Mountain Hotel, Urban Virginia

Ben Borden

Structural Option April 3, 2013 Kevin Parfitt

Mountian Hotel

Virginia

Benjamin Borden **Structural Option**

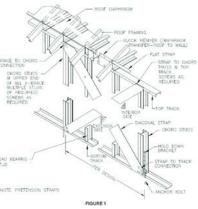
Overview

- -6 Story Hotel in urban Virginia
- -82,000 SF Hotel with a 40,000 SF Parking Structure
- -62ft roof height
- -Design/Build

Project Team

-Owner: Not released -General Contractor: not available at this time -Acrhitect: Enviro Architects -Civil: Walter L. Phillips inc -Structural: Allince Engineers -MEP: EPIC consultants

Architecture


-Colored EIFS tiles to reflect brick and concrete of surronding buildings -Large arch vults supporting ramp leading to parking structure -Porte-cochere covering entrance leading to main lobby and parking

MEP

-Separate through wall heat pumps for each guest room -Constant Volume system for common and assembly areas

Structural

-Foundation comprised of reinforced concrete spread footings with 4 in thick slab on grade -HSS for interior columns -Light gauge steel stud bearing walls support most of the exterior walls and upper floors. -All above grade floors are constructed using precast hollow core planks -Flat strap bracing employed for lateral system in steel stud shear bearing walls (shown in Figure 1)

http://www.engr.psu.edu/ae/thesis/portfolios/2013/bob5027/

Table of Contents

Title Page	1
Thesis Abstract	2
Table of Contents	3
Executive Summary	5
Building Introduction	6
Structural Overview	7
Code Requirements	7
Loads Combinations	7
Gravity System Overview	8
Superstructure	8
Substructure	9
Façade	9
Main Lateral Force Resisting System	10
Thesis Proposal	11
Problem Statement	11
Proposed Solution	12
Acoustics – Sound Isolation	14
Mechanical – Glazing Study	14
MAE Integration	14
Building Relocation and Concrete Redesign	15
New Site Characteristics	15
Design Codes and Standards	15
Structural Redesign	16

Final Report	Borden
Flat Slab	17
Columns	18
Spread Footings	18
Immediate Occupancy Design Philosophy	19
Drift Criteria	20
Seismic Loads	20
Analysis Procedure Selection	21
Shear Walls	22
Graduate Course Integration	24
Glazing Thermal Load Evaluation	24
Acoustic Isolation Study	27
Conclusion	29
Acknowledgements	30
Appendices	31
Appendix A – Gravity and Foundation Calculations	31
Appendix B – SPSlab Sample Output	37
Appendix C – Seismic Calculations	51
Appendix D – Wall Shear Forces and Moments	55

Executive Summary

Located in an urban center in Virginia, the Mountain Hotel will soon be the latest addition to one of the largest hotel chains. Light gage steel stud bearing walls are the primary element supporting six stories of precast hollow core plank floors. Prior analysis of this system demonstrated that it was lightweight, economical, and highly efficient.

The primary goal of this thesis was to learn the reinforced concrete design process by a redesign of the Mountain Hotel's gravity and lateral structural systems using reinforced concrete, such that the building is occupiable immediately after a seismic event at a new location in earthquake prone San Francisco. Because all aspects of the design were originally performed for the Virginia location, two of the buildings other systems were analyzed, and modified to maintain the building's original performance level. The new concrete floor system is denser and therefore had the potential to reduce the sound absorbance compared to what would have been achieved by the hollow core planks. The sound transmission properties of the two floor systems were therefore analyzed to mitigate a reduction in the comfort of the hotel's guests. Thermal comfort was also considered. The heat transfer across the specified glazing was analyzed to determine a replacement glazing that would produce a similar thermal load for the new location in California.

Building Loads were determined in accordance with ASCE 7-10 referenced in the 2010 San Francisco Building Code. Design of both the gravity and lateral systems were performed using ACI 318-11. ASCE 41-06 was also considered in the design of the lateral system. A 12 inch floor slab was required in order to mitigate long-term deflections. An 18 x 24 column was chosen to support the floor reactions, which was enlarged to a 24 x 24 for several columns supporting the first and second floor to increase the shear area required to resist the 100psf live loads. On those stories 3 inch drop panels were also required and would not affect the architecture because they are covered by drop ceilings. 12- 18 inch thick shear walls spanning from the foundation to the roof were utilized in limiting the structure to the determined drift limit criteria. Because the soil at this location is not considered to be prone to soil liquefaction, spread footing could be used with thicknesses vary from 10 to 30 inches.

Final Report Borden

Building Introduction

The Mountain Hotel was to be located in a wealthy urban area of Virginia (Location shown in Figure 6-1). The site chosen for construction of the new hotel is a prominent location previously occupied by a chain of parking lots, which border the main street of the town.

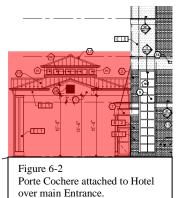


Figure 6-1 An aerial view from bing.com maps with the building superimposed on. Hotel is in Red, Garage in Yellow.

In order to match the new building into its surrounding architecture the first two floor facades are brick with large glazing panels, while the upper facade uses a palette of varying shades from brick red to white which enables it to match the brick and concrete of the surrounding buildings, including the adjacent concrete parking structure. However, in place of the brick or concrete, the upper stories of the hotel use a lighter more cost effective cladding, exterior insulation finishing system (EIFS) panels. The Porte Cochere on the west side, shown in Figure 6-2, will help funnel

visitors into the main lobby where they can check-in and be directed to their rooms, other amenities, or sites of the town.

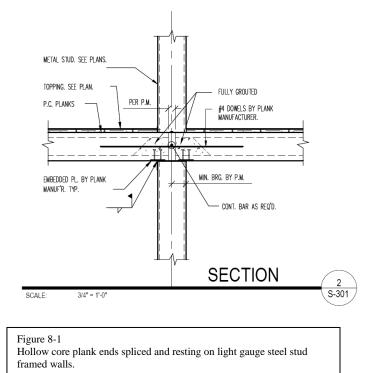
Guest rooms are located on the second through sixth floors totaling just over 40,000 square feet. Though the main function is to appease guests with a home away from home, it also contains meeting rooms for conferences, offices for hotel management, and a 40,000 square foot parking garage. Total building area is approximately 120,000 square feet.

