The Try Street Terminal Building 620 Second Avenue Pittsburgh, PA

Erin Faulds
Architectural Engineering
Mechanical Option
Senior Thesis 2007

Presentation Outline

- Building Introduction
- Mechanical Analysis
- CFD Model
- IAQ Study
- Conclusion

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Building History

- Existing industrial warehouse
- Originally constructed in 1910
- 230,000 SF with 20,500 SF building footprint
- 9 stories above ground Second Avenue

First Avenue

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Renovations

- Reasons
 - AIP degree program change
 - Relocation of AIP campus
- Benefits
 - Meet housing needs of AIP
 - Closer to campus
 - Restores older building
 - Brings younger people back to city

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Building Site

- Downtown Pgh between 1st & 2nd Ave.
- Surroundings/Neighbors
 - AIP campus
 - PNC Bank Data Center
 - Station Square & Southside
 - Public transportation
 - Public Parking Authority's First Side Garage

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Project Team

- Architect: TKA Architects
- General Contractor: Massaro Corporation
 - Mechanical Engineer: McKamish
- Electrical Engineer: Star Electric Company
 - Structural Engineer: The Kachelle Group
 - Plumbing Engineer: Sauer, Inc.
 - Fire Protection: Ruthrauff, Inc

Construction Dates

October 2005 – June 2007

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Features & Functions

- New Architectural Features
 - Façade Restoration Historic Landmark
 - Mezzanine level between floors 1 & 2
 - 2-story atrium
 - Lightwell in core of building (floors 2-9)
- Building Functions
 - 650 Residents in 140 Apartments
 - 2,750 ft² exercise room
 - 9,000 ft² of retail space

Second Avenue

First Avenue

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Existing Mechanical System

- Conventional WSHP System
 - (1) 1 to 3 ton water source heat pump (WSHP) in each apartment
 - (1) 10 ton heat pump serves exercise room
 - 60-90F building loop
 - Cooling (1) 370 ton closed circuit cooling tower
 - Heating (2) gas-fired boilers,
 1340 MBH ea.

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Conventional WSHP

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Existing Mechanical System - Airside

• (4) Make-up Air Units (MAU)

100% OA rooftop units

Provide ventilation for corridors& apartments on floors 1-9

4,620 to 7,550 cfm per unit

122 tons total cooling capacity

2,285 MBH total heating capacity

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Existing Mechanical System - Airside

- (4) Air Handling Units (AHU)
 - Indoor self contained, air-cooled vertical package units
 - Supply constant volume cooling of 47 tons
 - Serve basement & 1st floor unassigned spaces
 - 3,000 to 6,000 cfm per unit
 - Electric duct heaters provide 125 kW of heating
- (1) 10 ton heat pump
 - Supplies 4,000 cfm OA to exercise room

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Alternative Mechanical Systems

- Design Focus
 - Apartments on Floors 1-9
- Objectives
 - Implement geothermal system
 - Reduce energy consumption
 - Maintain thermal comfort
 - Reduce maintenance

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Geothermal Heat Pumps

- Benefits
 - Decrease energy consumption
 - Less O&M compared to conventional
- Disadvantage
 - Installation cost
- Types investigated: closed/open loop
 - Closed: ground coupled heat pumps (GCHP)
 - Open: ground water heat pumps (GWHP)

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

GCHP System

- Heat exchanged between water in pipes and ground soil
- Vertical System
 - Requires 250 to 300 ft² per ton cooling
- Horizontal System
 - Requires 2,500 ft² per ton cooling
- Closed loop system not selected
 - Site limitations

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

GWHP System

- Open loop water not confined to loop of pipes
- Groundwater source of cooling
- Pumping well moves groundwater
- Possible arrangements
 - Direct use
 - Standing column
 - Indirect use

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

GWHP System

- Direct-use
 - Water used directly in heat pump
 - Limited to smallest applications
- Standing Column
 - Water used directly
 - Water produced & returned to same well
- Problems
 - Scaling of building equipment
 - Size of project

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

GWHP - Primary Focus

- Indirect-use
 - Utilizes plate heat exchanger
 - Isolates building & ground loops
- Two Well System
 - Production & Injection Wells
 - National Pollutant Discharge Elimination System (NPDES) permit
- PA Class V, no additives
 - NPDES permit –not required!

