APPENDIX

Appendix A – Lateral Loads	33
A.1 - Wind Loads	34
A.2 - Seismic Loads	37
Appendix B - Design Checks	38
B.1 – Typical Composite beam	39
B.2 - Typical Gravity Column	41
B.3 - Typical Foundation	42
B.4 - Typical Bracing Member Check	45
B.5 - Typical Shear Connection: Single Angle	46
Appendix C - Breadth Studies	49
C.1 - Building Envelope Analysis	50
C.2 - LEED Credits	54
C.3 – Material Takeoffs	57
C.4 – Cost Analysis	59
C.5 – Construction Schedule	64
Appendix D - Framing Plans	65

APPENDIX A

A.1 - WIND LOADS

Velocity Wind Pressure

Windward pressure

 $q_z = 0.00256K_zK_{zt}K_dV^2I$

 $q_z = (0.00256)(1.03)(0.085)(1.0)(95mph)^2(1.0)$

 $q_z = 20.23 psf$

Height	kz	qz
0 - 15	1.03	20.23 psf
15 - 20	1.08	21.21 psf
20 - 25	1.12	22.00 psf
25 - 30	1.16	22.78 psf
30 - 40	1.22	23.96 psf
40 - 50	1.27	24.94 psf
50 - 60	1.31	25.73 psf
60 - 70	1.34	26.32 psf
70 - 80	1.38	27.10 psf
80 - 90	1.4	27.49 psf
90 - 100	1.43	28.08 psf
100 - 110	1.455	28.57 psf

Leeward pressure

 $q_h = 0.00256K_zK_{zt}K_dV^2I$

 $q_h = (0.00256)(1.455)(0.085)(1.0)(95mph)^2(1.0)$

 $q_h = 28.57 psf$

Design Wind Pressure

Windward wall

 $p = q_z GCp - (GCpi)q_h$

 $p = (20.23psf)(0.85)(0.8) - (\pm 0.18)(28.57)$

 $p = 13.75 \pm 5.14 psf$

Height	qz	р
0 - 15	20.23 psf	13.75 +/- 5.14 psf
15 - 20	21.21 psf	14.42 +/- 5.14 psf
20 - 25	22.00 psf	14.96 +/- 5.14 psf
25 - 30	22.78 psf	15.49 +/- 5.14 psf
30 - 40	23.96 psf	16.29 +/- 5.14 psf
40 - 50	24.94 psf	16.96 +/- 5.14 psf
50 - 60	25.73 psf	17.49 +/- 5.14 psf
60 - 70	26.32 psf	17.89 +/- 5.14 psf
70 - 80	27.10 psf	18.43 +/- 5.14 psf
80 - 90	27.49 psf	18.70 +/- 5.14 psf
90 - 100	28.08 psf	19.10 +/- 5.14 psf
100 - 110	28.57 psf	19.43 +/- 5.14 psf

Leeward wall with north-south wind

$$p = q_h GCp - (GCpi)q_h$$

$$p = (28.57psf)(0.85)(-0.3) - (\pm 0.18)(28.57)$$

$$p = -7.28 \pm 5.14psf$$

Roof with north south wind

$$\begin{split} \frac{h}{L} &= \frac{110'}{294'-8"} = 0.373 \\ p &= q_h GCp - (GCpi)q_h \\ p &= (28.57psf)(0.85)(-0.9) - (\pm 0.18)(28.57) \qquad 0 - 110' \\ p &= -21.86 \pm 5.14psf \\ p &= q_h GCp - (GCpi)q_h \\ p &= (28.57psf)(0.85)(-0.5) - (\pm 0.18)(28.57) \qquad 110' - 220' \\ p &= -12.14 \pm 5.14psf \\ p &= q_h GCp - (GCpi)q_h \\ p &= (28.57psf)(0.85)(-0.3) - (\pm 0.18)(28.57) \qquad 220' - 294' - 8'' \\ p &= -7.28 \pm 5.14psf \end{split}$$

Leeward wall east-west wind

$$p = q_h GCp - (GCpi)q_h$$

$$p = (28.57psf)(0.85)(-0.5) - (\pm 0.18)(28.57)$$

$$p = 12.14 \pm 5.14psf$$

Roof with east-west wind

$$\frac{h}{L} = \frac{110'}{144' - 4''} = 0.762$$

$$p = q_h GCp - (GCpi)q_h$$

$$p = (28.57psf)(0.85)(-0.9) - (\pm 0.18)(28.57)$$

$$0 - 110'$$

$$p = -21.86 \pm 5.14psf$$

$$p = q_h GCp - (GCpi)q_h$$

$$p = (28.57psf)(0.85)(-0.5) - (\pm 0.18)(28.57)$$

$$110' - 220'$$

$$p = -12.14 \pm 5.14psf$$

$$\begin{split} p &= q_h GCp - (GCpi)q_h \\ p &= (28.57psf)(0.85)(-0.3) - (\pm 0.18)(28.57) \\ p &= -7.28 \pm 5.14psf \end{split}$$
 220' - 294'-8"