Existing Structural Overview

Code Requirements

Standards and codes governing the existing structure are as follows: 2009 ICC/ANSI A117.1 2009 International Building Code 2009 Virginia Uniform Statewide Building Code ACI 301, ACI 318 and ACI 302 latest editions. ACI 530/ASCE 5, "Building code requirements for Masonry structures" ACI 530/ASCE 6

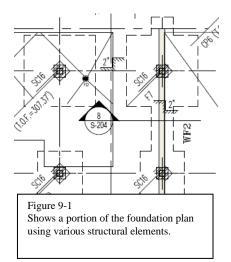
Load Combinations


Listed here are all the load combinations that are being considered. All load combinations are based on LRFD and come from ASCE 7-10.

- 1.4D
- 1.2D + 1.6L + 0.5(Lr or S or R)
- 1.2D + 1.6(Lr or S or R) + (L or 0.5W)
- 1.2D + 1.0W + L + 0.5(Lr or S or R)
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

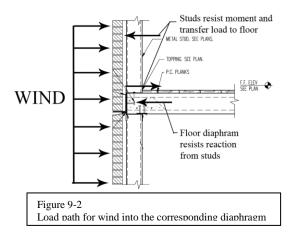
Gravity System

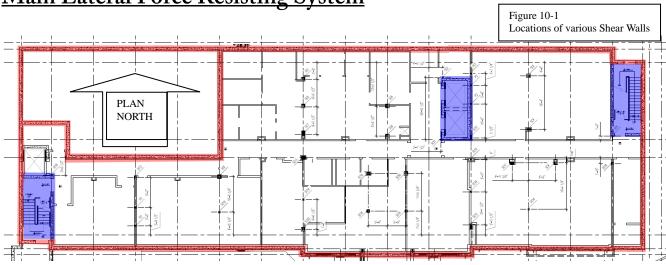
Superstructure


This building uses several types of structural members to carry the various gravity induced loads to the earth. The hotel roof and all above grade floors utilize 9' - 25' long, four and eight inch thick, precast hollow core planks to support the dead loads of the structure as well as all the amenities people and other items. The planks typically rest on cold-formed steel stud shear walls, as shown in Figure 8-1 which pass the load onto the floor below, and so on until it either reaches

either a reinforced concrete shear wall or a wide flange beam which it can do so as high as the fourth floor, or as low as the first floor. W-shapes made to the ASTM standard A992 range in size from W6x15 to W33x130. ASTM A500 Hollow Structural Section (HSS), ranging from HSS 4x4x¹/₄ HSS 12x12x¹/₂, columns hold the beams in place. Most of the HSS columns terminate in the lower floors; however there are several members that transfer load directly from the roof into the foundations. The Elevator and stair towers are an exception the typical framing types. They use specially reinforced masonry sheer walls to resist both gravity and lateral loads stretching from above the normal roof height and down into the foundation.

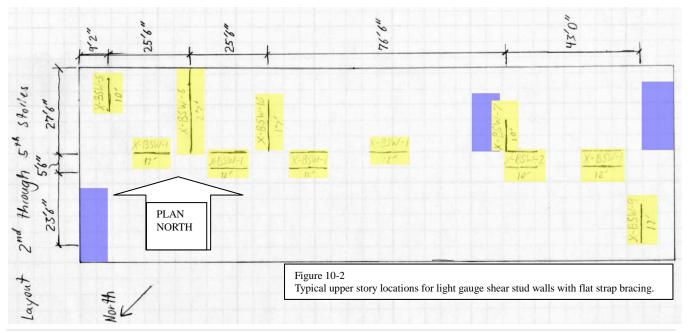
Substructure

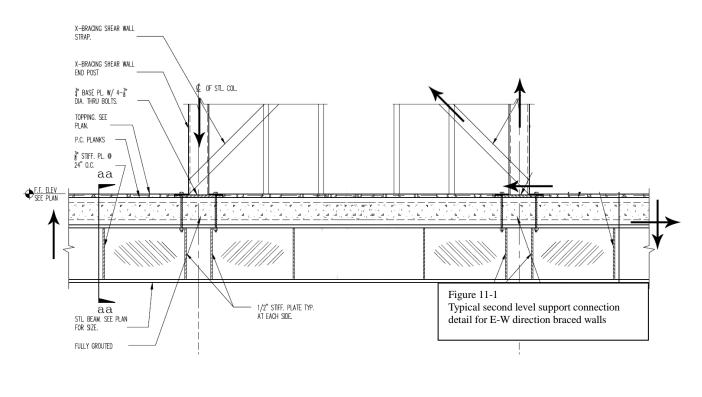

The substructure uses a series of reinforced concrete shear walls to transfer the loads from the superstructure into the wall footings of the foundation (Figure 9-1). Under columns and column piers, there is a series of spread footings the largest of which is 16"x16"x42"deep. Footings maintain a minimum compressive strength of 3000psi. Other concrete members have an Fc of 5000psi. Footings rest upon soil which has a bearing pressure of 3000psf.



Lateral System

Façade


The exterior of the Mountain Hotel is clad both with Brick and Exterior Insulation and Finishing System. There are also numerous windows throughout the façade. Wind force is transferred from façades through the walls and into the diaphragm of the buildings as shown in Figure 9-2 to the elements of the main lateral force resisting system.



