x= 3 P_y= 1 (in^4) 2.37E+07 3.31E+07 4.53E+07 4.05E+07	267.05 191.99 Aw(in^2) - 4176.00 5464.00 5184.00 4992.00	f'm= E= 111.00 36.00 0.00 0.00 2963.40 2698.13 5808.53	3000 2700 kx (k/in.) 0.00 1707.90 3370.93 0.00 0.00 5078.84	psi ksi 210.00 0.00 0.00 48.75 114.21	y (ft.) 0 0.00 0 68.83 0 177.00 0 0.00 0.00	ky*x 0 7560 0 144465.8 308149.4 460175.2	kx*y 0 117560.8 596654.9 0 714215.7
Vall N-Frame S-Frame NS-3 NS-4 WE-1 WE-1	f Mass b (in.) - - 16.0 16.0 16.0 16.0	x= y= d (ft.) 0 21.75 0 28.44 0 27.00 0 26.00 e_x=	89.308 128.136 h(ft.) 5 37.50 6 37.50 0 37.50 0 37.50 -10.084	<pre>3 P_x= 3 P_y= 1 (in⁴) 0 2.37E+07 0 5.31E+07 0 4.53E+07 0 4.05E+07 4</pre>	267.05 191.99 Aw(in^2) - 4176.00 5464.00 5184.00 4992.00 T_x=	f'm= E= 111.00 36.00 0.00 2963.40 2698.13 5808.53 -1936.03	3000 2700 kx (k/in.) 0.00 0.00 1707.90 3370.93 0.00 0.00 5078.84	psi ksi x (ft.) 210.00 0.00 48.75 114.21	y (ft.) 0 0.00 0 68.83 0 177.00 5 0.00 0.00	ky*x 0 7560 0 144465.8 308149.4 460175.2	kx*y 0 117560.8 596654.9 0 714215.7
Vall N-Frame S-Frame NS-3 NS-4 WE-1 WE-4	f Mass b (in.) - - 16.0 16.0 16.0 16.0	x= y= d (ft.) 0 21.75 0 28.46 0 27.00 0 26.00 e_x= e_y=	89.308 128.136 - - 5 37.50 3 37.50 0 37.50 0 37.50 -10.084 12.4898	3 P_x= 3 P_y= 1 (in^4) - 0 2.37E+07 0 5.31E+07 0 4.53E+07 4 4.05E+07 4	267.05 191.99 Aw(in^2) - - 4176.00 5464.00 5184.00 4992.00 T_x= T_y=	fm= E= ky (k/in.) 111.00 36.00 0.00 2963.40 2698.13 5808.53 -1936.03 3335.414	3000 2700 0.00 0.00 1707.90 3370.93 0.00 0.00 5078.84	psi ksi 210.00 0.00 48.75 114.21	y (ft.) 0 0.00 0 68.83 0 177.00 5 0.00 0.00	ky*x 0 7560 0 144465.8 308149.4 460175.2	kx*y 0 117560.8 596654.9 0 714215.7

Center of M	ass	x= y=	89.308 128.136	P_x= P_y=	267.05 191.99	fm= E=	3000 2700	psi ksi						
Wall	b (in.)	d (ft.)	h(ft.)	l (in^4)	Aw(in^2)	ky (k/in.)	kx (k/in.)	x (ft.)	y (ft.)	ky*x	kx*y			
N-Frame	-	-	-		2	111.00	0.00	0.00	0.00	0	0			
S-Frame	-	-	12	192		36.00	0.00	210.00	0.00	7560	0			
NS-2	16 00	21.75	37.50	23706108.00	4176.00	0.00	1707.90	0.00	54.08	0	92369.19			
NS 3	16.00	21 75	37.50	23706108.00	4176.00	0.00	1707.90	0.00	68.83	0	117560.8			
NC A	16.00	28.46	37 50	53101997.83	5464.00	0.00	3370.93	0.00	177.00	0	596654.9			
NC 5	20.00	23.82	50.00	38938326.51	5717.50	0.00	1261.20	0.00	210.29	0	265220.4			
NS-5	16.00	27.00	37 50	45349632.00	5184.00	2963.40	0.00	48.75	0.00	144465.8	0			
VVE-1	10.00	26.00	37.50	40495104.00	4992 00	2698.13	0.00	114.21	0.00	308149.4	0			
VVE-4	16.00	20.00	37.50	2027833 33	1840.00	172.43	0.00	109.63	0.00	18902.15	0			
VVE-5	16.00	9.56	57.50	2021000.00	10101010	5980.96	8047.94			479077.3	1071805			
		e x=	-9.2076		T_x=	-1767.77								
		e v=	5.041526		T_y=	1346.34								
Stair-Bath														
Center of M	lass	x=	89.308	P_x=	267.05	fm=	3000	psi						
		y=	128.136	P_y=	191.99	E=	2700	ksi						
Wall	b (in.)	d (ft.)	h(ft.)	l (in^4)	Aw(in^2)	ky (k/in.)	kx (k/in.)	x (ft.)	y (ft.)	ky*x	kx*y			
N-Frame	(4)	243			-	111.00	0.00	0.00	0.00	7560	0			
S-Frame		·	-	2	141	36.00	0.00	210.00	0.00 E4.08	7500	02360 10			
NS-2	16.00	21.75	37.50	2.37E+07	4176.00	0.00	1707.90	0.00	54.00	0	117560.8			*
NS-3	16.00	21.75	37.50	2.37E+07	4176.00	0.00	1707.90	0.00	477.00	0	506654.9			
NS-4	16.00	28.46	37.50	5.31E+07	5464.00	0.00	3370.93	0.00	177.00	0	265220 4			
NS-5	20.00	23.82	50.00	3.89E+07	5717.50	0.00	1261.20	0.00	210.29	200000 3	200220.4			
WE-3	16.00	26.08	37.50	4.09E+07	5008.00	2/19./9	0.00	11.21	0.00	209990.3	0			
WE-4	16.00	26.00	37.50	4.05E+07	4992.00	5564.92	8047.94	114.21	0.00	525699.6	1071805			
					The	000 4144								
		e_x=	5.158677		T_X=	13/6 3/	ea L							
		e_y=	5.041526		-2_1	1540.54							(D.)	
Wall	ky	kx	k	x	у	d	k*d	k*d^2	P_x	P_y 2.92	P_Tx 0.28	P_1y V	0.28	3.45
N-Frame	111.00	0.00	111.00	-89.31	-128.14	-89.31	-9.91E+03	8.85E+05	0.00	1.24	0.20	0.17	0.12	1 41
S-Frame	36.00	0.00	36.00	120.69	-128.14	120.69	4.34E+03	5.24E+05	0.00	0.00	2.54	4.81	60.21	4 81
NS-2	0.00	1707.90	1707.90	-89.31	-74.05	-74.05	-1.26E+05	9.37E+06	50.07	0.00	2.04	3.85	59.50	3.85
NS-3	0.00	1707.90	1707.90	-89.31	-59.30) -59.30) -1.01E+05	6.01E+06	111.96	0.00	4.61	6.26	107 25	6.26
NS-4	0.00	3370.93	3370.93	-89.31	48.86	5 48.8t	5 1.65E+05	8.05E+06	44.95	0.00	2.00	3.94	38.95	3.94
NS-5	0.00	1261.20	1261.20	-89.31	82.16	82.16	5 1.04E+05	8.51E+06	41.00	0.00	0.02	-1.25	0.92	92.58
WE-3	2719.79	0.00	2719.79	-12.10	-128.14	-12.10) -3.29E+04	3.98E+05	0.00	93.63	1.88	2.55	1.88	95.64
WE-4	2698.13	0.00	2698.13	24.90	-128.14	1 24.90) 6.72E+04	3.54E+06	0.00	93.09	-1.00	2.00	1.00	00.01
	5564.94	8047.94	13012.07											
Wall	V_ult	A_n (in^2)	D (ft.)											
N-Frame	3.45	47.95												
S-Frame 2	1.41	19.54												
NS-2	60.21	836.24	4.36											
NS-3	59.50	826.46	4.30											
NS-4	107.25	1489.57	7.76											
NS-5	38.9	541.00	2.25											
WE-3	92.50	1285.86	0.70											
WE-4	95.64	1328.33	6.92	5										
South-We	est													

Center of	Mass	x=	89,308	P x=	267.05	f'm=	3000	psi						
Contor of	mass	y=	128.136	P_y=	191.99	E=	2700	ksi						
\A/all	h (in)	d (ft)	h(ft)	l (in^4)	Aw(in^2)	ky (k/in.)	kx (k/in.)	x (ft.)	y (ft.)	ky*x	kx*y			
N Eromo	D (11.)	u (n.)		- (01 -	-	200.00	0.00	0.00	0.00	0	0			
N-Frame	-	-		-	-	39.00	0.00	210.00	0.00	8190	0			
S-Flame	16.00	14.00	37 50	6.32E+06	2688.00	0.00	512.34	0.00	54.08	0	27709.16			
NO-2	16.00	10.00	37 50	2.30E+06	1920.00	0.00	195.16	0.00	68.83	0	13433.17			
NS-3	16.00	16.00	37.50	9.44E+06	3072.00	0.00	744.65	0.00	177.00	0	131802.6			
NS-4	10.00	14.00	50.00	7 90E+06	3360.00	0.00	281.04	0.00	210.29	0	59100.11			
NS-5	20.00	20.00	37.50	1.84E+07	3840.00	1367 97	0.00	77.21	0.00	105618.5	0			
VVE-3	10.00	20.00	37.50	9.44E+06	3072.00	744 65	0.00	114.21	0.00	85044.93	0			
VVE-4	16.00	10.00	37.50	3.44L.00	0072.00	2351.62	1733.18			198853.5	232045			
		e x=	-4.74763		T_x=	-911.498								
		e_y=	5.747737		T_y=	1534.933								
		(Bear)	and the second sec			d	k*d	k*d^2	Px	Pv	P Tx	P Tv V	Px V	/ Py
Wall	ky	kx	K	X 00.04	y 400.14	u 00.21	1 705+04	1.60E+06	0.00	16.33	-1.63	-2.74	1.63	13.59
N-Frame	200.00	0.00	200.00	-89.31	-120.14	-09.31	4 71 51-04	5 68E+05	0.00	3.18	0.43	0.72	0.43	3.91
S-Frame	39.00	0.00	39.00	120.69	-128.14	74.05	2 70E+04	2.81E+06	78 94	0.00	-3.46	-5.83	75.48	5.83
NS-2	0.00	512.34	512.34	-89.31	-74.05	-74.03	1 165+04	6.86E+05	30.07	0.00	-1.06	-1.78	29.01	1.78
NS-3	0.00	195.16	195.16	-89.31	-59.30	-59.50	2 64E±04	1 78E+06	114.74	0.00	3 32	5.59	118.05	5.59
NS-4	0.00	744.65	744.65	-89.31	48.86	48.80	3.04E+04	1.700-+00	114.74	0.00	2 11	3 55	45.41	3.55
NS-5	0.00	281.04	281.04	-89.31	82.16	82.16	2.31E+04	2.005+06	40.00	111.68	-1.51	-2 54	1.51	109.14
WE-3	1367.97	0.00	1367.97	-12.10	-128.14	-12.10	-1.00E+04	2.00E+05	, 0.00	60.79	1.69	2 85	1.69	63.64
WE-4	744.65	6 0.00	744.65	24.90	-128.14	24.90	1.85E+04	4.02E+03	, 0.00	00.75	1.00	2.00		
	2351.62	1733.18	4084.80					1.00E+07						
\A/all	V ult	A n (in^2)	D (ft)	M (ft k)	f (psi)	Vn								
N-Frame	13.59	188.69		10000000000000000000000000000000000000	-									
S-Frame	3.91	54.26	-	<u>-</u>										
NIC 2	75 48	1048 37	5.46	1887.06	54	174.56	5							
NG-2	29.01	402.98	2 10	725.36	31	67.10)							
NG-3	118.05	1639.63	8.54	2951.34	230	273.01								
NC 5	45.41	630.67	2.63	1513.60	123	105.01								
INE 3	100.1	1 1515.86	7 90	2728 54	231	252.40)							
WE-J	62 62	1 883.01	4 60	1591.04	139	147.18	3							
VVE-4	03.04	000.91	4.00		100									
Refined														

