

901 NEW YORK *Swenue*

Structural Technical Report 1

Structural Concepts/Structural Existing Conditions Report

901 New York Avenue Washington, D.C. Advisor: Ali Memari Written by: Timothy H Park

Executive Summary

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture

901 New York Avenue Multi-Use Facility

Structural Concepts/Structural Existing Conditions Report is the first of 3 technical assignments for thesis. It focuses on the general design of the building, from foundations to the floor system. This report is on some of the structural concepts used in the 11-story 901 New York Avenue building. Preliminary research and calculations shall be done to determine type of lateral system, floor system, foundation integrity, codes used and applied, and general loadings.

901 New York Avenue is an 11-story cast-in-place multi-use
facility. The foundation comprised of footing sizes of varying
sizes (see report). The floor system was found to be a two-
way post-tensioned system (see picture left), with bay sizes as
large as 20'-0" by 40'-0" (which is the typical bay size).
Primary columns are placed with respect to the bays. Lateral
forces are resisted through moment framing, which means
that this building has no shear walls.

This multi-use facility was designed using the 1996 BOCA Building Code, which was current at the time of construction. This report utilizes the more recent ASCE/SE 7-05, *Minimum Design Loads for Buildings and other Structures*. ASCE/SEI 7-05 was used to find gravity, wind, snow, rain, roof, and seismic loads.

Spot checks were done on various locations to ensure the satisfaction of design: the two-way slab, columns, and foundation footings. Both columns and footings were calculated with pure axial loads. The two-way slab was calculated through the Equivalent Framing Method. Most of the results proved that the design of the building was to satisfaction. Failing results are addressed in the report as well. Foundations were also concluded to be satisfactory.

After analysis and research of 901 New York Avenue, the building satisfies all checks and code requirements. Spot checks showed under design on the slab and over design on the columns. This is due to the fact that the slab analysis does not take into effect the post-tensioning system, and the columns are also meant to take on some flexural loading due to the lateral forces. The spot checked footing also turned out with different reinforcement requirements and size. Most of these different values may contribute to the fact that spot checks observe individual loads on respective concepts (columns and foundations are assumed to take just axial loads, non-stressed slabs are assumed to be the sole shear resisting force). These spot checks have expressed the complexity of this building, with its post-tensioned system with no shear walls and isolated footings.

Spot check, load, and lateral calculations can be found in the Appendix as listed in the Appendix Table of Contents (page).

Introduction

This report is a summary of general structural concepts used in the building construction of the 901 New York Avenue 11-story office building. This 580,000 square-foot building (which is actually a mixed-use facility) was built by Boston Properties and completed in 2004. The building primarily consists of 3 components: the underground parking garage, the ground-level commercial space, and the upper-level office spaces. Located in the heart of the city (directly across from the Convention Center), the building is a central attraction to all those passing by. The shape of the building is a noticeable right-angled triangle.

Figure 1 – Location of 901 New York Avenue

This report consists of 5 main portions: the overall structural system, building codes used and applied, framing systems analysis, design loads, and spot checks.

Structural System

901 New York Avenue is an 11-story reinforced concrete building with two-way slabs resting on columns using a post-tensioned system. The exterior façade mainly consists of granite stone at the bottom and pre-cast concrete panels along the rest of the body, with aluminum-ribbed panels framing the windows. Most of the canopies are made of aluminum, but some are pre-fabricated steel-and-glass components.

Figure 2 – 2nd Floor Plan of 901 New York Avenue

Foundations

Sub-ground floor, the parking garage's column spacing does not usually span greater than 20'-0", but there are a few that span up to 40'-0". The rest of the building, from ground floor to the top, have a typical 20'-0" by 40'-0" column spacing.

Spread footings were permissible for design of foundations. Pile driving or any other means of foundation support were unnecessary due to sufficiently dense soils on site (as claimed in Geotechnical Report). The only consideration was groundwater control. The Geotech. Report further suggests spread footings with a bearing capacity of 15,000 psf. Concrete for the foundations were poured with a 4,000-psi compressive strength requirement within 28 days. Strap beams were used to tie footings together, while footing sizes varied from 6'-0" by 6'-0 to 16'-0" by 16'-0". Further, the zone of influence is 100 feet, which neglects possible impact on nearby buildings, since the majority of the dewatering settlement will occur within the streets.