Main Lateral Force Resisting System

Wind and Seismic forces in the Mountain Hotel are resisted mainly by three different types of elements. Below grade, lateral forces are resisted through a system of reinforced concrete shear walls some of which are highlighted in red in Figure 10-1. The exterior walls are 14 inches in thickness while most of the interior walls are eight inches thick. A few of these walls extend up to the second story, but most of the superstructure instead employs cold-formed flat strap bracing to resist wind and earthquake loadings. Braced walls are shown in Figure 10-2 and are highlighted in yellow. In the design of the light gauge elements the structural engineer specified locations, possible member sizes and what forces these elements were required to resist. Much of the lateral strength of the Mountain

Hotel is developed in the specially reinforced masonry shear walls surrounding the elevator and stair towers. Stair and Elevator tower locations are shaded in **blue**. A horizontal out of plane irregularity exists at the second floor under the E-W frames. A typical distribution of moment to the supporting beam is shown in Figure 11-1.

Thesis Proposal

Problem Statement

The in-depth lateral systems analysis performed in Technical Report III showed that the lateral system of the current structure is more than adequate in supporting the controlling seismic load case in the current geographical location. As an academic exercise, the Mountain Hotel will be converted to concrete and relocated to a site in a higher seismic region. After moving the Hotel to San Francisco, California, the lateral system must be redesigned to work with increased seismic loading and more stringent local and national seismic design codes. Due to the increased likelihood of a seismic event and the owners desire to continue operations, after an earthquake the Hotel is to be designed for Immediate Occupancy as defined in ASCE 41-06 in which the post-earthquake damage state remains safe to occupy. A cost benefit analysis study is to be performed for designing the hotel for Immediate Occupancy over the standard design requirements for Life Safety.

Proposed Solution

The proposed thesis is to move the Mountain Hotel to San Francisco, California and redesign it using a two-way flat-plate reinforced concrete system. Changing the construction medium to concrete will require a complete overhaul of the hotel's gravity and lateral force resisting systems. Rectangular reinforced concrete columns will carry the load of the existing cold-formed load bearing walls, while reinforced concrete shear walls will replace lateral resistance given by the masonry walls and flat strap bracing. Locations of columns and shear walls must coordinate with the existing building layout. The conversion to concrete will significantly increase the mass and orientation of the structure leading to a redesign of the foundation system.

The new structure for the Mountain Hotel will be designed for Immediate Occupancy (S-1) as defined by ASCE 41 drift and damage criteria (requirements can be found in Figure 13-1 taken from FEMA 356 Prestandard and Commentary for the Seismic Rehabilitation of Buildings). Assuming that damage states to structural and nonstructural elements can be related to drift; a maximum displacement shall be established for components. An ETABS model of the lateral system shall be used to perform a linear static analysis which will be used to relate the drift criteria to design forces.

		S	tructural Performance Leve	els				
Elements	Туре	Collapse Prevention S-5	Life Safety S-3	Immediate Occupancy S-1				
Concrete Frames	Primary	Extensive cracking and hinge formation in ductile elements. Limited cracking and/or splice failure in some nonductile columns. Severe damage in short columns.	Extensive damage to beams. Spalling of cover and shear cracking (<1/8" width) for ductile columns. Minor spalling in nonductile columns. Joint cracks <1/8" wide.	Minor hairline cracking. Limited yielding possible at a few locations. No crushing (strains below 0.003).				
	Secondary	Extensive spalling in columns (limited shortening) and beams. Severe joint damage. Some reinforcing buckled.	Extensive cracking and hinge formation in ductile elements. Limited cracking and/or splice failure in some nonductile columns. Severe damage in short columns.	Minor spalling in a few places in ductile columns and beams. Flexural cracking in beams and columns. Shear cracking in joints <1/16" width.				
	Drift	4% transient or permanent	2% transient; 1% permanent	1% transient; negligible permanent				
Concrete Walls	Primary	Major flexural and shear cracks and voids. Sliding at joints. Extensive crushing and buckling of reinforcement. Failure around openings. Severe boundary element damage. Coupling beams shattered and virtually disintegrated.	Some boundary element stress, including limited buckling of reinforcement. Some sliding at joints. Damage around openings. Some crushing and flexural cracking. Coupling beams: extensive shear and flexural cracks; some crushing, but concrete generally remains in place.	Minor hairline cracking of walls, <1/16" wide. Coupling beams experience cracking <1/8" width.				
	Secondary	Panels shattered and virtually disintegrated.	Major flexural and shear cracks. Sliding at joints. Extensive crushing. Failure around openings. Severe boundary element damage. Coupling beams shattered and virtually disintegrated.	Minor hairline cracking of walls. Some evidence of sliding at construction joints. Coupling beams experience cracks <1/8" width. Minor spalling.				
	Drift	2% transient or permanent	1% transient; 0.5% permanent	0.5% transient; negligible permanent				
Figure 13-1 Comparison of performance requirements for different Structural Performance Levels for Concrete Walls and Columns found in ASCE 41 taken from FEMA 356.								

Table C1-3 Structural Performance Levels and Damage^{1, 2, 3}—Vertical Elements

Table C1-5	Nonstructural Performance Levels and Damage ¹ —Architectural Components

	Nonstructural Performance Levels									
Component	Hazards Reduced ² N-D	Life Safety N-C	Immediate Occupancy N-B	Operational N-A						
Glazing	General shattered glass and distorted frames in unoccupied areas. Extensive cracked glass; little broken glass in occupied areas.	Extensive cracked glass; little broken glass.	Some cracked panes; none broken.	Some cracked panes; none broken.						
		ę	Comparison of performance requested to the comparison of performance requested to the comparison of th							

Breadth 1: Acoustics - Sound Isolation

The first breadth topic will be to look at a single hotel room and study the impact of the change in structural material to concrete, to see if the sound isolation has become an issue. If sound isolation is a problem then the walls and floors will be designed to reduce it to proper levels.

Breadth 2: Mechanical - Facade Study

The second breadth topic will evaluate the added thermal load by transmission through the glazing as a result of moving the Mountain Hotel to San Francisco. If the difference is significant, new glazing will be chosen to reduce the thermal load to that of the buildings original location. The new glazing will be designed to ASCE 41 standards for Immediate Occupancy (N-B) in order to supplement the depth design taken from FEMA 356.

Graduate Course Integration

When looking at the lateral system in ETABS advanced modeling techniques will be used to gain more accurate results. The models will use rigid and semi-rigid diaphragms. Shear walls will be modeled using area elements, and columns will be modeled using line elements. The lateral force analysis will consider inherent torsion, accidental torsion, and P-Delta effects.