<u>Appendix II</u>

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 1 6:44:15 PM Licensed to: ae, university park, PA

pppp	рр	CC	CCC	aaaaa		
р	р	С	С	а	а	
р	р	С	С		а	
р	р	С		aaaaaa		
р	р	С	С	а	а	
р	р	С	С	а	а	
pppp	рр	CC	CCC	aaaaaa		
р						
g						

AA	A	DDDI	DD	00	00	SSS	SSS	SS	SSS					
А	А	D	D	0	0	S	S	S	S					
A	А	D	D	0	0	S		S						
AAAA	AAA	D	D	0	0	SSS	SSS	SS	SSS					
А	А	D	D	0	0		S		S	(ttttt	mm	mm)
А	А	D	D	0	0	S	S	S	S	(t	m m	m m)
А	А	DDDI	DD	00	00	SSS	SSS	SS	SSS	(t	m r	n m)

Computer program for ANALYSIS AND DESIGN OF SLAB SYSTEMS

Licensee stated above acknowledges that Portland Cement Association(PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the ADOSS(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the ADOSS(tm) program. Although PCA has endeavored to produce ADOSS(tm) error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the ADOSS(tm) program.

03-28-** ADOSS(tm) 6 6:44:15 PM Licensed	.01 Proprietary Software of PORTLAND CEMENT ASSN. Page to: ae, university park, PA	2
FILE NAME	E:\THESIS\SLAB\EQFR1.ADS	
PROJECT ID.	Medical Office Building	
SPAN ID.	East Exterior	
ENGINEER	Brendon Burley	
DATE TIME	03/21/05 10:06:38	
UNITS CODE	U.S. in-lb ACI 318-89	
SLAB SYSTEM FRAME LOCATION	FLAT PLATE EXTERIOR	
DESIGN METHOD MOMENTS AND SHEARS	STRENGTH DESIGN NOT PROPORTIONED	
NUMBER OF SPANS 4		
CONCRETE FACTORS DENSITY(pcf) TYPE NO f'c (ksi) fct (psi) fr (psi)	SLABS BEAMS COLUMNS 145.0 145.0 145.0 DRMAL WGT NORMAL WGT NORMAL WGT 5.0 5.0 5.0 473.8 473.8 473.8 530.3 530.3 530.3	
REINFORCEMENT DETAILS YIELD STRENGTH Fy DISTANCE TO RF CENT AT SLAB TOP AT SLAB BOTTON MINIMUM FLEXURAL BA AT SLAB TOP AT SLAB BOTTON MINIMUM SPACING: IN SLAB = 4	S: NON-PRESTRESSED = 60.00 ksi IER FROM TENSION FACE: = 1.25 in OUTER LAYER M = 1.25 in OUTER LAYER AR SIZE: = # 4 M = # 4 .00 in	
**SLAB THICKNESS IN S REQUIRED DEPTH = 10	SPAN 2 IS INADEQUATE W/O A DEFLECTION CHECK 0.5 in	
**SLAB THICKNESS IN S REQUIRED DEPTH = 10	SPAN 3 IS INADEQUATE W/O A DEFLECTION CHECK 0.5 in	
**TOTAL UNFACTORED DI L	EAD LOAD = 141.139 kips IVE LOAD = 106.500 kips	_

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 6:44:15 PM Licensed to: ae, university park, PA

	DESIGN ******	MOMENT ******	ENVELOPES AT	CRITICAL SEC	TIONS FR	OM SUPPORTS *********	
COL NUM	LOAD TYPE	CROSS SECTN	DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
1	TOTL LEF	T TOP BOT	-1.5 .0	.175 .000	4 0	1.000 .000	1 0
	RGH	T TOP BOT	130.9 .0	1.000 .000	3 0	2.800	2 0
2	TOTL LEF	T TOP BOT	-311.0 .0	1.000 .000	1 0	8.400	2 0
	RGH	T TOP BOT	293.6 .0	1.000 .000	1 0	9.800 .000	3 0
3	TOTL LEF	T TOP BOT	-333.2 .0	1.000 .000	1 0	7.000 .000	4 0
	RGH	T TOP BOT	406.2 .0	1.000 .000	4 0	14.000 .000	1 0
03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 6:44:15 PM Licensed to: ae, university park, PA

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS ALONG SPANS _____ CRITICAL DESIGN LOAD MAX. I.P. LOAD MAX. I.P. LOAD SPAN LOAD NUM TYPE SECTION MOMENT PTRN DIST LEFT PTRN DIST RGHT PTRN (ft) (ft-k) (ft) (ft) _____ 2 TOTL 13.300 TOP .0 0 .000 0 .000 0 BOT 227.4 3 10.500 1 9.100 3 TOTL 14.700 TOP -.8 3 .000 0 .000 0 BOT 176.4 2 9.100 2 7.700 2 3 _____

Brendon Burley

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 5 6:44:15 PM Licensed to: ae, university park, PA

	****					××××××	
COLM NUM	CROSS SECTN	L2/L1	ALPHA1	ALPHA1 *L2/L1	BETA(T)	STRIP FACT	BEAM FACT
1	LEFT RGHT	.54 .54	.000	.000	.204	.980 .980	.000 .000
2	LEFT RGHT	.54 .54	.000	.000	.000	.750 .750	.000 .000
3	LEFT RGHT	.54 .54	.000 .000	.000 .000	.204 .204	.980 .980	.000

COLUMN STRIP MOMENT DISTRIBUTION FACTORS AT SUPPORTS

COLUMN STRIP MOMENT DISTRIBUTION FACTORS IN SPANS

SPAN NUM	L2/L1	ALPHA1	ALPHA1 *L2/L1	STRIP FACT	BEAM FACT
2	.54	.000	.000	.600	.000
3	.54	.000	.000	.600	.000

Malvern, PA

		DISTRIB ******	DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS								
COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)					
1	LEFT TOP	-1.5	.0 (0)	-1.5 (97)	.0 (0)	.0 (2)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					
	RGHT TOP	130.9	.0 (0)	128.2 (97)	.0 (0)	2.7 (2)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					
2	LEFT TOP	-311.0	.0 (0)	-233.3 (75)	.0 (0)	-77.8 (25)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					
	RGHT TOP	293.6	.0 (0)	220.2 (75)	.0 (0)	73.4 (25)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					
3	LEFT TOP	-333.2	.0 (0)	-326.4 (97)	.0 (0)	-6.8 (2)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					
	RGHT TOP	406.2	.0 (0)	397.9 (97)	.0 (0)	8.3 (2)					
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)					

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SPA NUM	N CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
2	13.30 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	227.4	.0 (0)	136.5 (60)	.0 (0)	91.0 (39)
3	14.70 TOP	8	.0 (0)	5 (60)	.0 (0)	3 (40)
	BOT	176.4	.0 (0)	105.8 (60)	.0 (0)	70.6 (40)

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 7 6:44:15 PM Licensed to: ae, university park, PA

S H E A R A N A L Y S I S *****

NOTE--Allowable shear stress in slabs = 282.84 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DI	RECT	S H	EAR	WІT	н т	R A N S F	ER O	F MOM	ΕΝΤ
			- ARO	UND		COLUM	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	STRESS
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1C	282.84	1	65.6	178.72	3	64.5	142.2	56.9	330.69*
2E	282.84	1	143.5	249.01	4	137.2	-43.9	-18.3	269.27
3E	282.84	1	137.9	239.19	3	103.2	186.0	77.3	311.47*

* - Shear stress exceeded.

* Program completed as requested *

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 1 6:42:04 PM Licensed to: ae, university park, PA

			pppp	ppp	CCC	CCC	aa	aaaa						
			р	р	С	С	а	а						
			р	р	С	С		a						
			р	р	С		aa	aaaa						
			р	р	С	С	а	а						
			р	р	С	С	а	а						
			pqqq p p	qqq	CCC	ccc	aa	aaaa						
	AA	A	DDDI	DD	00	00	SS	SSSS	SS	SSS				
	А	А	D	D	0	0	S	S	S	S				
	А	А	D	D	0	0	S		S					
	AAAA	AAA	D	D	0	0	SS	SSSS	SS	SSS				
	А	А	D	D	0	0		S		S	(ttttt	mm mm)
	А	А	D	D	0	0	S	S	S	S	(t	mmmm)
	A	А	DDDI	DD	00	00	SS	SSSS	SS	SSS	(t	m m m)
***** Compu *****	***** ter p ****	**** progr	**** am fc ****	***** or AN	* * * * * ALYS] * * * * *	***** IS AN	* * * * D DE * * * *	***** ESIGN (**** OF S ****	***** LAB SY *****	- * * * * * /STEN	* * 1S * *		

Licensee stated above acknowledges that Portland Cement Association(PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the ADOSS(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the ADOSS(tm) program. Although PCA has endeavored to produce ADOSS(tm) error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the ADOSS(tm) program.