Foundation walls are 36" thick throughout the entire perimeter of the building (parking garage level). Slab-on-grade had a thickness of 5" using 6x6-W2.0xW2.0 WWF as reinforcement. Below the S.O.B. was the vapor barrier and 6" of crushed stone.

<u>Slabs</u>

The parking garage had the following typical slab system of a 28-day compressive strength test of 5,000 psi at 8". Exceptions are at framed floor slab below columns, which was poured with 8,000 psi concrete. Certain portions of the slab also had a 4" concrete fill on top the typical slab (as noted in darker hatching), while some areas used lighter-weight concrete at 4" (as noted in lighter hatching).

The slabs above the parking garage are typically 11" slabs with the same 5,000 psi concrete. Truck bays have an increased 12" slab with a 4" topping above it.

<u>Columns</u>

Spacing of the building consisted of 20'-0" by 20'-0" in the parking garage and a typical spacing of 20'-0" by 40'-0" from the ground level up. From the fourth level of the parking garage (level P4) up to the second floor, the compressive strength of the columns are designed to be 8,000 psi. The third and fourth floors have strength of 6,000 psi. The fifth and sixth floors have strength of 5,000 psi. The rest of the stories have a compressive strength of 4,000 psi.

Typical sizes of the columns are a square 26" by 26", varying mostly only in reinforcement. The bays that actually span the full 20'-0" by 40'-0" spans have a typical 32" by 32" column design throughout the floors. The garage level columns are a bit larger, ranging from 24" by 30" to 24" by 36". They vary in height with an average of about 11'-0" (floor-to-floor height is roughly 11'-8" from the second story up). More definite numbers are shown in the spot check calculations.

Building Codes Used and Applied

901 New York Avenue is located in the heart of the city. By zoning classifications, it is square #372, district C-4 (PUD). The building takes up the full lot area, which is 53,252 square feet, and has a height limitation of 130'-0".

Building Code

Because the office facility is in the District of Columbia, it was built under the BOCA Building Code (1996). It is specified as a mixed-use facility, non-separated. The type of construction was specified as type 1B: high rise with automatic sprinkler system.

For the remainder of the thesis project, I will be using the ASCE/SEI 7-05 code manual instead of the used 1996 BOCA Code. It is the most recent version from ASCE and has upgraded coefficients, graphs, and values for analysis of buildings (and other structures).

ACI 318 – 05	Reinforced Concrete Design
ACI 530 – 05	Masonry Design
$AISC - 10^{th}$ Edition	Steel Design
AWS D1.1 – 98	Welding Design
NDS, 1991	Wood Construction
ASCE/SEI 7 – 05	Minimum Design Loads for Buildings and other Structures

Framing Systems

The framing system of the 901 New York Avenue facility has a typical 20'-0" by 40'-0" bay system all throughout. The bays on the lower floors and parking garage levels are not as typical and have interrupting columns at various locations within the "typical" bay. The columns, as already described, are a typical 26" by 26" dimension (32" by 32" for columns supporting the full 20'-0" by 40'-0" bays). There are no shear walls in this building, as the moments are resisted by moment framing throughout the entire building. This creates a very complicated system, as the columns are already distributing to the gravity system along with the two-way slab design (further explanation in spot checks).

Loads

As previously stated, loads will be determined through the ASCE/SEI 7-05. Both dead and live loads will be taken out from this guideline.

Gravity Loads	
Dead Loads	
• Substructure Slab (at 8")	100 psf
• Superstruttre Slab (at 11")	137.5 psf
• MEP	15 psf
• Finishes	5 psf
Live Loads	
Roof Snow	30 psf
• Office	100 psf
• Lobby	100 psf
Mechanical Equipment	150 psf
Loading Dock	250 psf
Elevator Machine Room	125 psf + machine wt
• 1 st Floor	100 psf + 3" finish
• Concourse	100 and 150 psf
• Roof	60 psf + pavers

Snow Loads

- According to ASCE/SEI 7-05, the live load on the roof due to snow is 25 psf, but once it is factored (see Appendix), it comes out to be <u>17.5 psf</u>.
- Snow drift occurs due to winds forcing snow overload or drifting of snow simply due to gravity on certain parts of the roof that are sloped. Because 901 is mostly a flat roof system, there are only a few places to consider for snow drift: at the parapets and mid-towers.