A.2 - SEISMIC LOADS

Building Period

$$T = Ct(h_n)^{3/4}$$

$$T = (0.035)(110^{\circ})^{3/4}$$

T = 1.189s

Design Base Shear

$$V = \frac{CvI}{RT}w = \frac{(0.12)(1.0)}{(6)(1.189s)}(20330k)$$

$$V = 342k$$

$$Ft = 0.07VT = (0.07)(342k)(1.189s)$$

$$Ft = 28.5k$$

$$Fi = \frac{(V - Ft)w_i h_i}{\Sigma w_i h_i}$$

Level	h _i	Wi	$w_i h_i$	Fi
1	10	2290	22900	6.72
2	20	2290	45800	13.46
3	30	2330	69900	20.54
4	40	2330	93200	27.38
5	50	2360	118000	34.67
6	60	1660	99600	29.26
7	70	1660	116200	34.14
8	80	1660	132800	39.02
9	90	1710	153900	45.22
10	100	970	97000	28.50
roof	110	1070	117700	34.58

$$\Sigma w_i h_i = 1067000$$

APPENDIX B

B.1 - COMPOSITE BEAM CHECK

Loads:

Superimposed Dead = 25 psf Superimposed Live = 40 psf Construction Dead = 45 psf + self weight

Beam Length = 23'-0" Beam Spacing = 8'-0"

$$f'c = 4 \text{ ksi}$$

Fy = 50 ksi

$$w_{D} = (25psf + 45psf)(8') + 12plf$$

 $w_{D} = 572plf$
 $w_{L} = (40psf)(8')$
 $w_{L} = 320plf$

$$w_{U} = 1.2w_{D} + 1.6w_{L}$$

 $w_{U} = 1.2(572plf) + 1.6(320plf)$
 $w_{U} = 1.2klf$

$$Vu = \frac{w_{U}L}{2} = \frac{(1.2klf)(23')}{2}$$

$$Vu = 13.8^{k}$$

$$Mu = \frac{w_U L^2}{8} = \frac{(1.2klf)(23')^2}{8}$$
$$Mu = 79.4^{1k}$$

$$b_{eff} = \begin{cases} \frac{23!(12"/1)}{4} = 69" \\ (8!)(12"/1) = 96" \end{cases}$$
MIN

Assume 1" of concrete in compression:

$$y_2 = 4.5"-1"/2$$

 $y_2 = 4"$

From LRFD 13th Edition Table 3-19:

Try W 10x12 PNA at location 6
$$\phi Mn = 84.2^{\text{lk}} > Mu = 79.4^{\text{lk}}$$

$$\sum Qn = 68.9^{\text{k}}$$

$$a = \frac{\sum Qn}{0.85f'cb_{eff}} = \frac{68.9^{k}}{(0.85)(4ksi)(69")}$$
$$a = 0.29" < 1" : ok$$

Use W 10x12 Beam

B.2 - GRAVITY COLUMN CHECK

Column K-3 at Level 3

Loads:

$$Pu = 124.7^{k}$$

$$Mu_X = 3.4^{1k}$$

$$Mu_{Y} = 2.5^{1k}$$

$$kLx = kLy = 10$$

W 10x33:

$$\phi Pn = 330^k$$

LRFD 13th Edition Table 4-1

$$\phi M n_{\rm X} = \phi M n_{\rm Y} = 134^{1/k}$$

LRFD 13th Edition Table 3-10

$$\frac{Pu}{\phi Pn} = \frac{124.7^{k}}{330^{k}} = 0.378 > 0.2 \therefore Equation H1-1a$$

$$\frac{Pu}{\phi Pn} + \frac{8}{9} \left(\frac{Mu_X}{\phi Mn_X} + \frac{Mu_Y}{\phi Mn_Y} \right) \leq 1.0$$

$$\frac{124.7^{k}}{330^{k}} + \frac{8}{9} \left(\frac{3.4^{1k}}{134^{1k}} + \frac{2.5^{1k}}{134^{1k}} \right) = 0.42 < 1.0 : ok$$

Check local buckling:

Use W 10x33 Column

B.3 - FOUNDATION CHECK

$$P = 143.6^{k}$$

$$Pu = 184.4^{k}$$

Bearing pressure = 40,000 psf

Footing Size:

$$40 \text{ksf} = \frac{143.6^{k}}{B^2}$$

$$B = 2' - 6''$$

$$q = \frac{184.4^{k}}{(2.5')^2}$$

$$q = 29.5 ksf$$

Two Way Shear:

$$Vc = \phi 4\sqrt{f'c} = (0.75)(4)(\sqrt{4000psi})$$

$$Vc = 189.7 psi$$

$$d^{2}\left(Vc + \frac{q}{4}\right) + d\left(Vc + \frac{q}{2}\right)w = \left(\frac{q}{4}\right)\left(BL - w^{2}\right)$$

$$d^{2}\left(189.7psi + \frac{204.9psi}{4}\right) + d\left(189.7psi + \frac{204.9psi}{2}\right)(16") = \left(\frac{204.9psi}{4}\right)((30")^{2} - (10")^{2})$$

$$d = 5.5$$
"

Punching Shear:

$$4d^{2} + 2d(b+c) = \frac{Pu}{Vc}$$

$$4d^2 + 2d(16"+14") = \frac{184400lb}{189.7psi}$$

$$d = 10''$$

Punching Shear Controls

Use h = 14"

$$d = 14$$
"-3"- $\frac{5}{8}$ "
 $d = 10.375$ "

Flexure:

Critical Section

$$1 = 1.25' - 8'' / 12$$
$$1 = 0.583'$$

$$Mu = \frac{(29.5ksf)(0.583')^2}{2}$$

$$Mu = 5.02^{k}$$

$$\begin{split} Mu &= \phi Asfy \Big(d - \frac{a}{2} \Big) \\ a &= \frac{Asfy}{0.85 f' cb} = \frac{As(60 ksi)}{(0.85)(4 ksi)(12")} \\ a &= 1.47 As \\ \Big(5.02' \ \Big) \Big(12"/1' \Big) \leq 0.9 As(60 ksi) \Big(10.375" - 1.47 As/2 \Big) \\ As &\geq 0.11 in^2 / ft \end{split}$$

Use #5 @ 12" o.c.