03-28-** ADOSS(tm) 6.6:42:04 PM Licensed	01 Proprietan to: ae, univer	ry Software rsity park,	of PORTLAND PA	CEMENT 2	ASSN.	Page	2
FILE NAME	E:\THESIS\SLAP	3\EQFR2.ADS					
PROJECT ID.	Medical Office	e Building					
SPAN ID.	North Exterior	<u></u>					
ENGINEER	Brendon Burley	7					
DATE	03/21/05						
TIME	10:06:38						
UNITS	U.S. in-lb						
CODE	ACI 318-89						
SLAB SYSTEM	BEAM-SUPPORTEI) SLAB					
FRAME LOCATION	EXTERIOR						
DESIGN METHOD	STRENGTH DESIG	3N JED					
MOMENTS AND SHEARS	NOI PROPORIIO						
NUMBER OF SPANS 9							
CONCRETE FACTORS	SLABS	BEAMS	COLUMNS				
DENSITY(pcf)	145.0	145.0	145.0				
TYPE NO	ORMAL WGT NO	ORMAL WGT	NORMAL WGT				
f'c (ksi)	5.0	5.0	5.0				
fct (psi)	473.8	473.8	473.8				
fr (psı)	530.3	530.3	530.3				
REINFORCEMENT DETAILS YIELD STRENGTH (fle YIELD STRENGTH (sti DISTANCE TO RF CENT AT SLAB TOP AT SLAB BOTTON AT BEAM TOP AT BEAM BOTTON FLEXURAL BAR SIZES AT SLAB BOTTON AT SLAB BOTTON AT BEAM TOP IN BEAM BOTTON MINIMUM SPACING: IN SLAB = 4. IN BEAM = 1.	S: NON-PRESTRES exural) Fy = .rrups) Fyv = CER FROM TENSIO = 1.25 in = 1.25 in = 1.50 in A = 1.50 in A = 1.50 in MINIMUM = # 4 A = # 4 A = # 4 A = # 4 A = # 4 DO in 00 in	SSED 60.00 ksi 60.00 ksi DN FACE: OUTER LAYER OUTER LAYER OUTER LAYER MAXIMUM #14 #14 #14	king				
**TOTAL UNFACTORED DE	SAD LOAD =	443.238	Kips kips				
ابل		297.001	 101100				_

39

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 6:42:04 PM Licensed to: ae, university park, PA

	DES: ***	IGN MC *****)MENT E *****	NVELOPES AT	CRITICAL SEC	TIONS FR ******	OM SUPPORTS *****	
COL NUM	LOAD TYPE	CR SE	OSS CTN	DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
1	TOTL	LEFT	TOP BOT	-1.5 .0	.175 .000	4 0	1.000 .000	1 0
		RGHT	TOP BOT	115.0 .0	1.000 .000	3 0	2.800	2 0
2	TOTL	LEFT	TOP BOT	-339.3 .0	1.000 .000	1 0	8.400	2 0
		RGHT	TOP BOT	323.4 .0	1.000 .000	1 0	9.800 .000	3 0
3	TOTL	LEFT	TOP BOT	-295.4 .0	1.000 .000	1 0	8.400	3 0
		RGHT	TOP BOT	297.6 .0	1.000 .000	1 0	8.400	2 0
4	TOTL	LEFT	TOP BOT	-301.7 .0	1.000 .000	1 0	8.400	2 0
		RGHT	TOP BOT	301.2 .0	1.000 .000	1 0	8.400	3 0
5	TOTL	LEFT	TOP BOT	-301.2	1.000 .000	1 0	8.400	3 0
		RGHT	TOP BOT	301.7 .0	1.000	1 0	8.400	2 0
6	TOTL	LEFT	TOP BOT	-297.6 .0	1.000	1 0	8.400	2 0
		RGHT	TOP BOT	295.4 .0	1.000 .000	1 0	8.400	3 0
7	TOTL	LEFT	TOP BOT	-323.4 .0	1.000 .000	1 0	9.800 .000	3 0
		RGHT	TOP BOT	339.3 .0	1.000	1 0	8.400	2 0

40

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 6:42:04 PM Licensed to: ae, university park, PA

	DESIGN M ******	IOMENT *****	ENVELOPES AT	CRITICAL SEC	TIONS FR ******	OM SUPPORTS *****	
COL NUM	LOAD C TYPE S	ROSS	DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
8	TOTL LEFT	' TOP BOT	-115.0 .0	1.000 .000 175	 3 0 4	2.800 .000	2 0 1
		BOT	.0	.000	0 	.000	0

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 5 6:42:04 PM Licensed to: ae, university park, PA

SPAN NUM	LOAD TYPE	CRIT SECT (f	ICAL ION t)	DESIGN MOMENT (ft-k)	LOAD PTRN	MAX. I.P. DIST LEFT (ft)	LOAD PTRN	MAX. I.P. DIST RGHT (ft)	LOAD PTRN	
2	TOTL	13.300	TOP BOT	.0 247.2	0 3	.000 10.500	0 1	.000 9.100	0 3	
3	TOTL	14.700	TOP BOT	.0 195.9	0 2	.000 9.100	0 2	.000 7.700	0 1	
4	TOTL	13.300	TOP BOT	.0 206.2	0 3	.000 7.700	0 1	.000 9.100	0 3	
5	TOTL	14.700	TOP BOT	.0 203.9	0 2	.000 9.100	0 2	.000 7.700	0 2	
6	TOTL	14.700	TOP BOT	.0 206.2	0 3	.000 9.100	0 3	.000 7.700	0 1	
7	TOTL	13.300	TOP BOT	.0 195.9	0 2	.000 7.700	0 1	.000 9.100	0 2	
8	TOTL	14.700	TOP BOT	.0 247.2	0 3	.000 9.100	0 3	.000 10.500	0 1	

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS ALONG SPANS

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 6 6:42:04 PM Licensed to: ae, university park, PA

COLM NUM	CROSS SECTN	L2/L1	ALPHA1	ALPHA1 *L2/L1	BETA(T)	STRIP FACT	BEAM FACT
1	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394 1.394	.204 .204	.991 .991	.850 .850
2	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
3	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
4	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
5	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
б	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
7	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.000	.889 .889	.850 .850
8	LEFT RGHT	.54 .54	2.602 2.602	1.394 1.394	.204 .204	.991 .991	.850 .850

COLUMN STRIP MOMENT DISTRIBUTION FACTORS AT SUPPORTS

COLUMN STRIP MOMENT DISTRIBUTION FACTORS IN SPANS

SPAN NUM	L2/L1	ALPHA1	ALPHA1 *L2/L1	STRIP FACT	BEAM FACT
2	.54	2.602	1.394	.889	.850
3	.54	2.602	1.394	.889	.850
4	.54	2.602	1.394	.889	.850

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 7 6:42:04 PM Licensed to: ae, university park, PA

COLU ****	JMN STRIP	MOMENT DISTR	IBUTION FA *********	CTORS IN ********	SPANS *****
SPAN NUM	L2/L1	ALPHA1	ALPHA1 *L2/L1	STRIP FACT	BEAM FACT
5	.54	2.602	1.394	.889	.850
6	.54	2.602	1.394	.889	.850
7	.54	2.602	1.394	.889	.850
8	.54	2.602	1.394	.889	.850

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 8 6:42:04 PM Licensed to: ae, university park, PA

_____ COL CROSS TOTAL TOTAL-VERT COLUMN STRIP BEAM MIDDLE STRIP NUM SECTN MOMENT DIFFERENCE MOMENT MOMENT MOMENT (ft-k) (ft-k) (%) (ft-k) (%) (ft-k) (%) .0 (0) 1 LEFT TOP -1.5 -.2 (14) -1.3 (84) .0 (0) .0 .0 (0) .0 (0) .0 (0) BOT .0 (0) 1.0 (0) 96.8 (84) RGHT TOP 115.0 .0 (0) 17.1 (14) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) -339.3 -45.3 (13) -256.5 (75) 2 LEFT TOP .0 (0) -37.6(11)BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) 35.8 (11) .0 (0) 43.1 (13) 244.4 (75) 323.4 RGHT TOP .0 (0) .0 (0) .0 (0) .0 (0) BOT .0 -295.4.0 (0) -39.4(13)-223.3 (75) 3 LEFT TOP -32.7 (11) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) RGHT TOP 297.6 .0 (0) 39.7 (13) 225.0 (75) 33.0 (11) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) 4 LEFT TOP -301.7 .0 (0) -40.2 (13) -228.0 (75) -33.4 (11) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) RGHT TOP 301.2 .0 (0) 40.2 (13) 227.6 (75) 33.3 (11) BOT .0 (0) .0 (0) .0 (0) .0 (0) .0 5 LEFT TOP -301.2 .0 (0) -40.2(13)-227.6 (75) -33.3 (11) .0 (0) .0 (0) .0 (0) BOT .0 .0 (0) RGHT TOP 301.7 .0 (0) 40.2 (13) 228.0 (75) 33.4 (11) .0 (0) .0 (0) .0 (0) .0 (0) BOT .0 -297.6 -39.7(13)-225.0 (75) 6 LEFT TOP .0 (0) -33.0 (11) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) 32.7 (11) RGHT TOP 295.4 .0 (0) 39.4 (13) 223.3 (75) .0 (0) .0 (0) BOT .0 .0 (0) .0 (0) .0 (0) -43.1 (13) -244.4 (75) -323.4 -35.8 (11) 7 LEFT TOP BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) 37.6 (11) 339.3 .0 (0) 256.5 (75) RGHT TOP 45.3 (13) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0)

Malvern, PA

		DISTRIB ******	DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS										
COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)							
8	LEFT TOP BOT RGHT TOP	-115.0 .0 1.5	.0 (0) .0 (0) .0 (0)	-17.1 (14) .0 (0) .2 (14)	-96.8 (84) .0 (0) 1.3 (84)	-1.0(0) .0(0) .0(0)							
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)							

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SPAN CRO NUM SEC	DSS CTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%	COLUMN STRIP MOMENT) (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
2 13.3	30 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	247.2	.0 (0) 33.0 (13)	186.9 (75)	27.4 (11)
3 14.7	70 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	195.9	.0 (0) 26.1 (13)	148.1 (75)	21.7 (11)
4 13.3	30 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	206.2	.0 (0) 27.5 (13)	155.8 (75)	22.8 (11)
5 14.7	70 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	203.9	.0 (0) 27.2 (13)	154.1 (75)	22.6 (11)
6 14.7	70 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	206.2	.0 (0) 27.5 (13)	155.8 (75)	22.8 (11)
7 13.3	30 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	195.9	.0 (0) 26.1 (13)	148.1 (75)	21.7 (11)
8 14.7	70 TOP	.0	.0 (0) .0 (0)	.0 (0)	.0 (0)
	BOT	247.2	.0 (0) 33.0 (13)	186.9 (75)	27.4 (11)

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 10 6:42:04 PM Licensed to: ae, university park, PA

S H E A R A N A L Y S I S *****

NOTE--Allowable shear stress in slabs = 282.84 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DI	RECT	S H	EAR	WІT	н т	R A N S F	ER O	F MOM	ΕΝΤ
			– ARO	UND		COLUM	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	STRESS
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1C	282.84	1	68.3	114.40	1	68.3	106.0	42.4	153.52
2E	282.84	1	154.8	149.48	1	154.8	-20.9	-8.7	155.84
3E	282.84	1	146.6	141.55	1	146.6	2.9	1.2	142.44
4E	282.84	1	147.7	142.67	1	147.7	7	3	142.88
5E	282.84	1	147.7	142.67	1	147.7	.7	.3	142.88
бE	282.84	1	146.6	141.55	1	146.6	-2.9	-1.2	142.44
7E	282.84	1	154.8	149.48	1	154.8	20.9	8.7	155.84
8C	282.84	1	68.3	114.40	1	68.3	-106.0	-42.4	153.52

03-28-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 11 6:42:04 PM Licensed to: ae, university park, PA

BEAM SHEAR REQUIREMENTS (kips, sq.in./in., ft.)