Gravity Loads were calculated based upon major components, such as the floor slab system (11" @ 137.5 psf each floor above parking level) and the columns (11'-4" floor-to-floor height @ 11.7 kips per column). Additional loads were considered for MEP (15 psf) and miscellaneous (5 psf). The total dead weight of the building was found to be <u>108693 kips</u>.

Additional **Roof Loads** were found with $L_r = 20R_1R_2$ (with the following coefficients):

 $\begin{aligned} R_1 &= 1.2 - 00.00 A_t \\ R_2 &= 1.0 \text{ for } f \leq 4 \ [0" \text{ rise per foot}] \\ L_r &= 20(0.4)(1.0) = \underline{8 \text{ psf}} \end{aligned}$

Wind Loads were calculated to code requirements of ASCE/SEI 7-05. All calculations and final solutions can be found in the Appendix (pg. 13).

Seismic Loads were calculated to code requirements of ASCE/SEI 7-05. All calculations and final solutions can be found in the Appendix (pg. 15).

Spot Checks

A few spot checks were done on the building to ensure the satisfaction of its design. Three primary points were analyzed: the two-way slab, the columns, and the foundation footings.

The two-way slab was analyzed was initially analyzed through Direct Design Method, but because the slab and column system work together to create a 3-dimensional framing system, the Equivalent Frame Method was used. The building was designed with an 11" slab with #4 bars reinforcing. The slab failed in analysis due to punching shear (calc's show a 16" slab would work best). Although this is a serious failure, there are many reasons as to why 11" were used instead of 16". First, posttensioning is a system that greatly increases the spanning possibilities of concrete slab without the loss of floor-to-floor space. Post-tensioning can also assist in counter-acting the shear effects of a slab. Also, the said typical bay is considered to be 20'-0" by 40'-0", but one look at the floor system, and it can be easily seen that most bays are interrupted with other columns within its perimeter (full 20'-0" by 40'-0" bays are on higher levels, which carry lower loads). The last point to note is that V_u was 13.21^k, and ϕV_c was 12.41^k. V_u was found with a 0.349 ksf loading (100 psf LL for first level corridors and office space), which is an overdesign. More realistic numbers of about 0.317 ksf (80 psf LL for levels above the first floor) would get a V_u of 12.00, which is under the nominal shear strength. Further calculations were made to find the bending moments for the exterior and interior columns (see Appendix).

Another spot check was done on the columns of the building. As stated before, the columns' compressive strengths differed from story to story. A column loaded with a full 40'-0" by 20'-0" bay was found (column #121). Columns were observed at the 1st, 3rd, and 7th floor (each at different compressive strengths [8000 psi, 6000 psi, and 4000 psi, respectively). The ultimate load was compared to the nominal load, and the column more than exceeded the ultimate loading. This could be due to many reasons. The slab and column are meant to be the main lateral resisting system. This could be why the columns were overdesigned to take on the flexural loads instead of just the axial loads.

The footings of the foundation were also checked. The same column was used for the weight loaded onto the footing (column #121) for simplicity purposes. Drawings show 3080 kips on top of the footing, with a size of 17'-6" by 11'-0". All requirements suggested by the Geotech. Report have been met. Initial calculations showed a failure in the long direction of the footing. When the length was shortened to 16'-0", the footing satisfied design. Also, only 7-#10's were found necessary in the short direction, and 21-#11's in the long direction. This is 13 less in the short direction, and one more in the long direction (even with the shorter span of 16'-0"). A few possibilities may be the reason to the different design. The complete system of footing/column/slab as a lateral resisting system is not considered. From the initial calculations, it cannot be deduced exactly how the loads will transfer. Until a complete model of the entire building is created and observed, it is difficult to see whether or not the foundation in designed to its fullest potential.

All calculations are shown in the following Appendix.

