AE Senior Thesis on Mechanical System Redesign:

Applying Chilled Water VAV and DOAS HVAC system to the Medical Office Building

at Johns Hopkins Hospital in Baltimore, MD

Presentation Outline

- Introduction of Building and Thesis
 - Current HVAC Equipment
- HVAC Equipment Selection
 - Alternative #1, Chilled Water VAV w/ Hot Water Reheat
 - Alternative #2, DOAS w/ active chilled/heated beams
 - Parallel System Selection
 - Enthalpy Wheel Selection
- IAQ Comparison
- Economic Analysis
- Breadth #1, Electrical Distribution Redesign
- Breadth #2, Constructability Review
- Thesis Conclusion

Building Introduction

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- New Medical Office Building for JHH
- Area of 88,000 sq ft
- Approximate cost of 15.5 million dollars
- Four floors, one below grade, three above
- Stratified Use
 - Basement and First Floor contain examination rooms as well as phlebotomy, radiation, dialysis etc.
 - Second and Third Floor contain mostly JHH staff offices and conference rooms.

Building Location

Existing HVAC Equipment

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Six rooftop DX packaged units
 - 21,000cfm each at 10% OA
 - 61 Tons of cooling each
 - Ducted together in third floor plenum to serve entire building
- Heating by terminal electric reheat VAV boxes
 - 118 fan power boxes with reheating capability
- One 7.5 Ton FCU & ACCU
 - Serves the elevator mechanical room
 - Not considered for change in redesign

Alternative #1 VAV system with six rooftop AHUs

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Chilled water used for cooling
 - Generated at the South of Orleans Energy Plant
 - Supply temperature of 38F
 - Cost of \$10.33 per MMBTU
- Hot water used for terminal reheat
 - Steam generated at the South of Orleans Energy
 Plant
 - Cost of \$1.08 per therm

Alternative #2 DOAS with three rooftop AHUs

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- AHU Differences
 - 19,000cfm per unit max
 - 86 Tons of cooling each
 - Temp of SA is 45 F
- Chilled water used for cooling
- AHUs paired with Enthalpy Wheel
 - Lessens impact of treating all outdoor air
- Heating and supplementary cooling accomplished through parallel system.

Trox Active Beam Section

Parallel System

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Active heated and chilled beams
 - Induces room air through a hydronic coil with high velocity supply air within the unit
 - Mounted Flush to acoustical ceiling
 - Four pipe system allows for heating and cooling
- Hot water (150F) supplied from steam to water HTX in lower level mechanical room
- Cold water (60F) tapped from AHU return line (52F) and mixed to proper temp.

Enthalpy Wheel

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- DOAS needs heat recovery/rejection device due to high volumes of OA treated
- Enthalpy Wheel Modeled on Semco TE3-43 (Total Energy, 43")
- 80% transfer efficiency for latent and sensible energy
- No measured cross contamination for common pollutants (Georgia Tech Research Institute)
- Able to treat OA to within 2 degrees of Mixed air in standard system

IAQ Comparison

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- MOB host to many ill patients
- Many spaces purposely over-ventilated
 - Waiting rooms
 - Examination rooms
- Graphs of CO2 in two sample rooms
 - Generation rate of .31 l/s
 - VAV system at 10% OA
 - DOAS at 100% OA

CO₂ Levels in Office 3037

In this graph, the curves represent an eight hour work day with one occupant. The dip beginning at 240 (12:00), and ending at 300 (1:00), represents the lunch hour when the office is unoccupied.

CO₂ Levels in Conference 3080

Economic Analysis

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

Questions

First Cost

- RS Means used for all equipment
- Parallel system priced from similar English units
- Operating Cost
 - HAP generated the costs for the Existing System and Alternative #1
 - Alternative #2 was scaled from Alternative #1 by comparing the amount of fan, pump and chilled water energy used annually

Economic Analysis

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

Questions

First Cost

- Existing System
 - \$353,460
- VAV w/ chilled water
 - \$519,881 (+166,000)
- DOAS w/ parallel system
 - \$560,514 (+207,000)

Operating Cost

- Existing System
 - \$165,509
- VAV w/ chilled water
 - \$130,004 (-35,500)
- DOAS w/ parallel system
 - \$106,603 (-58,900)

Payback Period Analysis

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Alternative #1 vs. Existing System
 - -4.7 years
- Alternative #2 vs. Existing System
 - -3.5 years
- Alternative #2 vs. Alternative #1
 - 1.7 years

Breadth #1

Electrical Distribution System Redesign

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Changing away from all electric HVAC
- Existing Equipment
 - Two 800Amp panel boards serve the six AHUs
 - Seven 225 Amp panel boards are dedicated to the fan powered VAV boxes
- DOAS w/ Parallel System
 - Supported equipment lowered to three water pumps and a three AHU fans
 - Require only two 100 Amp panel boards
- Cost savings of \$21,860

Breadth #2 Constructability Review

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Chilled Water and Steam Piping Constructability
 - Connection of the MOB to the South of Orleans Energy Plant
 - Feasibility
 - Location of piping
 - Impact on Construction

MOB Block Layout

Pipe Location Options

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Option one, Buried Piping
 - Formerly vacant block facilitates installation
 - Will not impact construction of loading dock
- Option two, Above Ground Piping Recommended
 - No conflict with existing buried utilities
 - Piping is accessible
 - Installation cost may be lower without excavation

Schedule Impact of Piping

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Minimal schedule impact for the following reasons
 - Easy to coordinate construction since the whole was block planned as one extension of the JHH campus
 - Source of Chilled Water and Steam is very close to the MOB
 - Structure between the Energy Plant and the MOB is very utilitarian

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Alternative #1 Chilled water VAV w/ hot water reheat
 - Initially more expensive but lower operating cost yields a pay back period of only 4.7 years
 - Can use same number and layout for AHUs and VAV boxes

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Alternative #2 DOAS with parallel system
 - Highest first cost but lowest operating cost of all systems considered, yields a pay back period of 3.5 years
 - Uses only three AHUs
 - Paired with enthalpy wheel and parallel system
 - Capable of significantly improving IAQ

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Enthalpy Wheel
 - Lowers overall cooling need dramatically
 - No risk of cross contamination
- Parallel System
 - Active heated and chilled beams
 - Can either heat or cool a space
- Electrical System Redesign
 - With deletion of all electrical HVAC equipment panel boards drop from nine to two in number
 - Cost savings of \$21,860 in equipment

Introduction

Exist HVAC

Alt #1 VAV

Alt #2 DOAS

Parallel Sys

E-Wheel

IAQ Comp

Economic

Breadth #1

Breadth #2

Conclusions

- Constructability Review of steam and chilled water piping from the energy plant to the MOB
 - Minimal schedule impact
 - Two easily constructed options
 - Block development facilitates coordination with surrounding buildings