NOTE--Allowable shear stress in beams = 141.42 psi (see "CODE").

BEAM SPAN NO.	PATT. NO.	LEFT Vu@d SHEAR	SIDE Av/s @d	FRACTIC Av/s .175	NAL DIS Av/s .375	ST. ALON Av/s .625	NG SPAN- Av/s .825	 RIGHT Av/s @d	SIDE Vu@d SHEAR	LEFT Vc/2. DIST.
1 *	*		Span le	ngth eq	ual to	column	size or	zero		* *
2	3	51.3	.015*	.015*	.000	.000	.015*	.015*	-62.9	9.10
2	1	47.8	.015*	.015*	.000	.015*	.015*	.015	-66.4	9.10
3	1	61.5	.015*	.015*	.000	.000	.015*	.015*	-52.7	10.50
3	1	54.7	.015*	.015*	.000	.000	.015*	.015*	-59.5	10.50
4	1	60.2	.015*	.015*	.000	.000	.015*	.015*	-54.1	10.50
4	1	53.7	.015*	.015*	.000	.000	.015*	.015*	-60.5	10.50
5	1	60.3	.015*	.015*	.000	.000	.015*	.015*	-53.9	10.50
5	1	53.9	.015*	.015*	.000	.000	.015*	.015*	-60.3	10.50
6	1	60.5	.015*	.015*	.000	.000	.015*	.015*	-53.7	10.50
6	1	54.1	.015*	.015*	.000	.000	.015*	.015*	-60.2	10.50
7	1	59.5	.015*	.015*	.000	.000	.015*	.015*	-54.7	10.50
7	1	52.7	.015*	.015*	.000	.000	.015*	.015*	-61.5	10.50
8	1	66.4	.015	.015*	.015*	.000	.015*	.015*	-47.8	11.90
8	3	62.9	.015*	.015*	.000	.000	.015*	.015*	-51.3	11.90
9*	*		Span le	ngth eq 	ual to	column	size or	zero		* *

NOTES: 1.) To obtain stirrup spacing, divide stirrup area by Av/s value above.

2.) To obtain stirrup area, multiply spacing by Av/s value.

3.) Local effects due to loadings applied at other segments

- along beam span must be calculated manually.
- 4.) Symbols following Av/s values:
 - * minimum shear 50*bw/Fyv based on beam dimensions.
 - x Vs exceeds 2*Vc, maximum stirrup spacing must be halved.
 - + Av/s value at segment located within effective depth.

* Program completed as requested *

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 1 9:25:10 AM Licensed to: ae, university park, PA

			ppp	ppp	CC	CCC	aa	laaa						
			р	р	С	С	а	а						
			р	р	С	С		а						
			р	р	С		aa	laaaa						
			р	р	С	С	а	а						
			р	р	С	С	а	а						
			p b b	qqq	CC	ccc	aa	aaaa						
	AA	A	DDD	DD	00	00	SS	SSS	SS	SSS				
	А	А	D	D	0	0	S	S	S	S				
	А	А	D	D	0	0	S		S					
	AAAA	AAA	D	D	0	0	SS	SSSS	SS	SSS				
	A	А	D	D	0	0		S		S	(ttttt	mm mm)
	A	A	D	D	0	0	S	S	S	S	(t	m m m m)
	А	А	DDD	DD	00	0C	SS	SSSS	SS	SSS	(t	m m m)
****** Compu	***** ter p	**** progr	**** am fo	***** or AN	**** ALYS:	**** IS AN	**** D DE	SIGN	**** OF SI	***** LAB SY	* * * * * ′STEI	* * VIS * *		

Licensee stated above acknowledges that Portland Cement Association(PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the ADOSS(tm) computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the ADOSS(tm) program. Although PCA has endeavored to produce ADOSS(tm) error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the ADOSS(tm) program.

03-26-** ADOSS(tm) 6 9:25:10 AM Licensed	.01 Proprieta to: ae, unive	ry Software (rsity park, 1	of PORTLAND (PA	CEMENT ASSN.	. Page	2
FILE NAME	P:\THESIS\EQF	R3.ADS				
PROJECT ID.	Medical Offic	e Building				
SPAN ID.						
ENGINEER	Brendon Burle	У				
DATE TIME	03/21/05 10:06:38					
UNITS CODE	U.S. in-lb ACI 318-89					
SLAB SYSTEM FRAME LOCATION	FLAT PLATE INTERIOR					
DESIGN METHOD MOMENTS AND SHEARS	STRENGTH DESI NOT PROPORTIO	GN NED				
NUMBER OF SPANS 13						
CONCRETE FACTORS DENSITY(pcf) TYPE No f'c (ksi) fct (psi) fr (psi)	SLABS 145.0 DRMAL WGT N 5.0 473.8 530.3	BEAMS 145.0 ORMAL WGT 5.0 473.8 530.3	COLUMNS 145.0 NORMAL WGT 5.0 473.8 530.3			
REINFORCEMENT DETAILS YIELD STRENGTH FY DISTANCE TO RF CENT AT SLAB TOP AT SLAB BOTTON MINIMUM FLEXURAL BA AT SLAB TOP AT SLAB BOTTON MINIMUM SPACING: IN SLAB = 3	S: NON-PRESTRE = 60.00 ksi FER FROM TENSI = 1.25 in A = 1.25 in AR SIZE: = # 4 A = # 4	SSED ON FACE: OUTER LAYER OUTER LAYER				
**SLAB THICKNESS IN S REQUIRED DEPTH = 9	SPAN 3 IS INA 9.6 in	DEQUATE W/O	A DEFLECTION	CHECK		
**SLAB THICKNESS IN S REQUIRED DEPTH = 9	SPAN 4 IS INA 9.6 in	DEQUATE W/O 2	A DEFLECTION	CHECK		
**SLAB THICKNESS IN S REQUIRED DEPTH = 9	SPAN 5 IS INA 9.6 in	DEQUATE W/O 2	A DEFLECTION	CHECK		
**SLAB THICKNESS IN S REQUIRED DEPTH = 9	SPAN 6 IS INA 9.6 in	DEQUATE W/O	A DEFLECTION	CHECK		

**SLAB THICKNESS REQUIRED DEPTH	IN =	SPAN 7 9.6 in	IS	INADEQUATE	W/O A	DEFLECTION	CHECK
**SLAB THICKNESS REQUIRED DEPTH	IN =	SPAN 8 9.6 in	IS	INADEQUATE	W/O A	DEFLECTION	CHECK
**SLAB THICKNESS REQUIRED DEPTH	IN =	SPAN 9 9.6 in	IS	INADEQUATE	W/O A	DEFLECTION	CHECK
**SLAB THICKNESS REQUIRED DEPTH	IN =	SPAN 10 9.6 in	IS	INADEQUATE	W/O A	DEFLECTION	CHECK
**SLAB THICKNESS REQUIRED DEPTH	IN =	SPAN 11 9.6 in	IS	INADEQUATE	W/O A	DEFLECTION	CHECK
**TOTAL UNFACTORE	D I I	DEAD LOAI LIVE LOAI) =) =	1170 868	0.208] 8.000]	cips cips	

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 9:25:10 AM Licensed to: ae, university park, PA

COL NUM	LOAD TYPE	CR SE	CROSS DESI SECTN MOME (ft-		IGN DISTANCE ENT CR.SECTN -k) (ft)		MAX.I.P. DISTANCE (ft)	LOAD PTRN
1	TOTL	LEFT	TOP BOT	-4.9 .0	.175 .000	 4 0	1.000 .000	1 0
		RGHT	TOP BOT	404.1 .0	1.000 .000	3 0	5.600 .000	3 0
2	TOTL	LEFT	TOP BOT	-532.4 .0	.960 .000	1 0	8.400 .000	2 0
		RGHT	TOP BOT	529.0 .0	.960 .000	1 0	8.400	3 0
3	TOTL	LEFT	TOP BOT	-521.3 .0	.960 .000	1 0	8.400	3 0
		RGHT	TOP BOT	523.0 .0	.960 .000	1 0	8.400	2 0
4	TOTL	LEFT	TOP BOT	-525.6 .0	.960 .000	1 0	8.400	2 0
		RGHT	TOP BOT	525.3 .0	.960 .000	1 0	8.400	3 0
5	TOTL	LEFT	TOP BOT	-524.9 .0	.960 .000	1 0	8.400	3 0
		RGHT	TOP BOT	525.0 .0	.960 .000	1 0	8.400	2 0
6	TOTL	LEFT	TOP BOT	-525.0 .0	.960 .000	1 0	8.400	2 0
		RGHT	TOP BOT	525.0 .0	.960 .000	1 0	8.400	3 0
7	TOTL	LEFT	TOP BOT	-525.0 .0	.960 .000	1 0	8.400	3 0
		RGHT	TOP BOT	525.0 .0	.960 .000	1 0	8.400	2 0

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 9:25:10 AM Licensed to: ae, university park, PA

	DES:	IGN MO *****	MENT H	ENVELOPES AT	CRITICAL SEC	TIONS FR ******	OM SUPPORTS *****	
COL NUM	LOAD TYPE	CROSS SECTN		DESIGN MOMENT (ft-k)	DISTANCE CR.SECTN (ft)	LOAD PTRN	MAX.I.P. DISTANCE (ft)	LOAD PTRN
8	TOTL	LEFT	TOP BOT	-525.0 .0	.960 .000	1 0	8.400	2 0
		RGHT	TOP BOT	524.9 .0	.960 .000	1 0	8.400 .000	3 0
9	TOTL	LEFT	TOP BOT	-525.3 .0	.960 .000	1 0	8.400 .000	3 0
		RGHT	TOP BOT	525.6 .0	.960 .000	1 0	8.400	2 0
10	TOTL	LEFT	TOP BOT	-523.0 .0	.960 .000	1 0	8.400	2 0
		RGHT	TOP BOT	521.3 .0	.960 .000	1 0	8.400 .000	3 0
11	TOTL	LEFT	TOP BOT	-529.0 .0	.960 .000	1 0	8.400	3 0
		RGHT	TOP BOT	532.4 .0	.960 .000	1 0	8.400 .000	2 0
12	TOTL	LEFT	TOP BOT	-404.1 .0	1.000 .000	3 0	5.600 .000	3 0
		RGHT	TOP BOT	4.9 .0	.175 .000	4 0	1.000 .000	1 0