Appendix

Calculations	
Gravity and Roof Loads	Page 11
Snow Loads	Page 12
Wind Loads	Pages 13 – 14
Seismic Loads	Pages 15 – 17
Spot Check – 2-way Slab	Pages 18 – 20
Spot Check – Columns (#121)	Page 21
Spot Check – Foundation Footings (#121)	Pages 22 – 23

	TECH ASSIGN MENT 1	901 NY AVE	TIMOTHY H PARK	1
-0	GRAVITY LOADS AVG FLR AREAS : ~ 4800 AVG FLR-TO-FLR HT : ~ SLABS: 8" C PRKING LVL C H (1)" C OFFICE LVL C 1	59.64 5F 10-6" 50 PLF : 100 PSF 50 PLF : 137.5 PSF		
Стрира	(4)(100)(48069.6 (1))(157.5)(48069.6 (1))(157.5)(48069.6 (1))(48069.6 (1))(2015)(48069.6 (1))(10.5)(2.167)(2 (104)(10.5)(2.167)(2	4) = $ 9228^{k} $ $ 91934^{k} $ $(4) = 72706^{k}$ $ 91934^{k} $ $(4) = 72706^{k}$ $ 100^{k} $ $ 100^{k} $ $(167)(150^{k}) = 726^{k}(10^{k}) = 8461^{k}$ $ 110^{k} $	163886K 952K	
	ADD MIGC. : FUR FINISHEG (20 PSFX15)(48069.6 103886+4807=10860	, MEP, ETC. 4)= 4807 K 13K TOTAL EST. DEAD WT.		
	<u>Roof LOADS</u> Assuming Completely flat R FLAT ROOF: Lr = 20R, Rz R1 = 1.2 - 0.8 = 0.4 R2 = 1.0	$c_{1}e_{1}e_{2}e_{2}e_{2}e_{2}e_{2}e_{2}e_{2}e_{2$.9 'RKSE PER FOOT]	
0				

901 NEW YORK AVE TIMOTHY H PARK 2 TECH ASSIGNMENT 1 SNOW LOADS ASSUME FLAT ROOF Pf= 0.7 CeCEIPs Ce: TABLE 7-2 Ct: TABLE 7-3 I : TABLE 7-4 CAMPAD · TABLE 7-2 EXPOSORE FACTOR, Ce TERRAIN GAT FULLY EXP PARTIALLY SHELTERED 0.9 1.0 1.2 👞 3 1.0 0.9 1.1 6 0.0 0.0 1.0 D 0.3 0.7 NA ABOVE FREELINE NA IN ALASKA · TABLE 7-3 THERMAL FACTOR, CE THERMAL COND 1 Ct 1.0 ALL STEWOT. EXCEPT BELOW 1.1 HEAT SPACE EXCEEDS 25"F ×h ×Ft"/8TU 1.2 UNHEATED 6.85 GRENHOUSE · TABLE 7-4 INFORTANCE FACTOR, 7 Ι Ξ AT 0.8 I 1.0 4 T 1.1 T ſ∡ | 1.2 PF= 0.7 (1.0 X 1X 1X 25) = 17,5 psf