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Groundwater source

- Underground River
 - Other names:
 - Wisconsin Glacial Flow
 - Aquifer
 - Constant 55F
 - Fresh, pure drinking source
 - 15 to 50 feet below surface
 - Aquifer construction
 - Like oval tunnel filled with rocks and gravel
 - Sides & bottom solid rock
 - Top silt and clay
 - Water source for Point State Park Fountain

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Heat Exchanger Sizing

- Optimum Flow Rates
 - Building loop: 2 to 3 gpm/ton
 - Groundwater loop: 1 to 2.25 gpm/ton
- Heat of rejection = 4,200 MBH (controlling case)
- *Heat of absorption* = 1,053 MBH
- ARI 325 rating for GWHP
 - Both EER & COP have 70F & 50F entering water temperature
- Approach of 3-7F
- $\Delta T_{groundwater}$ typ. less than 10F

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Heat Exchanger Sizing

- Mueller 60MH model
 - 286 plates
 - 1904 ft² total area
 - 875 gpm bldg loop
 - 788 gpm gw loop
 - Approach = 4.8F
 - $\Delta T_{\text{groundwater}} = 10.7F$

- Convention Center
 - Approx. 1 mile away
 - Drawdown test 1100gpm available

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Well Design

- Well Spacing
 - Flow from injection to production well doesn't need to be prevented
 - Inter-well flow needs to be sufficiently low
- $\sim 4,400 \text{ ft}^2 \text{ available}$
 - 'driveway' & parking
 - RETScreen requires ~2,500 ft²

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

GWHP - Energy Analysis

- HAP model
 - Direct-use
 - 30% reduction in cooling cmpt. cost
 - Increased pumping cost
- RETScreen model
 - Indirect-use
 - Similar heating & cooling loads to HAP
 - Reduced emissions

Annual Compt. Costs	Existing GWHP			Alternative WSHP		
Component	Annual Cost (\$)	(\$/ft²)	Percent of Total (%)	Annual Cost (\$)	(\$/ft²	Perce nt of Total (%)
Air System Fans	18,554	0.131	2.2	18,554	0.131	2.3
Cooling	184,884	1.308	21.8	129,843	0.919	16.0
Heating	30,214	0.214	3.6	30,234	0.214	3.7
Pumps	56,924	0.403	6.7	75,128	0.532	9.3
Cooling Tower Fans	3,201	0.023	0.4	0	0.000	0.0
HVAC Sub-Total	293,777	2.079	34.6	253,758	1.796	31.4
Lights	116,317	0.823	13.7	116,317	0.823	14.4
Electric Equipment	439,187	3.108	51.7	439,187	3.108	54.3
Non-HVAC Sub-Total	555,505	3.931	65.4	555,505	3.931	68.6
Grand Total	849,282	6.010	100.0	809,263	5.727	100.0

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Cost Comparison

- RETScreen
 - 12 years-to-positive cash flow
 - AIP 20 year property commitment
 - Although great initial cost, would recommend system

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Computational Fluids Model

- Problem
 - Air & Temp. distribution in atrium spaces
- Spaces evaluated
 - 2-story lobby (1,650 ft²)
 - 2-story exercise room (1,800 ft²)
 - Total first floor area of 4,700 ft²
 - (4) 30 ft² skylights
- Objectives
 - Use Phoenics VR to generate 3-D model
 - Analyze effectiveness of diffuser placement & supply air flow rate

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Phoenics VR

- Model
 - Blockages columns, floors, walls, etc.
 - Inlet/Outlet diffusers/doorways
 - Heat source flat plate evenly distributed over floor surface (5,000 & 12,000 W)
- *Results after 3,000 iterations*
 - Left convergence monitor
 - not constant
 - Okay for education purposes

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Phoenics Model

- Velocity Slices
 - Direction of air flow is correct
 - At occupant level air flow <= 1 m/s

Air Velocity - Comfort				
m/s	Occupant Comfort			
0.25	unnoticed			
0.25-0.51	pleasant			
	geneally aware of air			
0.51-1.02	movement			
1.02-1.52	drafty			
>1.52	problem			

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusion

Phoenics Model

- Temperature Slices
 - Diffuser stream 59F
 - At occupant level 66-70F

Temperature				
С	F			
15	59			
17	63			
19	66			
21	70			
23	73			

Diffuser placement & supply flow rates – acceptable!

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

Indoor Air Quality Study

- Objective
 - Contaminant free apartments (select)
- Ultraviolet Germicidal Irradiation (UVGI) System
 - Complicated technology
 - Used for air & surface disinfection
 - Common types: in-duct, in-AHU, upper air distribution, standalone recirculation unit
 - Destroy microbes: bacteria, mold, spores, germs

Building Introduction
Mechanical Analysis
CFD Model
IAQ Study
Conclusion

CREON2000 Room Unit

- Patented Technology
 - Focuses power of UV light on microbes
- Study Journal of Asthma
 - Asthma symptoms
 - less frequent & severe
- Low maintenance design
 - Replacement of bulb & filter once a year
- Microbe Reduction
 - HEPA by 2-3 times
 - CREON2000 by 20 times
- Room Unit offers flexibility in number of units installed

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusions

Conclusion

- GWHP indirect-use system
 - Reduces energy consumption
 - Reduces emissions
 - Maintains thermal comfort
 - Lowers maintenance
- Based on information available and calculations completed – Recommend!

Building Introduction Mechanical Analysis CFD Model IAQ Study Conclusions

Thank You

- Penn State AE Mechanical Faculty especially my advisors: James Freihaut & Jelena Srebric
 - Classmates Malory & Patrick
 - Dave Lyon & Jim Synan at McKamish
 - My family & friends

Questions?