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 5 9:25:10 AM Licensed to: ae, university park, PA

SPAN NUM	LOAD TYPE	CRITICAL SECTION (ft)		DESIGN MOMENT (ft-k)	LOAD PTRN	MAX. I.P. DIST LEFT (ft)	LOAD PTRN	MAX. I.P. DIST RGHT (ft)	LOAD PTRN			
2	TOTL	14.700	TOP BOT	.0 358.9	0 3	.000 10.500	0 2	.000 7.700	0 1			
3	TOTL	14.700	TOP BOT	.0 351.5	0 2	.000 9.100	0 1	.000 7.700	0 1			
4	TOTL	14.700	TOP BOT	.0 360.8	0 3	.000 9.100	0 1	.000 7.700	0 1			
5	TOTL	14.700	TOP BOT	.0 360.6	0 2	.000 9.100	0 1	.000 7.700	0 1			
б	TOTL	14.700	TOP BOT	.0 360.8	0 3	.000 9.100	0 1	.000 7.700	0 1			
7	TOTL	14.700	TOP BOT	.0 360.8	0 2	.000 9.100	0 1	.000 7.700	0 1			
8	TOTL	13.300	TOP BOT	.0 360.8	0 3	.000 7.700	0 1	.000 9.100	0 1			
9	TOTL	13.300	TOP BOT	.0 360.6	0 2	.000 7.700	0 1	.000 9.100	0 1			
10	TOTL	13.300	TOP BOT	.0 360.8	0 3	.000 7.700	0 1	.000 9.100	0 1			
11	TOTL	13.300	TOP BOT	.0 351.5	0 2	.000 7.700	0 1	.000 9.100	0 1			
12	TOTL	13.300	TOP BOT	.0 358.9	0 3	.000 7.700	0 1	.000 10.500	0 2			

DESIGN MOMENT ENVELOPES AT CRITICAL SECTIONS ALONG SPANS

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 6 9:25:10 AM Licensed to: ae, university park, PA

COLM NUM	CROSS SECTN	L2/L1	ALPHA1	ALPHA1 *L2/L1	BETA(T)	STRIP FACT	BEAM FACT
1	LEFT RGHT	1.00 1.00	.000 .000	.000	.658	.934 .934	.000 .000
2	LEFT RGHT	1.00 1.00	.000 .000	.000 .000	.000	.750 .750	.000 .000
3	LEFT RGHT	1.00 1.00	.000 .000	.000 .000	.000	.750 .750	.000 .000
4	LEFT RGHT	1.00 1.00	.000 .000	.000 .000	.000	.750 .750	.000 .000
5	LEFT RGHT	1.00 1.00	.000 .000	.000 .000	.000	.750 .750	.000 .000
6	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
7	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
8	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
9	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
10	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
11	LEFT RGHT	1.00 1.00	.000 .000	.000	.000	.750 .750	.000 .000
12	LEFT RGHT	1.00 1.00	.000 .000	.000 .000	.658 .658	.934 .934	.000 .000
	2	1.00	.000	.000	.600	.000	
	3	1.00	.000	.000	.600	.000	

COLUMN STRIP MOMENT DISTRIBUTION FACTORS AT SUPPORTS

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 7 9:25:10 AM Licensed to: ae, university park, PA

COLUMN STRIP MOMENT DISTRIBUTION FACTORS IN SPANS					
L2/L1	ALPHA1	ALPHA1 *L2/L1	STRIP FACT	BEAM FACT	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
1.00	.000	.000	.600	.000	
	UMN STRIP ********** L2/L1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	UMN STRIP MOMENT DISTR ************************************	UMN STRIP MOMENT DISTRIBUTION FA L2/L1 ALPHA1 ALPHA1 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000 1.00 .000 .000	UMN STRIP MOMENT DISTRIBUTION FACTORS IN L2/L1 ALPHA1 ALPHA1 STRIP 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600 1.00 .000 .000 .600	

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 8 9:25:10 AM Licensed to: ae, university park, PA

		DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS ************************************				
COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
1	LEFT TOP	-4.9	.0 (0)	-4.6 (93)	.0 (0)	3 (6)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	404.1	.0 (0)	377.5 (93)	.0 (0)	26.6 (6)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
2	LEFT TOP	-532.4	.0 (0)	-399.3 (75)	.0 (0)	-133.1 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	529.0	.0(0)	396.7 (75)	.0 (0)	132.2 (25)
	BOT	.0	.0(0)	.0 (0)	.0 (0)	.0 (0)
3	LEFT TOP	-521.3	.0(0)	-391.0 (75)	.0 (0)	-130.3 (25)
	BOT	.0	.0(0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	523.0	.0 (0)	392.3 (75)	.0 (0)	130.8 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
4	LEFT TOP	-525.6	.0 (0)	-394.2 (75)	.0 (0)	-131.4 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	525.3	.0 (0)	394.0 (75)	.0 (0)	131.3 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
5	LEFT TOP	-524.9	.0 (0)	-393.7 (75)	.0 (0)	-131.2 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	525.0	.0 (0)	393.7 (75)	.0 (0)	131.2 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
6	LEFT TOP	-525.0	.0 (0)	-393.8 (75)	.0 (0)	-131.3 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	525.0	.0 (0)	393.8 (75)	.0 (0)	131.3 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
7	LEFT TOP	-525.0	.0 (0)	-393.8 (75)	.0 (0)	-131.3 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	525.0	.0 (0)	393.8 (75)	.0 (0)	131.3 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 9 9:25:10 AM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS _____ COL CROSS TOTAL TOTAL-VERT COLUMN STRIP BEAM MIDDLE STRIP MOMENT NUM SECTN MOMENT DIFFERENCE MOMENT MOMENT (ft-k) (ft-k) (%) (ft-k) (%) (ft-k) (%) _____ 8 LEFT TOP -525.0 .0 (0) -393.7 (75) .0 (0) -131.2 (25) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) RGHT TOP 524.9 .0 (0) 393.7 (75) BOT .0 (0) .0 (0) .0 (0) .0 (0) 131.2 (25) .0 (0) .0 (0) LEFT TOP -525.3 .0 (0) -394.0 (75) 9 .0 (0) -131.3 (25) .0 (0) BOT .0 .0 (0) .0 (0) .0 (0) 525.6 .0 (0) 394.2 (75) .0 (0) 131.4 (25) RGHT TOP BOT .0 (0) .0 (0) .0 (0) .0 (0) .0 10 LEFT TOP -523.0 .0 (0) -392.3 (75) BOT .0 .0 (0) .0 (0) .0 (0) -130.8 (25) .0 (0) .0 (0) .0(0) 391.0(75) .0(0) 0(2) RGHT TOP 521.3 .0 (0) 130.3 (25) BOT .0 .0 (0) .0 (0) .0 (0) .0 (0) 11 LEFT TOP -529.0 .0 (0) -396.7 (75) .0 (0) -132.2 (25) .0 (0) .0 (0) BOT .0 .0 (0) .0 (0) RGHT TOP .0 (0) 399.3 (75) 532.4 .0 (0) 133.1(25).0 .0 (0) .0 (0) .0 (0) .0 (0) BOT .0 (0) -377.5 (93) -26.6 (6) 12 LEFT TOP -404.1 .0 (0) .0 .0 (0) BOT .0 (0) .0 (0) .0 (0) 4.9 .0 (0) 4.6 (93) .0 .0 (0) .0 (0) RGHT TOP .0 (0) .3 (6) .0 (0) .0 (0) BOT _____

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 10 9:25:10 AM Licensed to: ae, university park, PA

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SPA NUM	N CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
2	14.70 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	358.9	.0 (0)	215.3 (60)	.0 (0)	143.6 (40)
3	14.70 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	351.5	.0 (0)	210.9 (60)	.0 (0)	140.6 (39)
4	14.70 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	360.8	.0(0)	216.5 (60)	.0(0)	144.3 (40)
5	14.70 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	360.6	.0 (0)	216.3 (60)	.0 (0)	144.2 (40)
б	14.70 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	360.8	.0(0)	216.5 (60)	.0(0)	144.3 (39)
7	14.70 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	360.8	.0(0)	216.5 (60)	.0(0)	144.3 (40)
8	13.30 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	360.8	.0(0)	216.5 (60)	.0(0)	144.3 (39)
9	13.30 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	360.6	.0(0)	216.3 (60)	.0(0)	144.2 (39)
10	13.30 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	360.8	.0 (0)	216.5 (60)	.0 (0)	144.3 (40)
11	13.30 TOP	.0	.0(0)	.0 (0)	.0 (0)	.0 (0)
	BOT	351.5	.0(0)	210.9 (60)	.0 (0)	140.6 (39)
12	13.30 TOP	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	BOT	358.9	.0 (0)	215.3 (60)	.0 (0)	143.6 (39)

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 11 9:25:10 AM Licensed to: ae, university park, PA

S H E A R A N A L Y S I S *****

NOTE--Allowable shear stress in slabs = 282.84 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DΙ	RECT	S H	EAR	WITH	т н	R A N S F	ER O	F M O M	ΕΝΤ
			- ARO	UND		СОLИМ	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	STRESS
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1E	282.84	1	140.4	135.58	3	137.4	492.7	189.4	363.54*
21	282.84	1	261.7	322.53*	4	256.0	-22.0	-8.8	328.03*
3I	282.84	1	259.7	320.05*	1	259.7	2.2	.9	321.28*
4I	282.84	1	260.4	321.01*	1	260.4	3	1	321.20*
51	282.84	1	260.3	320.85*	1	260.3	.1	.0	320.89*
бI	282.84	1	260.3	320.88*	1	260.3	.0	.0	320.89*
7I	282.84	1	260.3	320.88*	1	260.3	.0	.0	320.89*
8I	282.84	1	260.3	320.85*	1	260.3	1	.0	320.89*
9I	282.84	1	260.4	321.01*	1	260.4	.3	.1	321.20*
101	282.84	1	259.7	320.05*	1	259.7	-2.2	9	321.28*
11I	282.84	1	261.7	322.53*	4	256.0	22.0	8.8	328.03*
12E	282.84	1	140.4	135.58	3	137.4	-492.7	-189.4	363.54*

* - Shear stress exceeded.

03-26-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 12 9:25:10 AM Licensed to: ae, university park, PA

TRANSVERSE BEAM SHEAR AND TORSION REQUIREMENTS (kips, ft-k, SQ.in, /,in.)