TECH ASSIGNMENT # 901 NY AVE TIMOTHY H PARK	3
WIND LOADS	
$ \begin{split} h &= 140^{1} - 0^{1} & \text{Exposure CM} B \\ Y &= 90 \text{ MPH } [\text{Flor 6-1}] & \text{I} = 1.0 & [\text{TABLE 6-1}] \\ \text{K}_{21}^{-} &= 1.0 & \text{CM} 2 & [\text{TABLE 6-1}] \\ \text{K}_{21}^{-} &= 1.0 & \text{K}_{21}^{-} & \text{CM} 2 & [\text{TABLE 1-1}] \\ \text{K}_{21}^{-} &= 0.6 \text{ M} = 84^{1} - 0^{1} & \text{K}_{21}^{-} & \text{CM} 2 & [\text{TABLE 6-4}] \\ \end{split} $	
$L_{\tilde{z}} = C \left(\frac{33}{\tilde{z}}\right)^{V_{6}} = 0.3 \left(\frac{33}{84}\right)^{V_{6}} = 0.257 \qquad X = 7.0 \qquad [\text{TABLE 6-2}]$ $L_{\tilde{z}} = \lambda \left(\frac{\tilde{z}}{33}\right)^{\tilde{z}} = 320 \left(\frac{84}{33}\right)^{V_{3}} = 437 \qquad \tilde{b} = 6.24$ $\tilde{x} = V/7$ $\tilde{x} = V_{4,0}$	
$Q = \int \frac{1}{1 + 6 \cdot 63 \left(\frac{B + h_1}{L_2}\right)^{0.63}} \qquad $	
$= \sqrt{\frac{1}{1.705}} or \sqrt{\frac{1}{1.551}} \\ \frac{1}{0.766} 0.803$	
$G = 0.925 \left(\frac{1 + 1.7 g_{Q} I_{Z} Q}{1 + 1.7 g_{V} I_{Z}} \right) = 0.80 \text{ or } 0.82$	
$L B = 0.56 \text{ For WIND TO ZI3' FACE} = 1.50 \text{ FOR WIND TO 383' FACE} \qquad \qquad$	
CP = OB WW WALL G.5 LW WALL II TO ZIS' FACE O.3 LW WALL II TO 383' FACE	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
70 0.84 15.7 18.8 15.6 60 0.85 150 18.4 15.1 50 6.81 14.3 17.9 14.6 40 676 13.4 17.3 14.0 30 0.70 12.3 16.5 15.7 25 0.66 11.6 16.0 12.8 20 0.62 10.9 15.6 12.3 0.715 0.57 10.6 15.6 12.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

	Windward		Leew	ard
Height	Kz	qz	Kh	qh
0.00	0.5747	10.13	1.0672	18.81
13.33	0.5747	10.13	1.0672	18.81
25.00	0.6651	11.72	1.0672	18.81
36.67	0.7420	13.08	1.0672	18.81
48.34	0.8029	14.15	1.0672	18.81
60.01	0.8541	15.05	1.0672	18.81
71.68	0.8986	15.84	1.0672	18.81
83.35	0.9381	16.54	1.0672	18.81
95.02	0.9739	17.17	1.0672	18.81
106.69	1.0067	17.74	1.0672	18.81
118.36	1.0370	18.28	1.0672	18.81
130.86	1.0672	18.81	1.0672	18.81

Final Results for Wind Analysis

	E-W Direction			N-S Direction	
Wind (psf)	Load (plf)	OTM (k-ft)	Wind (psf)	Load (plf)	OTM (k-ft)
14.17	94.46	0.00	11.16	74.40	0.00
14.17	177.14	2.36	11.16	139.51	1.86
15.21	177.54	4.44	12.20	142.42	3.56
16.10	187.92	6.89	13.09	152.80	5.60
16.81	196.14	9.48	13.80	161.02	7.78
17.40	203.05	12.19	14.39	167.93	10.08
17.91	209.05	14.99	14.90	173.93	12.47
18.37	214.39	17.87	15.36	179.27	14.94
18.78	219.22	20.83	15.78	184.10	17.49
19.16	223.64	23.86	16.15	188.52	20.11
19.51	235.83	27.91	16.50	199.46	23.61
19.86	124.14	16.25	16.85	105.33	13.78

TECH ASSIGNMENT #1 901 NY AVE THUGH + PLOIL E, SEISMIC ANIANS TOTAL DEAD WEIGHT : 108693K $F_{x} = 1.2$ $F_{y} = 1.7$ [TABLE 11.4-1] [TABLE 11.4-2] $S_{MS} = F_{A} \cdot S_{S} = 0.18 \qquad S_{DS} = \frac{2}{3}S_{MS} = 0.12^{*}$ $S_{M1} = F_{V} \cdot S_{1} = 0.88 \qquad S_{D1} = \frac{2}{3}S_{M1} = 0.0587$ SOS & 0167 SEISMIL DESIGN CATEGORY A $V = C_{S}W$ $V = C_{S} = \frac{5}{72} = \frac{5}{5} = \frac{5}{5}$ $T_{x} = C_{t}h_{n}^{x} \qquad C_{t} = 0.016 \qquad \begin{bmatrix} TABLE 12.8-2 \\ x = 0.9 \\ h_{n} = 130^{-}0^{\circ} \end{bmatrix} \qquad T_{L} = 6-8 \qquad \begin{bmatrix} FA & 22.15 \end{bmatrix}$ $T = C_{u}T_{a} \qquad C_{u} = 1.7 \qquad \begin{bmatrix} TABLE & 12.8-1 \end{bmatrix}$ $= 1.7(1.12) = 2.173 \qquad T < T_{L}$ $C_{SMax} = \frac{SD_1}{T\frac{R}{T}} = \frac{0.0587}{2.173(5)} = 0.0054$ CONTROLS V=0.0054(108693)=586.9K Fr=CyrV Crr = with + Zur Hot L: <0.5 1 2.173 1.84 = K TABLE ON NEXT PLACE