AE 538 – Earthquake Resistant Design will be relied on heavily for this study, as the design of concrete structures for seismic applications was first taught in this class. Design for immediate occupancy was also introduced here.

Building Relocation and Concrete Redesign

New Site Characteristics

Before work could begin redesigning the structure, a location had to be chosen for the building. In order reduce the impact of relocating the Mountain Hotel to San Francisco; the new site which was chosen for the hotel maintains a similar orientation to that if the existing designs similar orientation can be seen when comparing the plans in figures 15-1 and 6-1. A geotechnical report was obtained for a site in San Francisco which was used to determine the soil characteristics for ground motion and foundation design.

Figure 15-1 An aerial view from google.com maps of the new site with the building superimposed on. Hotel is in Red, Garage in Yellow.

Design Codes and Standards

The first in the design was to determine what codes would govern the design. Calculations and analysis included in this report have been carried out with the use of the following codes and standards:

IBC 2009 – International Building Code, 2009 Edition ASCE 7-10 – Minimum Design Loads for Buildings and Other Structures, 2010 Edition ASCE 41-06 – seismic Rehabilitation of Existing Buildings, 2006 Edition ACI 318-11 – Building Code Requirements from Structural Concrete and Commentary, 2011 Edition ASHRAE Handbook of Fundamentals, 2009 Edition

Structural Redesign

As demonstrated in earlier technical reports the flat plate floor system was determined to be the most efficient alternative to the existing floor system, but before the design could be finalized for the building, the layout of related gravity resisting elements had to be determined. One of the goals of this redesign was to have a minimal impact on the existing architecture. Because the original design was essentially constructed using platform framing, the locations of structural elements within were able to vary their location in plan as the levels progressed vertically. One of the challenges of designing the new structure to utilize a flat plate floor system was to determine locations within the structure to place the vertical load elements in a manner which makes the floor system practical throughout the building which would not interfere with the existing building layout. Floors three through six are essentially identically in plan while the basement first and second floor layouts are radically different in order to include the main lobby, recreational and dining areas, and management facilities. It was therefore concluded that the column locations for the structure should be located in three rows along the long direction of the building. This created relatively square bays which are the most efficient for a two-way slab floor system.

The next step was to determine the loads. ASCE 7-10 Table 4-1 stipulates that the minimum design live load for the hotel rooms and corridors serving them, which considered to be residential, to be 40psf. All of the other above grade floors are public areas therefore requiring a design live load of 100psf per. The roof of the existing hotel was designed for a roof live load of 40psf as shown in the specifications compared to the 20psf required by ASCE 7-10. Because the reason for the additional live was unknown the new hotel was designed for the same live load, which also controlled over the snow load for the location in San Francisco. The loads of the rooftop equipment were also factored into the design.

Due to the high seismic forces predicted to control the lateral design, it was decided that 115lb/ft³ lightweight concrete could help to reduce the overall seismic weight. An additional 20psf superimposed dead load was added to each floor to account for partitions, MEP, and suspended ceilings which were used above the corridors and lobby areas.

Flat Slab

Past experience in designing floor slabs has demonstrated that punching shear typically controls slab thickness. Therefore, an excel spreadsheet was created in which punching shears were used to determine the minimum required floor thickness based on the controlling load combinations and concrete properties, assuming 1½ inch clear cover, #5 bars and a column size of 18"x 24". This analysis determined that a 6000psi lightweight concrete thickness of just over nine inches would resist the ultimate shear design force for most of the columns.

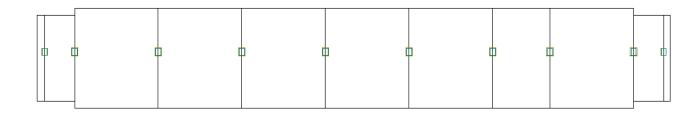


Figure 17-1 3rd Floor column and middle strip in the long plan direction as modeled in SPSlab.

The column layouts and concrete properties were than modeled in SPSlab (example of a third floor detail shown in

figure 17-1) in order to determine the design moments, and rebar sizing of the slab. The model confirmed that a ten inch thickness was sufficient to resist the design shear and moments of the upper story columns. However, in most cases a thickness of 12 inches was required to limit long-term deflections, and unbalanced moments at the edge of the slabs pushed the shear high enough to require some of the columns to need additional shear resistance. For the purposes of weight reduction and constructability, all of the columns were subsequently fitted with three inch shear capitals. In the areas of building with a live load of 100psf such as the first floor detail shown in figure 17-2, drop panels

were added to resist the additional shear, moment, and limit long-term deflections without continuing to increase the thickness and weight of the entire floor slab. All of the locations in which drop panels were added, were in areas

covered by a drop ceiling therefore eliminating the necessity of changes to the existing architecture.

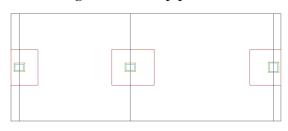
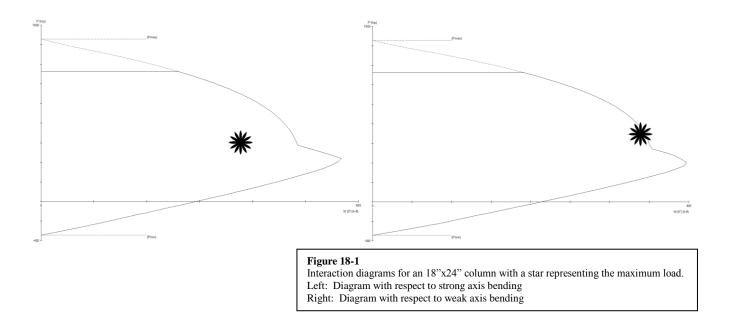



Figure 17-2

1st Floor column and middle strip in the short direction showing the drop panels and the enlarged edge column for combating excessive shear and moments resulting from high live loads.