Check Minimum Steel:

$$\rho = \frac{0.31 in^2 \ / \ ft}{\left(14''\right)\!\left(12''\right)} = 0.00185 > \rho_{min} = 0.0018 \ \therefore \ ok$$

Check Tension Controlled Section:

$$\begin{split} \epsilon &= \frac{0.003}{c} \big(d - c \big) \\ c &= \frac{a}{\beta_1} = \frac{\big(1.47 \big) \! \big(0.31 in^2 \big)}{0.85} \\ c &= 0.536 \text{''} \\ \epsilon &= \frac{0.003}{0.536 \text{''}} \big(10.375 \text{''} - 0.536 \big) \\ \epsilon &= 0.0551 > 0.005 \therefore \phi = 0.9 \end{split}$$

Check Bearing:

$$\begin{split} \phi Bn &= \phi 0.85 f' \, c A_1 \sqrt{\frac{A_2}{A_1}} = (0.65)(0.85)(4 ksi) (224 in^2) \sqrt{\frac{900 in^2}{224 in^2}} \\ \phi Bn &= 992.3^k > Pu = 184.4^k \ \therefore ok \end{split}$$

Use 2'-6" x 2'-6" x 14" thick spread footing reinforced with #5 bars at 12" o.c.

B.4 - Bracing Member Check

Brace at 3^{rd} floor in the y-direction $2 L 6x6x\frac{1}{2}$

Load Combination: 1.2D + 1.6W

$$Tu = 46.5^k$$

Tension Yield:

$$\phi Tn = \phi FyAg = (0.9)(36ksi)(11.5in^2)$$

 $\phi Tn = 372.6^k > Tu = 46.5^k \implies ok$

Tension Fracture:

$$\phi Tn = \phi FuAe$$

$$Ae = UAn$$

$$U = 1 - x/L = 1 - 1.67''/3''$$

$$U = 0.443$$

$$An = 11.5in^2 - 2\left(\frac{3}{4}" + \frac{1}{8}"\right)\left(\frac{1}{2}"\right)$$

$$An = 10.625in^2$$

$$\phi Tn = (0.75)(58ksi)(0.443)(10.635in^2)$$

 $\phi Tn = 204.7^k > Tu = 46.5^k \implies ok$

B.5 - Typical Single Angle Connection

Vu = 13.8k

W12x14

$$t_{\rm w}=0.255^{\prime\prime}$$

$$d = 11.9$$
"

$$A = 4.16in^2$$

$$S_{net} = 4.71 in^3$$

Minimum weld size:

$$t_{\rm w} = 0.23$$
" (W14x22 girder)

$$t_{\text{weld}} = \frac{1}{8}$$
"

Eccentric shear strength of the weld:

$$Rn = CC_1D1$$

$$kl = 3"$$

$$\therefore k = \frac{3''}{6''} = 0.5$$

$$x = 0.083$$

$$x1 = (0.083)(6") = 0.489"$$

$$e_x = 3.1$$
" -0.498 " $= 2.602$ "

$$a = {e_x \over 1} = 2.602 {\circ}/{6}$$

$$a = 0.434$$

a	k=0.5
0.4	2.24
0.434	С
0.5	1.95

$$C=2.12$$

$$Rn = (2.12)(1.0)(2)(6")$$

$$Rn = 25.44^{k}$$

$$\varphi Rn = (0.75)(25.44^k)$$

$$\phi Rn = 19.1^k > Vu = 13.8^k \implies use 1/8'' weld$$

Check weld base metal:

$$\varphi Rn = \varphi(0.6Fu)t_w 1$$

$$\varphi$$
Rn = (0.75)(0.6)(65ksi)(0.23")(6")

$$\phi Rn = 40.4^k > Vu = 13.8^k \implies ok$$

Minimum angle thickness:

$$d_b = \frac{3}{4}$$
"

$$\therefore t_{min} = \frac{3}{8}$$
" \Rightarrow use L 3x3x3/8 x 6" angle

Bolt shear:

$$\phi Vn = \phi FvAb$$

$$\varphi Vn = (0.75)(48ksi)(2)\left(\frac{\pi(3/4")^2}{4}\right)$$

$$\phi Vn = 31.8^k > Vu = 13.8^k \implies ok$$

Angle Bearing and Tearout:

$$Rn = 1.2 L_c tFu \le 2.4 d_b tFu$$

Angle diameter =
$$\frac{3}{4}$$
"+ $\frac{1}{16}$ "+ $\frac{1}{16}$ "= 0.875"

$$1.2(3"-0.875")(\frac{3}{8}")(58ksi) = 55.5^{k}$$

$$1.2(3''-0.875''/2)(3/8'')(58ksi) = 27.7^{k}$$

Edge bolts control

$$2.4 \left(\frac{3}{4}\right) \left(\frac{3}{8}\right) \left(58 \text{ksi}\right) = 39.2^{\text{k}}$$