TECH ASSIGNMENT 1 901 NY AVE TIMOTHY + PARK
23/17/12 PER 5/02-4 LOADS
12.51 2163+916 = 3079 K
11.671 8426
11.67' 8426K
11.671 3426 "
11.671 8426
(167' 8426K
1.671 \$426= 3##
$\frac{1}{104} = \frac{1}{104} = \frac{1}$
(137.5+20)(48069.64) 7570.97K - 13.83' (104 cas)(322/2.167)2(150)= 976.5K - 8548K
$W = 37461 V = C_{5}W = 6.0054 (37461) = 472.3 \text{ K}$
$2ND = \frac{(8548)(3.33)^2}{\Sigma} V = \frac{2377499}{(12332)^{3508}} = 0.00212 V = 1.001 K$
$\frac{320}{5} \frac{(8+26)(25)^{2.113}}{5} = \frac{9100626}{5} = 0.00818 V = 3.56^{2}$
$4^{4} = \frac{(8426)(3667)^2}{2} = 21128519 = 0.019 = 8.97 \times 10^{10}$
$\frac{(8426)(48.33)^{2113}}{2^{2114}} V = 38496793 = 0.0343 V = 16.2^{14}$
$\frac{(3426)(60)}{\Sigma_{W}; h_{1}^{K}} = \frac{6459480}{2.073} = 0.055 \text{ V} = 26 \text{ K}$
$\frac{(2426)(71.07)}{\sum w h_1^{K}} V = \frac{9(62945)0}{2} = 0.081 V = 38.26^{K}$
$\frac{(2+16)(83.33)}{\sum_{w}H_{w}^{2}} V = \frac{125754304}{54304} = 0.112 V = 53^{2}$
$\begin{array}{ccc} q_{1+} & (\underline{z}_{42}, \underline{0}) & (\underline{45}) \\ & & & \\ & & $
$\frac{10^{744}}{2\omega_14.4} = \frac{215061633}{2} = 0.191 \text{ V} = 90.24$
$\frac{(3^{4}26)(18,34)}{2(13,34)} = \frac{12246577}{122465777} = 8(169) = 51.18$
Zuhit

901 NY AVE TIMOTHY H PARK TECH ASSIGNMENT #1 $\begin{bmatrix} TABLE A7 , APP 20A \end{bmatrix}$ $\begin{bmatrix} TABLE A7 , APP 20A \end{bmatrix}$ $\begin{bmatrix} t_{1}t_{6}=1 & \frac{1}{10} \\ \frac{100}{100} \end{bmatrix} \begin{bmatrix} 4.52 & 0.54 \\ 4.52 & 0.54 \\ 1.10 \end{bmatrix} \begin{bmatrix} 4.98 & 0.56 \\ 4.50 & 0.57 \end{bmatrix}$ ta= 5,5 (NO DROP PANELS) tb= 5.5 H=11.67' Hz=1075' KAB= 4.98 CAR = 0.56 $L_c = \frac{32^4}{12} = 87381.33 \text{ H}^4$ $E_{cs} = 57000 \sqrt{6000} = 4.42 \times 10^6 \text{ PSI}$ 1,= 11.67'= 140" FLEXURAL 2- Kc = 4.98 (4.42×10°)(87331.33) = 13739×10° IN-LG STI FFNESS $\frac{TORSIONAL}{STURRVESS} = \frac{9(E_{cS}XC)}{I_2(1-\frac{C_2}{I_2})^3} = \frac{9(4.03 \times 10^6)(11123)}{240(0.361)^3} = \frac{1579 \times 10^6}{1279 \times 10^6} R_z = 20^{-240^4}$ $E_{\text{CONVALENT}} = \frac{1}{2} \frac$ C EXT LOINT : <u>945.4</u> = 0.18 445.4+4343 3 INT JOINT . 945.4 = 0.15 (2×945.4+4343) - PARTIAL FRAME ANALYSIS 1.2 (151.5) + 1.6 (100) = 349 #55 = 94 FEM = 0.0851 (0.349) 20 (40) = 950.4 FI-K Mu (MD) = Mo - (Mu+Muz) (2 (MOMENT DISTRIBUTION ON NEXT PAGE)