<u>Columns</u>

A second spreadsheet was created to calculate the axial load imparted on all of the columns in the building, reducing the live load per ASCE 7-10 where it did not reach 100psf. Using the moments induced by eccentricity in the floor loading as calculated by SPSlab and the axial forces calculated in the spreadsheet, the 18"x24" section intended to be used for all of the columns was checked to verify its capacity to support the contributing loads. The interaction diagram for the column in each direction is shown in Figure 18-1. For constructability, simplification of design, and consistency a single column section was chosen to be used for all of the columns in the building and was checked against the maximum load and maximum eccentricity that any column can see.

Spread Footings

At this point it was possible to evaluate what footings would be required to support the building under gravity loading. The spreadsheet used for calculating the column loads was extended to size spread footings under each column at the base. The geotechnical report obtained for the new site specified that an allowable soil bearing pressure of 3500psf could be used for the design of the foundations. Loads transferred to the foundations were therefore recalculated for allowable stress design. The area of

soil required to support the load was then determined for each column using a factor of safety of 3.0. Rectangular footprints were then chosen with at least the required area. 3000psi concrete was selected as the minimum concrete strength for the foundations as it is likely to be the most economical and there is little need for high strength. In order to eliminate the need for shear reinforcing in the foundations, the depth of each footing required to satisfy punching shear, which controls for a square column, was calculated and used to determine the thickness and reinforcing depth for each footing. The smaller d was then used to calculate the required reinforcement area and spacing. The top of each footing is 18 inches below frost depth as required by the San Francisco Building Code. The deepest footings are 30 inches thick, and largest footings are 25ft by 25ft which have only 1½ feet between it and the closest neighboring footing. Refer to Appendix for remaining footing sizes and locations.

Immediate Occupancy Design Philosophy

Because the IBC does not reference a method specifically for immediate occupancy, drift and damage criteria from ASCE-41 *Seismic Rehabilitation of Existing Buildings* (requirements can be found in Figure 12-1 taken from FEMA 356 Prestandard and Commentary for the Seismic Rehabilitation of Buildings) was used as a model for the design of the new structure. Since the new scope included this requirement, it was therefore necessary to construct a strategy which allows for the design of a building which can be occupied immediately after a significant seismic event. The philosophy used is as follows:

If the structure is designed such that the maximum drift as a result of a seismic event is less than that which causes damage to both structural and nonstructural elements, then it will remain in an occupy able state. Maximum drift should then be determined for each story as the minimum of: the codified drift limit, 0.5%, as prescribed in ASCE-41 Table C1-3, that which pushes any structural element into the plastic state (to limit permanent deflections to negligible levels), or that which causes significant damage to nonstructural components. The glazing however, is the only nonstructural component to be evaluated for damage within the scope of this report and will therefore be assumed to be the limiting drift criterion for nonstructural components.

Drift Criteria

Inter-story Drift

ASCE7-10 Seismic limit: 0.020hsx/(Cd/Ie) ATS-192 General Glazing Guidelines: hsx/175 ASCE41-06: 0.005 hsx_

A spread sheet comparing the drift limits listed above for each story revealed that the code limitation of 0.020hsx(Cd/Ie) actually controlled over the other criteria considered. This is because the drift is now being design to be achieved within the elastic range.

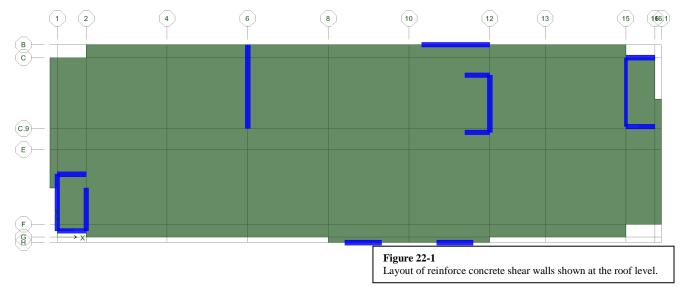
Seismic Loads

Lateral forces in a building are typically caused either by wind on the building's façade or forces induced during an earthquake. Because this report focuses so heavily on Immediate Occupancy after an earthquake, it was not felt necessary to perform a wind analysis for this report. Furthermore, because of the high seismicity of the region and large mass of the structure it is very unlikely that wind force would control the design of the lateral system. Therefore the lateral system design outlined herein is designed only to resist the effects seismic activity.

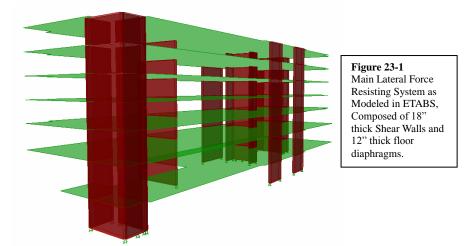
Earthquake loads, are actually displacements induced as the mass of a structure attempts to regain equilibrium as the earth moves underneath it. These displacements are resisted by the main lateral force resisting system which sends the counter displacements, due to the momentum of the structure, back to the ground. In order to quantify the strength needed to resist these displacements the response force induced in the structure is determined using historical data.

Analysis Procedure Selection

Because of the additional drift criteria specified for immediate occupancy, specially reinforced concrete shear walls were chosen for the primary lateral force resisting elements. Then site class and seismic design category were determined in accordance with ASCE 7-10 and using information provided in the geotechnical report. Calculations and references can be viewed in Appendix C. The structure falls into seismic design category E. Because the height of the building is less than 160ft and will be designed to eliminate irregularities, Table 12.6.1 of ASCE 7-10 permits the use of the Equivalent Lateral Force Procedure to calculate the seismic design forces.


The equivalent lateral force procedure is outlined per chapters 11 and 12 of ASCE7-10. The weight of each story was calculated to include the weight of the diaphragm plus the weight of half the wall above and below each story plus any other dead loads. Spreadsheets were created in Microsoft Excel to reduce the required hand calculation.

Corresponding masses were then assigned to the center of each diaphragm. An overall building base shear was determined and used to find story forces and shear forces at each level. These forces travel to the foundations via the concrete shear walls. Calculations and spreadsheet can be found in Appendix C. Story and overall building drifts were tabulated and compared to the maximum allowable per ASCE 7-10 and the Immediate Occupancy criterion.