Tearout controls

$$\varphi Rn = (0.75)(27.7^k + 39.2^k)$$

$$\varphi Rn = 50.2^k > Vu = 13.8^k \implies ok$$

Angle block shear:

 $Rn = 0.6FuAnv + UbsFuAnt \le 0.6FyAgv + UbsFuAnt$

Agt =
$$(1.5")(\frac{3}{8}") = 0.5625 \text{in}^2$$

Agv = $(4.5")(\frac{3}{8}") = 1.6875 \text{in}^2$

Ant =
$$0.5625$$
in² $-0.5(0.875")(\frac{3}{8}") = 0.398$ in²
Anv = 1.6875 in² $-1.5(0.875")(\frac{3}{8}") = 1.195$ in²

$$0.6(58\text{ksi})(1.195\text{in}^2) + (1.0)(58\text{ksi})(0.398\text{in}^2) = 64.7^k$$

 $0.6(36\text{ksi})(1.6875\text{in}^2) + (1.0)(58\text{ksi})(0.398\text{in}^2) = 59.5^k \implies \text{controls}$

$$\varphi Rn = (0.75)(59.5^{k})$$

$$\varphi Rn = 44.6^{k} > Vu = 13.8^{k} \implies ok$$

APPENDIX C

C.1 - LEED CERTIFICATION - BUILDING ENVELOPE

Existing Wall System:

Material	R-Value
Outside Air Film	0.17
1 ¾" Precast Thin Brick	0.14
5/8" Glas-Mat Sheathing	3.0
6" Metal Stud w/ Insulation	19
5/8" Gypsum Board	0.56
Interior Air Film	0.68

Exterior air film:

 $h_o = 6 \frac{BTU}{hr - ft^2} - ^{\circ}F$ $h_i = 1.46 \frac{BTU}{hr - ft^2} - ^{\circ}F$ Interior air film:

Wall system R value: $\Sigma R = 23.55$

$$Q = \frac{\Delta T}{\frac{1}{h_i} + \Sigma R + \frac{1}{h_o}} = \frac{72^{\circ}F - 13^{\circ}F}{\frac{1}{6} + 23.55 + \frac{1}{1.46}}$$

$$Q = 2.42 \frac{BTU}{hr}$$

(Assuming 1 s.f. of wall area)

$$T_0 - T_1 = \frac{Q}{h_o}$$

 $13^{\circ}F - T_1 = \frac{2.42}{6}$
 $T_1 = 13.4^{\circ}F$

$$T_1 - T_2 = QR$$

 $13.4^{\circ}F - T_2 = (2.42)(0.14)$
 $T_2 = 13.7^{\circ}F$

$$T_2 - T_3 = QR$$

 $13.7^{\circ}F - T_3 = (2.42)(3.0)$
 $T_3 = 21.0^{\circ}F$

$$T_3 - T_4 = QR$$

 $21.0^{\circ}F - T_3 = (2.42)(19)$
 $T_4 = 67^{\circ}F$

$$T_4 - T_5 = QR$$

 $67.0^{\circ}F - T_5 = (2.42)(0.56)$
 $T_5 = 68.4^{\circ}F$

Heat	2.42
Transfer, Q	BTU/hr
T_1	13.4
T_2	13.7
T ₃	21.0
T_4	67.0
T ₅	68.4

Alternative Wall System 1: Loose cellulose Insulation

Material	R-Value
Outside Air Film	0.17
1 ¾" Precast Thin Brick	0.14
5/8" Glas-Mat Sheathing	3.0
6" Metal Stud w/ Insulation	22.8
5/8" Gypsum Board	0.56
Interior Air Film	0.68

 $h_o = 6 \frac{BTU}{hr - ft^2} - ^{\circ}F$ $h_i = 1.46 \frac{BTU}{hr - ft^2} - ^{\circ}F$ Exterior air film:

Interior air film:

Wall system R value: $\Sigma R = 27.35$

$$Q = \frac{\Delta T}{\frac{1}{h_i} + \Sigma R + \frac{1}{h_o}} = \frac{72^{\circ}F - 13^{\circ}F}{\frac{1}{6} + 27.35 + \frac{1}{1.46}}$$

$$Q = 2.09 \frac{BTU}{hr}$$

(Assuming 1 s.f. of wall area)

Alternative Wall System 2: Increase Insulation Thickness

Material	R-Value
Outside Air Film	0.17
1 ¾" Precast Thin Brick	0.14
5/8" Glas-Mat Sheathing	3.0
8" Metal Stud w/ Insulation	22
5/8" Gypsum Board	0.56
Interior Air Film	0.68

Exterior air film: $h_o = 6 \frac{BTU}{hr - ft^2} - {}^{\circ}F$ Interior air film: $h_i = 1.46 \frac{BTU}{hr - ft^2} - {}^{\circ}F$

Wall system R value: $\Sigma R = 26.55$

$$Q = \frac{\Delta T}{\frac{1}{h_{i}} + \Sigma R + \frac{1}{h_{o}}} = \frac{72^{\circ}F - 13^{\circ}F}{\frac{1}{6} + 26.55 + \frac{1}{1.46}}$$

$$Q = 2.15^{BTU} hr$$
(Assuming 1 s.f. of wall area)