	TECH AGSIC	SINMENT #		101 NY 1	HE	Timo	HV IT PAR	ĸ	10
	mp	<u>4 1</u>	<u></u>	<u></u>	<u> «41</u>				
	G , -			3	4				
			-	E. C.C.D					
	JOINT			2		3	4		
	MEMBER	1-2	2-1	2-3	3-2	3-4	43		
	DF	0.18	0.15	0.15	0.15	0.15	0.18		
AL C	COF	0.93	0.513	0.5(3	0.513	0.513 050 d	0.513	State of the state of the state	
65	TEIOT	-171 07	0	0	0	0	171.07		
		(111	- 87.8	6	0	\$7.8			
			13.2	13.2	-13.2	-13.2			
		6.3		-6.8	6.8		-6.8		
		-1.2	1.0	1.0	-1.0	-1.0	1.2		
		+ 0.2					-0.2		
		185,13	-1023	957.8	-451.8	1023	-758.13		
		40	12	4-	58	40	12		
	(0.349)	(20)(40)2_	785,13+1	023 = 49	ZIK				
	8	3	2	=	-				
	(0.349)	20)(40)2 -	957.8	= 438 1K					
	2	3				(22)		> /	
	(0.349	X 20) = 6.0	18 KIF			$\left(\frac{JL}{2}\right)/12$	2 0.175 (20	o)= 3.5' /	
						U.	se pace of	support Locations	
			2		3				
		6.98 KIF	1	6.98 KIF		4			
	fun	annann	annan		munum	Ť			
		492		438					
		ATT		1					
	Sec. 1	Cantana ()		1111 11 18 18	$\setminus /$				
	185,1		V 957.	8 4	157.8				
			1023		102.3				

	TECH ASSIGNMENT #1 901 NY AVE TONOTHY H PARK	11
	SPOT CHEEKS	
\cup	Typical columns	
9	$\begin{array}{l} & 24144 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
CAMPA .	$ \begin{cases} 1^{47} \text{ FLODZ}^{\circ} \text{ FL} = 8000 \text{ ps}_1 & (12 \pm 11/3) \\ 3^{200} \text{ FLODZ}^{\circ} \text{ FL} = 6000 \text{ ps}_1 & (20 \pm 11/3) \\ 5^{44} \text{ FLODZ}^{\circ} \text{ FL}^{\circ} = 5000 \text{ ps}_1 & (16 \pm 11/3) \\ 7^{74} \text{ FLODZ}^{\circ} \text{ FL}^{\circ} = 4000 \text{ ps}_1 & (8 \pm 11/3) \\ \end{cases} $	
	• 7^{H} FL2 (DL • (674.68) (157.5 PSF) (4 STORIES) (1.2) = 510^{\text{K}} - (674.68) (60PF) (4 STORIES) (1.6) = 259^{\text{K}} R (45) (674.68) (0.5) = 15.2 ^K] 754.2^{K} [Pu]	
0	• 30 FLR COL p (674.68×157.5785F×8 \$10R184)1.2) = 518 ^K ~ (694.68×10.5785F×8 \$10R184)(1.6) = 1021 ^K] ~ 15.2 ^K 1554.2 [Pn]	
	• $157 \text{ FLR } \text{COL}$ $\mathcal{P}(674, 68)(157.5 \times 10)(1.2) = 1275$ $\mathcal{L}(614, 68)(60)(10)(1.6) = 648$ $\mathbb{P}(15.2^{k})$	
	$\circ (f_{c} = p/A)$	
	(4000)(32)(32)=4096 ^K (6000)(32)(32)=6144 ^K = Py UNDER DESIGNED LOADS (8000)(32)(32)= <u>6192</u> ^K Py UNDER DESIGNED LOADS	
	$N = E_{4} / E_{L} = \frac{60000}{8000} = 7.5 \text{For } 1^{47} / \frac{6000}{10} = 10 \text{For } 3^{*0} / \frac{4000}{15} = 15 \text{For } 7^{74}$	
	$\frac{ 57}{(10+11)5=18,72} = \frac{3RD}{(70+11)5=31.2} = \frac{774}{5=115=12.48} = 12.48 \text{ m}^2$	
\bigcirc	$(3000)(512+(7.5-1)18.72)=5064 \times (10-1)31.2)=4757 \times (10-1)31.2)=4757 \times (10-1)31.2$	