Shear Walls

According to ACI 318-11 Section 21.1.4.3 a maximum lightweight concrete compressive strength of 5000psi may be specified for special moment frames and structural walls. An initial design was therefore attempted using 5000psi lightweight concrete. Due to the low elasticity of lightweight concrete however, it was abandoned for a higher strength normal weight concrete alternative. 8000psi normal weight concrete was eventually selected for the walls in order to increase their resistance to lateral drift.

The existing architecture and layout of the building was then evaluated for the best locations for lateral force resisting elements. Stair and elevator towers were natural choices as they were the locations of the specially reinforce masonry shear walls in the existing design. A spreadsheet was subsequently created using 35% of the gross moments of inertia to predict the distribution of the lateral forces. Once forces were applied and drifts were determined it became clear that more elements were needed. The final shear wall layout can be seen in Figure 22-1. In initial design there was an additional a shear wall along

column line sixteen. When forces were applied along the y axis the building drifted over 20% more at the first column line creating a torsional irregularity not permitted for the seismic design category of building type. The wall was found not to be required to limit the drift at that edge of the building and was later removed to reduce the buildings tendency to rotate.

The projected lateral layout was then modeled in ETABS in order to analyze its effectiveness in resistance of seismic forces. A 3D representation of the lateral model can be seen in Figure 23-1. Noniterative P-Delta effects were also considered in this model. Once the model was run it was realized that the connected elements of the stair towers were much more efficient at resisting lateral force than the other elements because the structures resist bending in a manner similar to a wide flange beam. This was a significant advantage for the purposes of limiting to small drifts. Story drifts were taken from the model and several iterations were performed before the building met the required drift criteria without torsional irregularity (shown in Tables 23-1 and 23-2). Once the layout was finalized the forces in the shear walls were checked to ensure they would not reach yield stress under the design loading in order to satisfy one of the Immediate Occupancy criterions.

			Max	
	Height		Drift X	Allowable
Story	(in)	Load	(in)	Drift (in)
ROOF	112.00	EX	3.041	3.448
STORY6	112.00	EX	2.500	3.000
STORY5	112.00	EX	1.966	2.552
STORY4	112.00	EX	1.452	2.104
STORY3	134.00	EX	0.978	1.656
STORY2	159.00	EX	0.496	1.120
STORY1	120.00	EX	0.109	0.480
TOTAL	861.00		3.041	3.448
Table 22.1				

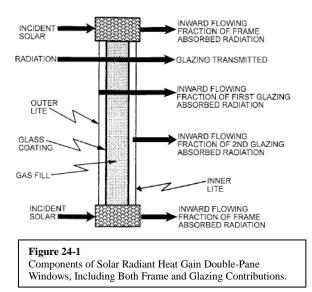
Table 23-1

			Max	
	Height		Drift X	Allowable
Story	(in)	Load	(in)	Drift (in)
ROOF	112.00	EY	0.110	3.448
STORY6	112.00	EY	0.089	3.000
STORY5	112.00	EY	0.068	2.552
STORY4	112.00	EY	0.049	2.104
STORY3	134.00	EY	0.031	1.656
STORY2	159.00	EY	0.015	1.120
STORY1	120.00	EY	0.003	0.480
TOTAL	861.00		0.364	3.448
T-61- 22.2	•	•	•	•

Table 23-2

Graduate Course Integration

When looking at the lateral system in ETABS advanced modeling techniques were used to gain more accurate results. The models used rigid diaphragms. Shear walls were modeled using area elements, and columns were modeled using line elements. The lateral force analysis considered inherent torsion, accidental torsion, and P-Delta effects.


AE 538 – Earthquake Resistant Design was relied on heavily for this study, as the design of concrete structures for seismic applications was first taught in this class. Design for immediate occupancy was also introduced here, and used in the design of this thesis.

Glazing Thermal Load Evaluation

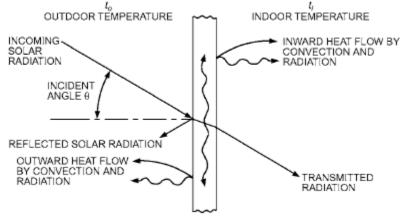
Though effort was made to retain the performance characteristics originally observed by the Mountain Hotel, the relocation to a new site will still have a very large impact on the rest of the buildings systems. One item of particular interest is the glazing which has the potential to have a much higher thermal heat gain for the California location compared what would have been originally observed in Virginia.

Existing Glazing

The Glazing specified by the architect for the Mountain Hotel is one of Pilkington's most efficient glazing types. It is constructed at the factory using two panes of tempered glass. The exterior pane of the glazing has a low-e coating on the interior face to reduce the thermal gain transmission through the glass beyond what can normally otherwise be achieved. Figure 24-1 taken from ASHRAE 2009 Figure 13 of

chapter 15 shows a typical configuration of coated double pane glazing. Pilkington publishes the thermal properties of this glazing type in their product brochure shown in Figure 25-1.

	Nom	inal	Vi	sible Lig	ht²	Solar Energy ²			U-Factor ⁵							
	Glass Thickness		ance³		tance ⁴	nce ³ %	oet %	nce ² %	U. Sum			.S. iter*	Euro	ope**	Solar Heat Gain Coefficient?	Shading Coefficient [®]
	in.	mm	Transmittance ³	Outside	Inside	Transmittance ³	Reflectance ⁴	UV Transmittance ²	Air	Argon	Air	Argon	Air	Argon	Solar He Coeffi	Shar Coeffi
Pilkington Eclipse Advanta	ge" Out	er Lite	(Coating	g on #2	Surface)	and Pilk	ington C	Dptifloat	t" Clear	Inner	Lite					
Clear	1/4	6	60	29	31	46	21	24	0.35	0.30	0.35	0.30	1.9	1.6	0.55	0.63
Grey	1/4	6	29	10	29	23	9	8	0.35	0.30	0.35	0.30	1.9	1.6	0.33	0.39
Bronze	1/4	6	34	13	29	28	11	9	0.35	0.30	0.35	0.30	1.9	1.6	0.38	0.44
Blue-Green	1/4	6	51	21	29	29	12	13	0.35	0.30	0.35	0.30	1.9	1.6	0.38	0.44
EverGreen	1/4	6	43	17	30	20	9	6	0.35	0.30	0.35	0.30	1.9	1.6	0.29	0.33
Arctic Blue	<mark>1/4</mark>	6	<mark>35</mark>	13	30	<mark>19</mark>	9	9	0.35	<mark>0.30</mark>	0.35	0.30	<mark>1.9</mark>	<mark>1.6</mark>	0.29	0.33