C.2 - LEED CREDITS

Yes	?	No			
10			Sust	tainable Sites	14 Points
		ı		_	
Y			Prereq 1	Construction Activity Pollution Prevention	Required
1			Credit 1	Site Selection	1
1			Credit 2	Development Density & Community Connectivity	1
1			Credit 3	Brownfield Redevelopment	1
1			Credit 4.1	Alternative Transportation , Public Transportation Access	1
1			Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	1
			Credit 4.3	Alternative Transportation, Low-Emitting & Fuel- Efficient Vehicles	1
1			Credit 4.4	Alternative Transportation, Parking Capacity	1
1			Credit 5.1	Site Development, Protect of Restore Habitat	1
1			Credit 5.2	Site Development, Maximize Open Space	1
1			Credit 6.1	Stormwater Design, Quantity Control	1
			Credit 6.2	Stormwater Design, Quality Control	1
			Credit 7.1	Heat Island Effect, Non-Roof	1
			Credit 7.2	Heat Island Effect, Roof	1
1			Credit 8	Light Pollution Reduction	1
Yes	?	No			
3			Wate	er Efficiency	5 Points
3			Wate	er Efficiency	5 Points
3			Wate	Water Efficient Landscaping, Reduce by 50%	5 Points
			Credit 1.1	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No	
1			Credit 1.1 Credit 1.2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation	1
1			Credit 1.1 Credit 1.2 Credit 2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies	1 1 1
1			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction	1 1 1
1			Credit 1.1 Credit 1.2 Credit 2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies	1 1 1
1 1 1			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction	1 1 1 1
1			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction	1 1 1
1 1 1			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction	1 1 1 1
1 1 1 2			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building	1 1 1 1 1 17 Points
1 1 1 2			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Enel	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building Energy Systems	1 1 1 1 1 1 1 1 1 1 1 1 1 1 Required
1 1 1 1 2 Y			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Ene Prereq 1 Prereq 2	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance	1 1 1 1 1 1 1 TPoints Required Required
1 1 1 1 2 Y Y Y			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Enel Prereq 1 Prereq 2 Prereq 3	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building	1 1 1 1 1 1 1 1 1 1 1 1 Required Required Required 1 to 10
1 1 1 1 2 Y Y Y			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Enel Prereq 1 Prereq 2 Prereq 3	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction Try & Atmosphere Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations	1 1 1 1 1 1 1 17 Points Required Required Required
1 1 1 1 2 Y Y Y			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Enel Prereq 1 Prereq 2 Prereq 3	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building	1 1 1 1 1 1 1 1 1 1 1 1 Required Required Required 1 to 10
1 1 1 1 2 Y Y Y			Credit 1.1 Credit 1.2 Credit 2 Credit 3.1 Credit 3.2 Enel Prereq 1 Prereq 2 Prereq 3	Water Efficient Landscaping, Reduce by 50% Water Efficient Landscaping, No Potable Use or No Irrigation Innovative Wastewater Technologies Water Use Reduction, 20% Reduction Water Use Reduction, 30% Reduction rgy & Atmosphere Fundamental Commissioning of the Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance 10.5% New Buildings or 3.5% Existing Building Renovations 14% New Buildings or 7% Existing Building	1 1 1 1 1 1 1 17 Points Required Required Required 1 to 10 1

<u> </u>		
	21% New Buildings or 14% Existing Building Renovations	4
	24.5% New Buildings or 17.5% Existing Building	5
	Renovations	Ü
	28% New Buildings or 21% Existing Building	6
	Renovations	0
	31.5% New Buildings or 24.5% Existing Building	7
	Renovations	1
	35% New Buildings or 28% Existing Building	0
	Renovations	8
	38.5% New Buildings or 31.5% Existing Building	0
	Renovations	9
	42% New Buildings or 35% Existing Building	4.0
	Renovations	10
Credit 2 Oı	n-Site Renewable Energy	1 to 3
	2.5% Renewable Energy	1
	7.5% Renewable Energy	2
	12.5% Renewable Energy	3
Credit 3 Er	hhanced Commissioning	1
	_	·
	hanced Refrigerant Management	1
Credit 5 Me	easurement & Verification	1
Credit 6 Gı	reen Power	1

continued...

4			Mate	erials & Resources	13 Points
Y			Prereq 1	Storage & Collection of Recyclables	Required
		_	Credit 1.1	Building Reuse , Maintain 75% of Existing Walls, Floors & Roof	1
			Credit 1.2	Building Reuse , Maintain 100% of Existing Walls, Floors & Roof	1
			Credit 1.3	Building Reuse , Maintain 50% of Interior Non- Structural Elements	1
1			Credit 2.1	Construction Waste Management, Divert 50% from Disposal	1
	_	_	Credit 2.2	Construction Waste Management , Divert 75% from Disposal	1
1			Credit 3.1	Materials Reuse, 5%	1
1			Credit 3.2	Materials Reuse,10%	1
1			Credit 4.1	Recycled Content , 10% (post-consumer + ½ preconsumer)	1
			Credit 4.2	Recycled Content, 20% (post-consumer + ½ preconsumer)	1
			Credit 5.1	Regional Materials, 10% Extracted, Processed & Manufactured Regionally	1
			Credit 5.2	Regional Materials, 20% Extracted, Processed & Manufactured Regionally	1
			Credit 6	Rapidly Renewable Materials	1
			Credit 7	Certified Wood	1
Yes	?	No			