	TECH ASSIGNMENT # 901 NY AVE	TIMOTHY H PARK	4
0	SPOT CHECKS TYPICAL FOUNDATION ; USE SAME FOOTING SIZE ON CO	レキ 121 (32"×32")	
	$17^{1}-6^{4} \times 11^{1}-0^{11}$ $3080 \neq on Top of Footing$ Depth = 62 $20 \neq 10^{1}s$ shore $\frac{1}{2}$ reinforc. $19 \pm 11^{1}s$ Long		
PAD	FROM GED TOOH RECOMMENDATIONS		
eam	-> 2.5' BELOW FIN ISHED GRADE CONT FIG MIN: 1.5' -> 150 FIG MIN: 2.5'		
	H=62" F12 = 4000 P51 5=11 L=17.5' P=3080 K		
	Use Meyerhoff		
	$q_{A} = \frac{P}{A_{flig}} = \frac{3080}{192.5} = 16 \text{ ksf} = 111.11 \text{ psi}$	NO, DOBS NOT MT RER'D	•
	$q_{\lambda} = 4165f$ $V_{c} = \phi_{4}\sqrt{F_{12}} = 0.75(4)\sqrt{4000} = 190$ PSI $a^{2}(V_{c} + V_{4})_{+} = d(V_{c} + 5/2)\omega = 9/4(B_{c} - \omega^{2})$ $217.84^{2} + 7857.74 - 741548 = 0$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	
	$d=43'' d+1.41+3=h=48''$ $d_1(LONG)=48-3-0.5(1.41)=44.3''$ $d_2(5H025):48-3-1.5(1.41)=42.9''$		
	ØVN= 6.75(2) J4000 (12)(42.9)= 48,54 KIF		
C ⁴	$E16' = 16(\frac{132-32}{2}-42.9)\frac{1}{12} = 4.47 \text{ kif}$ $16(\frac{132-32}{2}-44.3)\frac{1}{12} = 47.6 \text{ kif}$	17.5 BSF - 121.53 PS1	
	6 2 / (2 1]		

	TECH ASSIGNMENT AL 901 NY AVE TIMOTHY H PARK
•	$\frac{5D}{2} = \frac{132 \cdot 32}{2} = 50'' \qquad a = \frac{A_{c}F_{Y}}{0.55f_{c}b} = 1.47A_{s}$ $M_{u} = \frac{17.5}{2} \frac{(4.167)^{2}}{2} - 152'K \qquad \overline{1376} \left(\frac{42.9 - 1.4}{2}\right)$ $152(t^{2}) = 6.9A_{s} (16) \left(\frac{42.9 - \frac{147A_{s}}{2}}{2}\right) \qquad \overline{1376} \left(\frac{42.9 - 1.4}{2}\right) = 0.89 > 0.05 = 9$
Сямрар	$33.76 = 42.9 A_{s} - 0.735 A_{s}^{2}$ $A_{s} = 0.80 \text{ Im}^{2} [\text{FT} \text{IF} \text{USING} \text{BLO'S}^{2} \text{SHORT} = 6.9 \text{ BARS OSE } 7$ $\frac{1-D!}{2} = \frac{192-32}{2} = \frac{1}{2}0^{11}$ $H_{u} = \frac{17.5}{2} (\frac{1}{4.67})^{2} = \frac{3}{2} \frac{2}{14} \qquad \text{I} \text{a} = 3.01 \text{c} = 3.54$
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
0	
0	