				- LEFT	SIDE				
BEAM	PATT.	Vu@d	Vc@d	Tu@d	Tc@d	Av/s	At/s	Atot/s	Al
No.	NO.	SHEAR	SHEAR	TORSION	TORSION	@d	@d	@d	@d
1	3	33.9	7.6	207.1	46.6	.024x	.118x	.259x	8.24
2	* *		Tran	nsverse be	am not spe	ecified			* *
3	* *		Tran	nsverse be	am not spe	ecified			* *
4	* *		Tran	nsverse be	am not spe	ecified			* *
5	* *		Tran	nsverse be	am not spe	ecified			* *
б	* *		Tran	nsverse be	am not spe	ecified			* *
7	* *		Tran	nsverse be	am not spe	ecified			* *
8	* *		Tran	nsverse be	am not spe	ecified			* *
9	* *		Tran	nsverse be	am not spe	ecified			* *
10	* *		Tran	nsverse be	am not spe	ecified			* *
11	* *		Tran	nsverse be	am not spe	ecified			* *
12	3	33.9	7.6	207.1	46.6	.024x	.118x	.259x	8.24
				RIGHT	SIDE				
 BEAM	 PATT.	 Vu@d	 Vc@d	- RIGHT Tu@d	SIDE Tc@d	Av/s	 At/s	Atot/s	 Al
BEAM No.	PATT. NO.	Vu@d SHEAR	Vc@d SHEAR	- RIGHT Tu@d TORSION	SIDE Tc@d TORSION	Av/s @d	At/s @d	Atot/s @d	Al @d
BEAM No. 1	PATT. NO. 3	Vu@d SHEAR 33.9	Vc@d SHEAR 	- RIGHT Tu@d TORSION 	SIDE Tc@d TORSION 46.6	Av/s @d .024x	At/s @d .118x	Atot/s @d .259x	Al @d 8.24
BEAM No. 1 2	PATT. NO. 3 * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran	RIGHT Tu@d TORSION 207.1 nsverse be	SIDE Tc@d TORSION 46.6 am not spe	Av/s @d .024x ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * *
BEAM No. 1 2 3	PATT. NO. 3 * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran	- RIGHT Tu@d TORSION 	SIDE Tc@d TORSION 46.6 am not spe am not spe	Av/s @d .024x ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * *
BEAM No. 1 2 3 4	PATT. NO. 3 * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran	- RIGHT Tu@d TORSION 207.1 nsverse be nsverse be	SIDE Tc@d TORSION 46.6 am not spe am not spe am not spe	Av/s @d .024x ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * *
BEAM No. 1 2 3 4 5	PATT. NO. 3 * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Trar Trar Trar Trar	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be	SIDE Tc@d TORSION 46.6 am not spe am not spe am not spe am not spe	Av/s @d .024x ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * *
BEAM No. 1 2 3 4 5 6	PATT. NO. 3 * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran Tran Tran	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be nsverse be	SIDE Tc@d TORSION 46.6 am not spe am not spe am not spe am not spe am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * * * *
BEAM No. 1 2 3 4 5 6 7	PATT. NO. 3 * * * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Trar Trar Trar Trar Trar Trar	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be	SIDE Tc@d TORSION 46.6 am not spe am not spe am not spe am not spe am not spe am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * * * * * *
BEAM No. 1 2 3 4 5 6 7 8	PATT. NO. 3 * * * * * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran Tran Tran Tran Tran Tran	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be	SIDE TC@d TORSION 46.6 am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * * * * * *
BEAM No. 1 2 3 4 5 6 7 8 9	PATT. NO. 3 * * * * * * * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran Tran Tran Tran Tran Tran	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be	SIDE TC@d TORSION 46.6 am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * * * * * * * *
BEAM No. 1 2 3 4 5 6 7 8 9 10	PATT. NO. 3 * * * * * * * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran Tran Tran Tran Tran Tran	RIGHT Tu@d TORSION 207.1 nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be nsverse be	SIDE TC@d TORSION 46.6 am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified ecified ecified ecified ecified	At/s @d .118x	Atot/s @d .259x	Al @d 8.24 * * * * * * * * * * * * * *
BEAM No. 1 2 3 4 5 6 7 8 9 10 11	PATT. NO. 3 * * * * * * * * * * * * * * * * * *	Vu@d SHEAR 33.9	Vc@d SHEAR 7.6 Tran Tran Tran Tran Tran Tran Tran Tran	RIGHT Tu@d TORSION 207.1 sverse be sverse be sverse be sverse be sverse be sverse be sverse be sverse be sverse be sverse be	SIDE TC@d TORSION 46.6 am not spe am not spe	Av/s @d .024x ecified ecified ecified ecified ecified ecified ecified ecified ecified	At/s @d 	Atot/s @d .259x	Al @d 8.24 * * * * * * * * * * * * * *

NOTES: 1.) Deep beam analysis not considered.

- 2.) Loads assumed applied from above beam.
- 3.) Moment and shear at concentrated load must be checked manually if located along transverse beam.
- 4.) Symbols following Av/s values:
 - * Minimum shear 50.*bw/Fyv based on beam dimensions.
 - x Vs exceeds 4*Vc, increase member section.
- 5.) Symbols following At/s values:
 - * Minimum torsion 50.*bw/Fyv based on beam dimensions.
 - x Ts exceeds 4*Tc, increase member section.
- 6.) Symbols following Atot/s values:
 - * Minimum torsion 50.*bw/Fyv based on beam dimensions.
- 7.) Redistribution of torque is not considered.
- 8.) Detail first stirrup @ 3 inches.

* PROGRAM DESIGN LIMITS EXCEEDED! ...REVISE SLAB DATA

Program terminated.

<u>Appendix III</u>

Shearheads.EES

 $u_1/u_des_1 = u_2/u_des_2$

 $A_{trib} = 28*28$ c_1 = 23.04/12 c_2 = 23.04/12 d = 7.75/12w = 295 $A_1 = (c_1+d)^*(c_2+d)$ $b_01 = 2^*(c_1+d)+2^*(c_2+d)$ $A_2 = A_1 + (3/4^*I_v1 - (c_1+d)/2)^*(c_2+d) + (3/4^*I_v2 - (c_2+d)/2)^*(c_1+d)$ $b_02 = 4^{sqrt}((3/4^{*}l_v1-(c_1+d)/2)^2+((c_2+d)/2)^2)+4^{sqrt}((3/4^{*}l_v2-(c_2+d)/2)^2+((c_1+d)/2)^2)$ $l_v1 = 3.75$ $l_v2 = 3.75$ $V_1 = w^*(A_{trib}-A_1)$ $V_2 = w^*(A_{trib}-A_2)$ $u_1 = V_1/(b_01^*d)/144$ $u_2 = V_2/(b_02^*d)/144$ u_des_1 = 328.04

A trib = 14*28c_1 = 2 c_2 = 2 d = 7.75/12w = 325 $A_1 = (c_1+d)^*(c_2+d)/2$ $b_01 = (c_1+d)+(c_2+d)$ $A_2 = A_1 + ((3/4*I_v1 - (c_1+d)/2)*(c_2+d) + (3/4*I_v2 - (c_2+d)/2)*(c_1+d))/2$ $b_{02} = 2^{s} \operatorname{sqrt}((3/4^{*}l_{v1}-(c_{1}+d)/2)^{2}+((c_{2}+d)/2)^{2})+2^{s} \operatorname{sqrt}((3/4^{*}l_{v2}-(c_{2}+d)/2)^{2}+((c_{1}+d)/2)^{2})$ l_v1 = 4.25 $l_v2 = 4.25$ $V_1 = w^*(A_{trib}-A_1)$ $V_2 = w^*(A_{trib}-A_2)$ $u_1 = V_1/(b_01*d)/144$ $u_2 = V_2/(b_02^*d)/144$ u_des_1 = 363.54