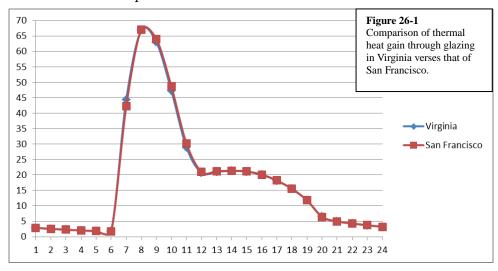

Double Glass Performance Data^{1, 10}

Tabulated weather data was then obtained from the airport closest to each site for use in the calculations.

Figure 25-1 Thermal Properties

Thermal Properties of Pilkington Eclipse Advantage with the Artic Blue used in the Mountain Hotel highlighted in yellow.

Solar energy in the form of heat is passed into a building via three different processes. The first is the direct gain given as the radiation from the sun passes through the glazing into the space. The second is through radiation from the sun that is redirected through the earth's atmosphere into the interior of a space through the glazing. One of the methods glass manufacturers use to reduce thermal loads through the glazing is to put a coating which absorbs some of the solar radiation before it passes through the glass. Though much of this radiation is conducted into the outdoor atmosphere, some of the absorbed radiation is eventually passed into the space through conduction (refer to Figure 25-2). This is the third process.


Using all of the data collected concerning the solar conditions and properties of the existing glazing, the total heart gain per square area was determined for a 24 hour period on the 21st day of the hottest month according to the given weather data. This analysis, which utilized part of

an excel spreadsheet developed by Dr. Freihaut for calculating thermal heat load was performed for each of

the four sides of the Hotel at the angles which the glazing faced. The total thermal energy transmitted through the glazing on the most was 436 BTU/sf/day.

The same process was then repeated for the building in California using the same glazing as specified by the architect so that a value for the increase in thermal heat load could be quantified. This result was only 436 BTU/sf/day or an increase of 0.51% and the maximum thermal load increase of the four sides. A curve for each of the thermal loads was plotted hourly for a 24 hour period in a graph shown in figure 26-1 for visual comparison. The difference in the design thermal loads between the two sites for the same glazing was therefore considered to be negligible, and it was decided that the existing glazing could be used in the new location and would have a minimal impact on the mechanical systems and comfort of the occupants.

Acoustic Isolation Analysis

Section 1207 of the 2009 IBC stipulates that walls separating adjacent dwelling units are required to have a Sound Transmission Class of not less than 50 according to ASTM E 90. Hotel rooms considered residential so this should be an appropriate benchmark to verify the sound transmission properties of the new floors of the Mountain Hotel.

The precast hollow core plank system used in the original hotel design uses planks similar to the Elematic Hollow-core plank systems supplied by Oldcastle Precast Building Systems. The sound

transmission class ratings of each of their planks are listed in table 27-1. In the analysis of the existing structure done for earlier technical assignments demonstrated that the thickness of the specified planks was way beyond that needed for strength or structural serviceability. The floors supporting the halls in the Hotel are only 4 inches thick and could have been sufficient for some of the spans over the guest rooms. However and shown in the table in the right even the 6 inch thick planks do not meet the STC criteria. Therefore an 8 inch plank was required as a means of providing proper sound Isolation.

The new hotel will be designed using lightweight cast in place concrete as its floor system. This system needs to be checked to make sure that the provided floor system is sufficient to control the design. High mass is almost

Sound Transmission Class (STC)
6" Elematic®	49
6" Elematic® + 2" Topping	53
8" Elematic®	51
8" Elematic® + 2" Topping	54
H8" Heavy Elematic®	51
H8 " Heavy Elematic® + 2 " Topping	55
10 " Elematic®	52
10" Elematic® + 2" Topping	56
12 " Elematic®	54
12" Elematic® + 2" Topping	57
16 " Elematic®	56
16 " Elematic® + 2 " Topping	59

Table 27-1

STC values for various Elematic precast planks produced by Oldcastle Precast Building Systems.

always beneficial for increasing the Sound Transmission Class of a partition of floor. The addition of a thin layer of lightweight concrete is a typical suggestion for increasing the STC of a material.

Published values for the STC of light weight concrete could not be located. However, a 6 in panel is reported to have an STC of 55 in a document produced by the California Office of Noise control in 1981. It can therefore be inferred that a wall of twice the thickness and therefore twice the mass will have an STC much higher than 50 and therefore be more than adequate to mitigate any potential problems caused by sound transmission.

Conclusion

The Mountain Hotel has been successfully designed for Immediate Occupancy. If an earthquake of less than or equal to the design earthquake should occur the building should possess the ability to be occupied immediately after the shaking has terminated. All structural components meet or exceed the requirements of the local codes and the parameters specified for Immediate Occupancy. However, it is probably not the most efficient design and it is very unlikely to be the most economical. As predicted the choice to design a structure for Immediate Occupancy adds a lot of extra strength to a structure over a typically design for immediate occupancy. This translates to thicker shear walls or higher strength walls than would normally be required. The 18 inch walls used throughout the Mountain Hotel's lateral system were sufficient to resist the loads and maintain the deflections required in the design parameters.

The relocation has not significantly affected the performance of the glazing system which was designed initially only for the thermal loads in the conditions in Virginia. The thermal loads at the new location are within 0.5% of the thermal loads created at the new site.