7			Indo	or Environmental Quality	15 Points
V	1		Prereg 1	Minimum IAQ Performance	Required
V			Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required
			Credit 1	Outdoor Air Delivery Monitoring	Required 1
			Credit 2	Increased Ventilation	1
			Credit 3.1	Construction IAQ Management Plan, During Construction	1
			Credit 3.2	Construction IAQ Management Plan, Before Occupancy	1
			Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	1
1			Credit 4.2	Low-Emitting Materials, Paints & Coatings	1
1			Credit 4.3	Low-Emitting Materials, Carpet Systems	1
			Credit 4.4	Low-Emitting Materials , Composite Wood & Agrifiber Products	1
1			Credit 5	Indoor Chemical & Pollutant Source Control	1
1			Credit 6.1	Controllability of Systems, Lighting	1
1			Credit 6.2	Controllability of Systems, Thermal Comfort	1
1			Credit 7.1	Thermal Comfort, Design	1
			Credit 7.2	Thermal Comfort, Verification	1
1			Credit 8.1	Daylight & Views, Daylight 75% of Spaces	1
			Credit 8.2	Daylight & Views, Views for 90% of Spaces	1
Yes	?	No			
			Inno	vation & Design Process	5 Points
			Credit 1.1	Innovation in Design: Provide Specific Title	1
			Credit 1.2	Innovation in Design: Provide Specific Title	1
			Credit 1.3	Innovation in Design: Provide Specific Title	1
			Credit 1.4	Innovation in Design: Provide Specific Title	1
			Credit 2	LEED® Accredited Professional	1
Yes	?	No	1		
26			Proi	ect Totals (pre-certification estimates)	69 Points
	<u> </u>	l	,	(pro-continuous)	

C.3 - MATERIAL QUANTITY TAKEOFFS

Concrete Quantities

Formwork				
Quantity				
Columns	44000	sf		
Beams	3500	sf		
Slab	185000	sf		
Walls	46330	sf		
Total	278830	sf		

Concrete				
Quantity		ity		
Columns	900	сy		
Beams	60	сy		
Slab	4500	сy		
Walls	1400	cy		
Total	6860	cy		

Reinforcing				
	Quantity			
Columns	2150	cwt		
Beams	200	cwt		
Slab	18100	cwt		
Walls	2000	cwt		
Total	22450	cwt		

Miscellaneous				
	Quanti	ty		
Formwork Hardware	35400	ea		
Formwork Release	311500	sf		
Chamfer Strips	27000	1f		
Slab Finishing	181000	sf		
Slab Screeds	21720	1f		
Shoring	362000	\mathbf{sf}		

Steel:

Steel				
Quantity				
Beams	6000	cwt		
Columns	1900	cwt		
Angles	200	cwt		
Frames	36200	cwt		
Total	44300	cwt		

Composite Slab				
	Quantity			
Metal Deck	181000	sf		
Shear Studs	17660	ea		
Concrete	1960	cy		
WWF Reinforcing	1990	1f		
Slab Finishing	181000	\mathbf{sf}		
Slab Screeds	21720	1f		

Miscellaneous				
	Quantity			
Anchor Bolts	228	ea		
Baseplates	57	ea		
Grout	89	\mathbf{sf}		
Red Oxide	16000	\mathbf{sf}		
Gypsum Board	20000	bdf		

C.4 - CONSTRUCTION COST

Material Costs:

Concrete				
	Unit Cost			
5000 psi Concrete	\$ 60.00 /cy			
3000 psi Concrete	\$ 55.00 /cy			
Formwork	\$ 1.00 /sf			
Reinforcing	\$ 27.00 /cwt			
Shoring	\$ 3.00 /sf			
Formwork Hardware	\$ 0.50 ea			
Formwork Release	\$ 0.50 /sf			
Chamfer Strips	\$ 0.50 /lf			
Slab Screeds	\$ 1.00 /lf			

Steel		
	Unit Cost	
Structural Steel	\$ 35.00	/cwt
Anchor Bolts	\$ 2.00	ea
Baseplates	\$ 25.00	ea
Grout	\$ 6.00	/sf
Shear Studs	\$ 10.00	ea
Shop Paint	\$ 1.00	/sf
Gypsum Board	\$ 2.00	/bdf
Metal Deck	\$ 5.00	/sf
WWF Reinforcing	\$ 8.20	/cwt

Labor Costs:

	Concrete Crews	Rate / day	
C235	Concrete Pump	\$ 1,512.00	
	6 Common Laborers		
	1 Common Laborer Foreman		
	1 Vibrator Operator		
C276	Concrete Finishing	\$ 826.00	
	1 Common Laborer		
	3 Concrete Finishers		
C311	Formwork	\$ 1,152.00	
	3 Carpenters		
	1 Carpenter Foreman		
	2 Common Laborers		
C321	Reinforcing Steel	\$ 1,780.00	
	6 Reinforcing Rodmen		
	1 Reinforcing Rodman Foreman		