 $u_1/u_des_1 = u_2/u_des_2$

Assume: 1) Perfect 2) sarround	Mixing in zones ing rooms at sou	me temperatur	re as sj	pace
Concernance of the second				
	43,75*			
10,75		Plen w. m	1.8"	
		Watt	3-11	unoccupied
	12.5	1	ĭ	- Is m
		window	ų*	1'-5" W
			+	occupied
		Wall	T'-6	1
And the second s			180	
ZH cubicles (24 o Lighting (117. In Unoccupied:	minunires), .: 40	le) : Ligh 200 W , used 181	н Ofice (46 hrs fday, Ф	0 Bru hr-ore, 0,5 und (2) 18W
ZH cabicles (24 a Lighting (117. lu Unoccupied: Lights q = 3.4)	minimizes), $323 - 6^2/cabie$ minimizes), $323 - 40$ $1 W Fat F_{sa} = 3.41 (40)$	le) : Ligh 000 W , used 181 000)(0.75)(1.0	+ Ofice (45 hrs Iday, 0 06) = 108 = 37	10 Ben herore, 0, 5 und (2) 18W 843.8 W 000 Ben (7
Z4 cubicles (24 a Lighting (117. lu Unoccupied: Lights q=3.4)	iccupainte, 323 fe ² /cubie minanires), .: 40 I W Fai F _{sa} = 3,41 (40 <i>B0</i> 70	le) : Ligh 200 W , used 181 2000)(0.75)(1.0 ef lights gete	H Office (45 hrs fday, 0 6) = 108 = 37 occupied	00 Brin heroney O. 5 und (2) 18W 843.8 W 000 Bea her (7 zone as rodit
ZH cabicles (24 a Lighting (117: In Unoccupied: Lights q=3.4) Occupied:	iccupaints, 323 fa ² /cabie minanires), .: 40 I W Fac F _{se} = 3,41 (40 8070	le) .: Ligh 000 W , used 181 000)(0.75)(1.0 ef lights getu a	н Ofice (46 hes fday, Ф 96) = 108 = 37h оссирied	20 Bru nud (2) 18W 843.8 W 000 Bea kr. (7 zone as rodit
ZH cabicles (24 o Lighting (117: In Unoccupied: Lights q=3.4) Occupied: Occupants q=24 ($(ecupants, 323 + 4^2/cmbie)$ minanires), .: 40 $I W Fal F_{sa} = 3.41 (44)$ B070 $(450) = 10800 = \frac{Bas}{N}$	le) : Ligh 200 W , used 181 2000)(0.75)(1.0 ef lights gots 5.25 W = 13	H Ofice (40 hes Iday, 0 () = 101 = 37 occupied 3226 <u>Bru</u>	20 Bru herone, O.S. und (2) 18W 343.8 W 000 Bra <i>Lo</i> . (7 20me as rodul
Zurces ZH cubicles (24 a Lighting (117. In Unoccupied: Lights q=3.4) Occupied: Occupied: Occupied: Qcc	$(cupounds, 323 - 6^2/cubicminanices), .: 401 W Fac Fsa = 3.41 (408070(450) = 10800 \frac{144}{10}(70 4110.75) = 3876600 \frac{144}{10}$	le) .: Ligh 000 W , used 181 000)(0.75)(1.0 ef lights gotu 5.25 W = 13	н Ofice (46 hrs Aday , 0 66) = 108 = 37 o occupied 3226 <u>Ben</u>	20 Bri herory O. S und (2) 18W 843.8 W 000 Bea hr. (7 zone as rodit
Zeurces ZH cabicles (24 a Lighting (117: la Unorcupied: Lights q=3.4) Occupied: Occupants q=24 (Compants q=0.5 Lights q=290 Boundaries	$(cupants, 323 - 4^2/cubicminanires), .: 40I W Fall F_{sa} = 3.41 (40807.(450) = 10800 Bar(70 4110.75) = 3.876600 Br$	le) : Ligh 200 W , used 181 000)(0.75)(1.0 ef lights gotu 5.25 W = 13	н Ofice (46 hes Iday, 0 — 101 — 37 о оссыріед 3226 <u>Беш</u>	20 Bru herone, O.S und (2) 18W 343.8 W 000 Bra 400 Bra 400 (7 2000 as rodul
Zources 24 cabicles (24 a 1:ghting (117: 1a Unoccupied: Lights q=3.4) Occupied: Occupants q=24 (Compatters q=0.5 Lights q=2.90 Boundaries Infiltration (Conduction	$\frac{1}{1000} = \frac{373}{1000} + \frac{100}{1000} + \frac{373}{1000} + \frac{100}{1000} + \frac{10000}{1000} + \frac{10000}{10000} + \frac{10000}{100000} + \frac{10000}{100000} + \frac{10000}{1000000} + \frac{10000}{10000000} + \frac{10000}{10000000} + \frac{100000}{1000000000} + \frac{100000}{100000000000} + \frac{100000}{10000000000000000000} + 1000000000000000000000000000000000000$	le) : Ligh 200 W , used 181 2000)(0.75)(1.0 ef lights go tu 5.25 W = 13 5.25 W = 13	+ Ofice (45 hes fday, 0 = 37 o occupied 3226 <u>Bau</u> he R=	0 843.8 W 843.8 W 2000 Rea 2000 Rea 200
Zeurces ZH cabicles (24 a Lighting (117: In Unoccupied: Lights q=3.4) Occupied: Occupants q=24 (Comparters q= 0.5 Lights q=290 Boundaries Infiltration (Conduction (1000000000000000000000000000000000000	(10) .: Ligh 200 W , used 181 200)(0.75)(1.0 of lights go tu 4. 5.25 W = 13 6.25 W = 13 1. Wall = 5.5 of the 6 Back cd , alcumian 2	H Office (40 Hes Iday, 0 = 101 = 37. o occupied 3226 <u>Brea</u> 3226 <u>Brea</u> 204 Hereix = 204 Hereix sto	0 50 500 priver, 0, 5 und (2) 18W 843.8 W 000 Bea 40.7 2000 as rodit 0.1 850.00 850.00 0.1 850.00 0.1 800.00 0.1 800.00 800.00 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Zeurces 24 cabicles (24 a Lighting (117. In Unoccupied: Lights q=3.4, Occupants q=24 (Comparters q=0.5 Lights q=290 Boundaries Infiltration (Conduction ($\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + 1$	le) .: Ligh 000 W , used 181 000)(0.75)(1.0 ef lights gotu 5.25 W = 13 S.25 W = 13 Nwall = 5.5 of the 6 Ban d, aluminan	H Ofice (45 hes Aday, 0 = 108 = 37 o occupied 3226 <u>Bau</u> he 3226 <u>Bau</u> 204 Hetal sto	0 === h===, 0, 5 und (2) 18W 343.8 W 000 === tr, (7 20ne as rodii = 0.1 === 8 === 8 === 0.1 === 8 === 8 == 8 == 8 == 8 == 8 = 8 = 8
Zources ZH cabicles (24 a Lighting (117: In Unoccupied: Lights q=3.4. Occupants q=24 (Comparts q=0.5 Lights q=290 Boundaries Infilteration (Conduction ($\frac{1}{2} = \frac{1}{2} + \frac{1}$	1.1.e.) .: Ligh 2000 W , used 181 2000) (0.75) (1.0 2.1.6 hts go to 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13 3.25 W = 13	H Office (45 hes Iday, 0) G) = 108 = 37 o occupied 2226 Free , R herek = 264 Hetal sta <u>clathr</u> Bru	0 50 10 1000 0.5 und (2) 18W 843.8 W 000 100 100 (7 2000 as rodit 2000 as rodit 0.1 10 100 000 100 85.16 ac., R-11
Zeurces 24 cabicles (24 a Lighting (117. In Unoccupied: Lights q=3.4. Occupants q=24 (Comparters q=0.5 Lights q=290 Boundaries Infiltration (Conduction ($\frac{1}{1000} = \frac{323}{1000} + \frac{100}{1000} + \frac{323}{1000} + \frac{100}{1000} + \frac{10000}{1000} + \frac{10000}{10000} + \frac{10000}{10000} + \frac{10000}{10000} + \frac{10000}{10000} + \frac{100000}{10000} + \frac{1000000}{10000} + \frac{100000000}{100000} + 1000000000000000000000000000000000000$	le) : Ligh 000 W , used 181 000)(0.75)(1.0 ef lights gotu 5.25 W = 13 Nuall = 5.5 of the 6 Ban d, aluminan 2 14 = SR = 7.9 2	+ Ofice (45 hes Aday, O = 10; = 37 o occupied 3226 Been p R mick = 284 Hetal sto $\frac{1}{2}$	0 ber wed (2) 18W 843.8 W 000 Bea be (7 zone as rodit 1 0.1 <u>Bear</u> Bearin ds, 16 ac., R-11
Zources ZH cabicles (24 a Lighting (117: In Unoccupied: Lights q=3.4. Occupants q=24 (Comparts q=0.5 Lights q=7.90 Boundaries Infiltration (Conduction ($\frac{1}{(T_{h} - T_{z})} = \frac{323 + 6^{2}/chbic}{1 + 1} + \frac{323 + 6^{2}/chbic}{1 + 1} + \frac{1}{1} + $	1.10) .: Ligh 2000 W , used 181 2000) (0.75) (1.0 200) (0.75) (1.0 2010) (0.75) (1.0 2010) (0.75) (1.0 2010)	H Ofice (40 hes Iday, 0) G) = 109 = 37 0 occupied 2226 <u>Bec</u> 18226 <u>Bec</u> 18226 <u>Bec</u> 18226 <u>Bec</u> -7;)	0 50 10 1000 0.5 und (2) 18W 843.8 W 000 100 100 (7 2000 as rodit 2000 as rodit 0.1 10 100 000 100 85.16 ac., R-11
Zeurces 24 cabicles (24 a 1:ghting (117. In Unoccupied: Lights q=3.4. Occupants q=24 (Compaters q=0.5 Lights q=290 Boundaries Infiltration (Conduction (Unoccupied: Infiltration: a	$\frac{1}{1000} = \frac{323}{1000} + \frac{100}{1000} + \frac{323}{1000} + \frac{100}{1000} + \frac{10000}{1000} + \frac{10000}{10000} + \frac{100000}{100000} + \frac{1000000}{1000000} + 1000000000000000000000000000000000000$	$\frac{1}{100} = \frac{1}{100} + \frac{1}$	+ Ofice (45 hes fday, 0 = 37 = 37	0 Brin Arrow, O. 5 und (2) 18W 843.8 W 000 Bas (7 20ne as rodit 0.1 Bearin ds, 16 ac., R-11 - 506 Ba
Zources ZH cabicles (24 a Lighting (117: In Unoccupied: Lights q=3.4. Occupied: Occupants q=24 (Compaters q= 0.5 Lights q= 2.90 Boundaries Infiltration (Conduction (Unoccupied: Infiltration; quanticed Conduction: quanticed Conduction: quanticed	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$	$\frac{1}{100} = \frac{1}{100} + \frac{1}$	+ Ofice (40 hes fday, 0 = 37 = 37 o occupied 3226 Ben he 3226 Ben he 2x4 Metal sta :(1+hr Ben -7;) quin = quin =	0 50 500 percent of 5 und (2) 18W 843.8 W 000 Fra (7 2000 as rodit 0.1 800 (7 2000 as rodit 0.2 800 (7 800 (7 10) (7
Zources 24 cabicles (24 o Lighting (117: la Unorcupied: Lights q=3.4. Occupied: Occupants q=24 (Genoters q=0.5 Lights q=290 Boundaries Infiltration (Conduction (Unoccupied: Infiltration (Conduction gain Conduction : gain Occupied :	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\frac{1}{100} + \frac{1}{100} + \frac{1}$	+ Ofice (40 hes Iday, 0 - 37 - 37 	0 === herency, 0, 5 und (2) 18W 843.8 W 000 === here as rodis 0.1 === 8 === 0.1 === 8 === 8 === 0.1 === 8 === 8 == 1 = = 0.1 === 8 == 1 = = 1 = =

Appendix IV

Heating / Woling Loads Combined Unaccupied: que = 8349 But & design ouse Quin = 4601 Bee Occupied: quin = 57365 Bon & design case quin = 42589 Bra .: always cooling Tsupply =65 °F 1 supply = 65 °F Troom = 72°F V = 1.08(72-65) = 107588 cfm Technust = 1.08/17582) + 72 = 73.0°F Chosen diffuser operates at 110 cfm max. Use 100 cfm/diffuser as an operable ventilation rate. : Need 176 diffusers Ventilation Requirements $V_{bz} = R_p P_z + R_a A_z \qquad P_s = 24$ Az = 110,75 × 70= 7752,5 fe2 Table 6-1 Rp = 5 cfmperson Ra = 0.06 cfm/fez V = 5 (24) + 0.06 (7752.5) = 585. cfm

Dimensional and Installation Information

Specification and Ordering Information

Furnish and install TROX (FBA 200 aluminum, FBK 200 plastic) floor diffusers as indicated on plans. Diffusers shall incorporate a removeable core section, which consists of a series of concentric rings and deflection vanes to distribute the air in a 360° "swirl" pattern

An integral carpet flange shall support the diffuser core and prevent fraying of the carpet, providing a minimum 1/2" overlap. This flange shall mount to the floor system by means of a threaded mounting ring, allowing location upon completion of the raised floor /carpet installation without removal of carpet or floor tiles.

A catch basin shall be furnished to facilitate removal of dust, spills, and other objects that penetrate the outlet face.

Outlet airflow rates shall be limited to those resulting in a maximum terminal velocity of 50 fpm four feet directly above the diffuser face. The diffuser core and trim ring shall be constructed of (aluminum for FBA, plastic for FBK) and their finish shall be (FBA: Brushed aluminum, FBK: Ash Grey,Black or Sandstone Beige). The catch basin and mounting ring shall be constructed of UL-94-V plastic (note: steel material is optional for model FBA).