	Steel Crews	Rate / day
C235	Concrete Pump	\$ 1,512.00
	6 Common Laborers	
	1 Common Laborer Foreman	
	1 Vibrator Operator	
C276	Concrete Finishing	\$ 826.00
	1 Common Laborer	
	3 Concrete Finishers	
C311	Formwork	\$ 1,152.00
	3 Carpenters	
	1 Carpenter Foreman	
	2 Common Laborers	
C321	Wiremesh	\$ 1,321.00
	1 Reinforcing Rodmen	
	6 Common Laborers	
C360	Baseplate Grout Crew	\$ 216.00
	1 Concrete Finisher	
C509	Miscellaneous Metals	\$ 760.00
	3 Steelworkers	

C510	Structural Steel	\$ 3,000.00
	8 Steelworkers	
	1 Steelworker Foreman	
C917	Fireproofing	\$ 330.00
	1 Misc. Fireproofing Laborer	
	1 Fireproofing Laborer	
C990	Paint	\$ 1,188.00
	1 Common Laborer	
	5 Painters	

Equipment Costs:

Equipmo	ent Co	osts	
Concrete Pump	\$	6.00	/cy
Crane	\$3	00.00	/day

	Crews Crew	# Crew s	Crew Production		Total Production			Material Quantity	Mater	erial Unit Cost	Material Unit Labor Unit Cost		Equipmen Unit Cost	ent T	Equipment Total Material Unit Cost	Total Labor Cost	Total Equipment Cost	Total Cost
Column Formwork	C311	巿	/js 009	sf/day 2400	00 sf/day		18 44(44000 sf	\vdash	js/ (\$1.00 /sf \$1,152.00 /day	/day			\$44,000.00	\$84,480.00		\$128,480.00
Slab Formwork	C311	7	/js 009	sf/day 4200	00 sf/day		44 185	185000 sf	\$1.00		/sf \$1,152.00 /day	/day			\$185,000.00	\$355,200.00		\$540,200.00
Beam Formwork	C311	9	600 sf/day 3600	day 360	00 sf/day		1 35	3500 sf		Js/ C	\$1.00 /sf \$1,152.00 /day	/day			\$3,500.00	\$6,720.00		\$10,220.00
Wall Fornwork	C311	7	/js 009	sf/day 4200	00 sf/day		11 460	46330 sf	\$1.00		/sf \$1,152.00 /day	/day			\$46,330.00	\$88,953.60		\$135,283.60
Formwork Hardware							35	35400 sf	\$0.50	0					\$17,700.00			
Formwork Release	C311	7	500 sf/day	day 3500	00 sf/day		89 311	311500 sf	\$0.50		/sf \$1,152.00 /day	/day			\$155,750.00	\$717,696.00		\$873,446.00
Chamfer Strips	C311	- 4	/31 00/	1f/day 4900	00 If/day		6 270	27000 1f		JI/ C	\$0.50 /1f \$1,152.00 /day	/day			\$13,500.00	\$44,434.29		\$57,934.29
Column Reinforcing	C321	- 2	50 cwt,	50 cwt/day 350	50 cwt/day		6 21	2150 cw	t \$27.0	10 /cwt	cwt \$27.00 /cwt \$1,780.00 / day	/day			\$58,050.00	\$76,540.00		\$134,590.00
Slab Reinforcing	C321	7	50 cwt,	cwt/day 350	50 cwt/day		52 18:	18100 cw	t \$27.0	10 /cwt	cwt \$27.00 /cwt \$1,780.00 /day	/day			\$488,700.00	\$644,360.00		\$1,133,060.00
Beam Reinforcing	C321	3	50 cwt,	cwt/day 150	50 cwt/day	ay	1 2	200 cwt	$\overline{}$	10 /cwt	\$27.00 /cwt \$1,780.00 /day	/day			\$5,400.00	\$7,120.00		\$12,520.00
Wall Reinforcing	C321	7	50 cwt/day	/day 350	50 cwt/day		6 2C	2000 cw	t \$27.0	10 /cwt	cwt \$27.00 /cwt \$1,780.00 /day	/day			\$54,000.00	\$71,200.00		\$125,200.00
Column Pour	C235	1	100 cy/	cy/day 100	00 cy/day		8	900 cy		10 /cy	\$60.00 /cy \$1,512.00 /day \$6.00 /cy	/day \$	200.		\$54,000.00	\$13,608.00	\$5,400.00	\$73,008.00
Slab Pour	C235	3	100 cy/day	day 300	00 cy/day		15 45	4500 cy	0.09\$	10 /cy	cy \$60.00 /cy \$1,512.00 /day \$6.00 /cy	/day \$	900.5		\$270,000.00	\$68,040.00	\$27,000.00	\$365,040.00
Beam Pour	C235	1	100 cy/day	day 100	00 cy/day		1 6	60 cy	0.09\$	10 /cy	\$60.00 /cy \$1,512.00 /day \$6.00 /cy	/day \$	900.5	cy.	\$3,600.00	\$907.20	\$360.00	\$4,867.20
Wall Pour	C235	Ŧ	100 cy/day	day 400	00 cy/day		4 14	1400 cy	\$60.00		/cy \$1,512.00 /day \$6.00	/day \$		/cy	\$84,000.00	\$21,168.00	\$8,400.00	\$113,568.00
Slab Finishing	C276	- 4	/js 009	sf/day 3500	00 sf/day		52 181	181000 sf			\$826.00 day	/day				\$299,012.00		\$299,012.00
Slab Screeds	C311	3	/H 057	1f/day 750	50 If/day		29 21:	21720 If	\$1.00		/1f \$1,152.00 / day	/day			\$21,720.00	\$100,085.76		\$121,805.76
Shoring	C235	3	/js 009	sf/day 1800	00 sf/day		70 362000	2000 sf	\$3.00		/sf \$1,512.00 /day	/day		↔	\$1,086,000.00	\$105,840.00		\$1,191,840.00
Crane						1,	140		2			_,	500 /day	lay		\$0.00	\$140,000.00	\$140,000.00
														€9	\$2,591,250.00	\$2,705,364.85 \$181,160.00		\$5,460,074.85