Models with OA Volume Adjustment Only

The assembly shall allow occupant adjustment of the outlet airflow without necessitating the removal of any diffuser components. Adjustment shall require rotation of the diffuser face and be accomplished by hand without the use of tools or other devices. A visible indicator on the diffuser face shall provide evidence of the damper position at all times.

The outlet shall incorporate a means of imposing a maximum airflow setting without compromising the individual's ability to adjust the delivered airflow, except to the extent of the set limit.

FBK - 1 - VF - K / 200 - OA VOLUME ADJUSTMENT MODEL OA Occupant Accessible FBK Plastic Construction SM Concealed FBA Aluminum Core/Flange Other components pleatic FBM Aluminum Cord/Flange Other components metallic DISCHARGE PATTERN VF Vertical (Fixed) FINISH EU Adjustable (Horiz/Vertical) FBK (Plastic) Models 1 Ash Grey 2 Black 5 Sandstone Beige FBA/FBM (Aluminum) 3 Silhouette (Black Interior) 4 Natural Aluminum 11

DIFFUSER ORDER CODE

<u>Appendix V</u>

	GENERAL INCO	RMATION	
	achenike hiro		
roject identification. <u>A a d i</u>	torium - Medici	al Office Building	
	torve name -	or area and/or building and room number;	
verage maintained Eluminance for	design:200 lux or L:	smp data:	
	_20 toolcandles	Type and color: 7-8	
uminaire data:		Number per luminaire: Z	
Manufacturer:		Total lumens per luminaire5	100
Catalog number: F 3 2 1 8	9/50835		
S	ELECTION OF COEFFICIE	NT OF UTILIZATION	
ten 1. Fill in sketch at right			
tep 1.1 min sketen af ign		$1 = 80\%$ $h_{cc}^{2} =$,36
lep 2: Determine Cavity Ratios		-0= 50 %	L=
		har	15.72
	Dop 2 12	+	W= 84'
Room Cavity Ratio,	$RCR = \underline{2.2.3}$		
Ceiling Cavity Ratio,	CCR = 0.05		0
Floor Cavity Ratio,	FCR = 0	<u> ao 76 _20</u>	
ep 3: Obtain Effective Ceiling	Cavity Reflectance (Pcc)		pcc = .77
ep 4: Obtain Effective Floor C	avity Reflectance (pro)		pro = .20
tep 5: Obtain Coefficient of U	tilization (CU) from Manufac	cturer's Data	cu= <u>.74</u>
	SELECTION OF LIGHT	LOSS FACTORS	
Nonrecoverable		Recoverable	
Luminaire ambient temperature	1.0	Room surface dirt depreciation RSDD	0.94
Voltage to luminaire	1.0	Lamp luman depreciation	0.80
Ballast factor	0.95	Lamp burnouts factor	1.0
Luminaire surface depreciation	1.0	LBO Luminaire dirt depreciation	0.88
		LDD	T. K.K.
Total light los	s factor, LLF (product of in	dividual factors above) = $\frac{0.63}{2}$	
	CALCULATI	ONS	
	(Average Maintained	(lluminance)	
	(Illuminance) x (áree)	mannanaa)	
Number of Luminaires = (Lur	nens per Luminaire) × (CU) ×	(LLF)	
	20 + (41+04)		
	5700 × 0,74 × 0.63	38.6 -> 4	O luminairos
INU (NU	mber of Lominaires) × (Lumens	per Luminaire) × (CU) × (LLF)	
liluminance =	(Ares	a)	
	40 × (5700)	× 0.74 × 0.63	
-	(61 x 84))	= 20.1 fc

Figure 9-25. Average illuminance calculation sheet.
Architectural Lighting

Avante

Surface/Suspended

Direct/Indirect Lighting

Intended Use

1x2 - ideal for general or task lighting in alcoves, narrow corridors and small spaces. 1x4 – suitable for general area or taskspecific lighting in both new construction and remodeling. Especially suited for conference rooms, reception areas, health care institutions, education facilities and offices.

Features

Contemporary, low-profile construction, suitable for surface and suspended mounting, providing direct or semi-direct light distribution.

Rugged steel housing in 2', 4' or 8' fieldjoinable units for continuous rows.

Injection molded joiners with snap-on finished ends.

Available with popular Avante 1x4 shieldings - MDR, MDM and SBL.

Reflectors linished with high-reflectance, matte-white polyester powder paint for

uniform light distribution.

with or without semi-perforated option or diffuse Aluminum Stepped Reflector. T5HD or T8 lamping configurations available.

Listings - UL Listed (standard), CSA Certified or NOM Certified (see Options).

Reflector option includes steel reflectors

Example: AVSM 2 32 MDR DLS MVOLT GEB10IS

- TEST: LTL9551
- MANUFAC: LITHONIA LIGHTING
- LUMCAT: AVSM 2 32 SBL DLS
- LUMINAIRE: 1X4 AVante, Surface or suspended Mount, 2 lamp T8 32 watt, Straight Blade Louver w/ perf'd sides, backed w/ acrylic overlay, Down Light Solid white steel reflector.
 - LAMPCAT: F32T8/SP835
 - LAMP: TWO 32-WATT T8 LINEAR FLUORESCENT.
- _PRODUCTGROUP: ARCHITECTURAL FLUORESCENT
 - _INFOLINK: www.lithonia.com/visual/ies/ies.asp?vfile=
 - Number Lamps: 2
 - Lumens Per Lamp: 2850
 - Photometric Type: Type C
 - Luminous Width: 1 ft
 - Luminous Length: 4 ft
 - Luminous Height: 0.33 ft
 - Ballast Factor: 1
 - Input Watts: 58
 - Efficiency (Total): 66.5 %
 - Efficiency (Up): 8.0 %
 - Efficiency (Down): 58.5 %
 - Spacing Criteria
 - Angle Value
 - 0 1.14
 - 90 1.43

Candela Values:

0 22.5 45 67.5 90

- 0 925 925 925 925 925
- 2.5 905 907 936 927 933
- 5 900 903 930 924 931
- 7.5 893 896 926 920 929
- 10 878 884 917 915 922
- 12.5 867 872 909 913 924
- 15 845 854 897 907 921
- 17.5 826 837 885 902 916
- 20 805 820 872 894 914
- 22.5 784 799 857 885 907
- 25 755 774 839 873 899
- 27.5 728 751 821 859 889
- 30 701 727 799 849 883
- 32.5 666 696 777 835 871
- 35 636 670 757 820 859
- 37.5 601 638 732 805 845
- 40 568 610 711 787 831
- 42.5 528 579 685 768 814
- 45 495 550 666 752 797
- 47.5 457 515 635 730 778
- 50 417 483 610 709 757
- 52.5 379 451 585 688 738
- 55 340 419 557 667 722
- 57.5 303 386 532 652 702
- 60
 263 350
 507 633
 685
- 62.5 232 322 486 617 666
- 65
 202 292
 464 596
 642

Malvern, PA

67.5	180	267	446	582	626
70	152	243	426	562	605
72.5	130	223	408	542	584
75	108	204	391	523	563
77.5	88	188	374	506	544
80	69	177	361	490	527
82.5	50	163	346	475	512
85	33	151	326	451	485
87.5	18	144	315	439	476
90	6	133	302	427	464
92.5	14	123	286	412	448
95	15	108	270	393	433
97.5	14	72	253	377	419
100	12	35	222	354	399
102.5	9	24	181	326	374
105	11	16	110	284	336
107.5	6	12	66	226	287
110	6	9	44	139	207
112.5	2	6	24	93	132
115	3	5	13	69	101
117.5	3	4	3	43	68
120	0	0	0	0	0
122.5	0	0	0	0	0
125	0	0	0	0	0
127.5	0	0	0	0	0
130	0	0	0	0	0
132.5	0	0	0	0	0

Malvern, PA

135	0	0	0	0	0
137.5	0	0	0	0	0
140	0	0	0	0	0
142.5	0	0	0	0	0
145	0	0	0	0	0
147.5	0	0	0	0	0
150	0	0	0	0	0
152.5	0	0	0	0	0
155	0	0	0	0	0
157.5	0	0	0	0	0
160	0	0	0	0	0
162.5	0	0	0	0	0
165	0	0	0	0	0
167.5	0	0	0	0	0
170	0	0	0	0	0
172.5	0	0	0	0	0
175	0	0	0	0	0
177.5	0	0	0	0	0
180	0	0	0	0	0

Average Luminance (cd/sq.m)

	0	45	90
55	1,427	1,845	2,302
65	1,093	1,818	2,394
75	859	1,946	2,623
85	524	2,322	3,138

References

ACI Committee 318. <u>Building Code Requirements for Structural Concrete: (ACI 318-02) and</u> <u>Commentary (ACI 318R-02)</u>. Farmington Hills, MI: American Concrete Institute, 2002

American Institute of Steel Construction. <u>Manual of Steel Construction</u>. <u>Load & Resistance Factor</u> <u>Design</u>. 3rd ed. Chicago, II: American Institute of Steel Construction. 2001

American Society of Civil Engineers. <u>Minimum Design Loads for Buildings and Other Structures</u>. Reston, VA : American Society of Civil Engineers, Structural Engineering Institute, 2003

American Society of Heating, Refrigerating and Air-Conditioning Engineers. <u>ASHRAE Handbook.</u> <u>Fundamentals</u>. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004

<u>ASHRAE 55-2004</u>. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2004

<u>ASHRAE 62.2-2003</u>. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2003

Bauman, Fred S. <u>Underfloor Air Distribution (UFAD) Design Guide</u>. Atlanta, GA: American Society of Heating Refrigerating and Air-Conditioning Engineers, 2003

Hughes, S. David. Electrical Systems in Buildings. Boston, MA: Dlemar Publishers, Inc. 1988

International Code Council. <u>2003 International Building Code</u>. Falls Church Virgina: The Council, 2003

Masonry Designers' Guide: based on Building Code Requirements for Masonry Structures (ACI 530-02/ASCE 5-02/TMS 402-02) and Specifications for Masonry Structures (ACI 530.1-02/ASCE 6-02/TMS 602-02). Boulder, CO: Masonry Society, 2003

McCormac, Jack C. Design of Reinforced Concrete. 6th ed. Hoboken, NJ: John Wiley, 2005

Nilson, Arthur H. et al. <u>Design of Concrete Structures</u>. 13th ed. Boston, MA: McGraw-Hill Higher Education, 2004

Rea, Mark S. <u>The IESNA lighting Handbook : Reference & Application</u>. 9th ed. New York, N.Y. : Illuminating Engineering Society of North America, 2000

Stein, Benjamin; John S. Reynolds. <u>Mechanical and Electrical Equipment for Buildings</u>. 9th ed. New York, NY: John Wiley & Sons Inc., 2000