Concrete Structure Estimate

	C	# (ď	Crew	Ĕ	Total	#	Material		Material		Labor Unit		pment	Equipment Total Material	Total Labor	Total	C T
	Crews Crew	.rew s	Prod	Production	Prod	Production]	Days	Quantity		Unit Cost	+	Cost	Uni	Unit Cost	Cost	Cost	Equipment Cost	lotal Cost
Steel Bearns	C510	2	100	100 cwt/day	200	cwt/day 30	8	6000 cr	wt \$3	5.00 /c	wt \$3,0	cwt \$35.00 /cwt \$3,000.00 /day	ау		\$210,000.00	\$180,000.00		\$390,000,00
Steel Columns	C510	2	100	100 cwt/day	200	cwt/day	10	1900 ct	wt \$3	5.00 /c	wt \$3,0	cwt \$35.00 /cwt \$3,000.00 /day	ау		\$66,500.00	\$57,000.00		\$123,500.00
Steel Angles	C510	2	100	100 cwt/day	200	cwt/day	1	200 ct	wt \$3	5.00 /c	wt \$3,0	cwt \$35.00 /cwt \$3,000.00 /day	ау		\$7,000.00	\$6,000.00		\$13,000.00
Steel Frame	C510	ε	100	100 cwt/day	300	cwt/day	121	36200 cr	wt \$3	5.00 /c	wt \$3,0	cwt \$35.00 /cwt \$3,000.00 /day	ау		\$1,267,000.00	\$1,086,000.00		\$2,353,000.00
Anchor Bolts	C509	1	100	/day	100		2	228	\$	\$2.00	\$7	\$760.00			\$456.00	\$1,732.80		\$2,188.80
Base Plates	C510	1	65	/day	65	/day	1	22	\$2	\$25.00	78\$	\$3,000.00 / day	ау		\$1,425.00	\$2,630.77		\$4,055.77
Grout	C360	2	35	sf/day	20	sf/day	1	s 68	sf \$e	\$6.00 /1	/sf \$2:	\$216.00			\$534.00	\$549.26		\$1,083.26
Shear Studs	C509	8	400	/day	1200	/day	15	17659	\$1	\$10.00	\$7	\$760.00 /day	ау		\$176,590.00	\$33,552.10		\$210,142.10
Red Oxide	C990	2	400	sf/day	800	sf/day	20	16000 s	sf \$7	\$1.00 /8	sf \$1,	/sf \$1,188.00 / day	ау		\$16,000.00	\$47,520.00		\$63,520.00
Gypsum Board	C917	1	300	300 bdf/day	300	bdf/day	- 62	bdf/day 67 20000 bdf \$2.00 /bdf \$330.00 /day	df \$∴	2.00 /b	,df \$3,	30.00 / da	ау		\$40,000.00	\$22,000.00		\$62,000.00
Metal Deck	C510	10	009	sf/day	0009	sf/day	30	sf/day 30 181000 sf \$5.00 /cwt \$3,000.00 /day	£	5.00 /c	wt \$3,	200.000 / ds	ау		\$905,000.00	\$905,000.00		\$1,810,000.00
WWF Reinforcing C320	C320	2	100	100 sqs/day	200	sqs/day	10	1990 so	3\$ sE	8.20 /c	wt \$1,	sqs \$8.20 /cwt \$1,321.00 /day	ау		\$16,318.00	\$26,287.90		\$42,605.90
Concrete Slab	C235	3	100	cy/day	300	cy/day	7	1960 c	cy \$5	5.00 /4	2y \$1,	\$55.00 /cy \$1,512.00 /day \$6.00 /cy	ay \$6.00	0 /cy	\$107,800.00	\$29,635.20	\$11,760.00	\$149,195.20
Slab Finishing	C276	9	200	sf/day	3000	sf/day	09	181000 s	sf		\$8.	\$826.00 /day	ау			\$299,012.00		\$299,012.00
Slab Screeds	C311	9	250	1f/day	1500	1f/day	14	21720 1	1f \$1	\$1.00 //	1f \$1,5	/1f \$1,152.00 /day	ау		\$21,720.00	\$100,085.76		\$121,805.76
Crane							66	2					\$300	\$300 / day		\$0.00	\$55,800.00	\$55,800.00
															\$2,836,343.00	\$2,836,343.00	\$67,560.00	\$5,700,908.79

Steel Structure Estimate

C.4 - CONSTRUCTION SCHEDULE

Crew Production:

Cre	w Pro	duction
C235	100	ct/day
C276	155	sf/day
C311	250	lf/day
C320	100	sqs/day
C360	35	sf/day
C509	100	/day
C510	100	cwt/day
	600	sf/day
C917	300	bdf/day
C990	400	sf/day

APPENDIX D