It was also confirmed that the change of the existing floor system will not produce a potential for unwanted sound to infiltrate into neighboring rooms. It will most likely reduce the sound levels transferred from one room to the next to lower than that of the existing floors.

Several lessons learned through this design were:

Though lightweight concrete reduces the unit self-weight, the extra thickness required to mitigate detriment to the elasticity brings the loads of a similar magnitude.

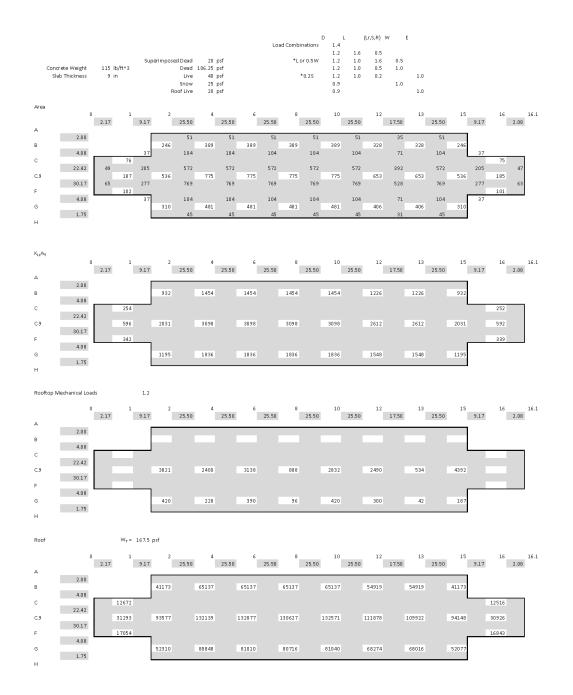
If this analysis was to be considered again with the knowledge gained from this thesis, concrete shear walls would probably not be the optimal choice for this redesign because of the difficulty in adapting the large sections required to the existing floor plan. Steel braces could have been inserted into the walls between the windows and would have been able to have less of an impact on the existing architecture.

The attempt to fit a building which was design to use a system as radically different as light gage steel was not a practical choice, because so many of the systems would be impacted and the style of architecture (which was not covered as a major topic in this thesis) would most likely have been different from the start as the architect would have designed the building with a concrete system in mind.

Acknowledgements

To my family, friends, professors, and colleagues, who have helped me become who I am today, and to Jesus Christ who paid the ultimate price for my eternal salvation.

I would like to extend my personal gratitude to the following individuals and associations for their advice, and support throughout this year long project:


Penn State Architectural Engineering Faculty Thesis Advisor: Professor Kevin Parfitt Professor Robert Holland Dr. Linda Hanagan Dr. James Freihaut Dr. Andres Lepage Ryan Solnosky

Alliance Engineers

Tim Kowalcyk

Applied Technology Council Dr. Ronald O. Hamburger

Appendix A – Gravity Load and Foundation Calculations

Level 6 1 W_T - L = 267.5 psf

0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 25.50 17.50 25.50 9.17 2.08

A												
	2.00											
в			73042	114033	114033	114033	114033	96605	96605	73042		
	4.08											
С		23264									22977	
	22.42											
C.9		56436	159655	225690	226428	224178	226122	191381	189425	160226	55791	
	30.17											
F		31307									30921	
	4.08											
G			91764	140532	140694	140400	140724	119102	118844	91531		
	1.75											
н			-									

Level 5 2 W_T - L = 395 psf

	0	2.17	9.17	2 25.50	25.50	25.50	25.50	25.50	13	15	9.17	2.08
A												
	2.00											
в			1088	42 170038	170038	170038	170038	144015	144015	108842		
с	4.08	3593									35493	
C	22.42	3093	57								35493	
C.9	22192	8403	27 2362	91 335651	336389	334139	336083	284353	282397	236862	83065	
	30.17											
F		4836	51								47764	
	4.08											
G			1365	88 209504	209666	209372	209696	177464	177206	136355		
н	1.75											

Level 4 3 W_T - L = 522.5 psf

0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 25.50 17.50 25.50 9.17 2.08

A											
	2.00										
в			144176	225454	225454	225454	225454	190884	190884	144176	
	4.08										
С		48609									48009
	22.42										
C.9		111175	312239	444807	445545	443295	445239	376586	374630	312810	109900
	30.17										
F		65415									64607
	4.08										
G			180893	277827	277989	277695	278019	235230	234972	180660	
	1.75										
н											

Level 3 4 W_T - L = 650 psf

0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 25.50 17.50 25.50 9.17 2.08

A											
	2.00										
в			179269	280564	280564	280564	280564	237473	237473	179269	
	4.08										
С		61282									60525
	22.42										
C.9		138094	387830	555438	556176	553926	555870	468777	466821	388402	136508
	30.17										
F		82468									81450
	4.08										
G			224930	345813	345975	345681	346005	292688	292430	224697	
	1.75										
н											

Level 2 5 W_T - L = 777.5 psf

0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 17.50 25.50 9.17 2.08

		2.17	9.17	25.50	25.50	25.50	25.50	25.50	17.50	25.50	9.17 2.08
A											
	2.00										
в			21420	3 335479	335479	335479	335479	283882	283882	214208	
	4.08										
С		73954									73041
	22.42										
C.9		164866	46331	666587	667325	665075	667019	562491	560535	463890	162971
	30.17										
F		99522									98293
	4.08										
G			26879	413585	413747	413453	413777	349948	349690	268562	
	1.75										
н											

Level 1 6 W_T - L = 905 psf

								13			
2.17	917	25.50	25.50	25.50	25.50	25.50	17.50	25.50	9.17	2.08	

A											
в	2.00		249038	390255	390255	390255	390255	330164	330164	249038	
	4.08										
С	22.42	86626									85557
C.9		191535	540214	777737	778475	776225	778169	656206	654250	540785	189330
F	30.17	116575									115136
	4.08	110070									110100
G	1.75		312539	482022	482184	481890	482214	407068	406810	312306	
н	1.75										

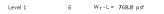
 d_{mq} Footings $$\ensuremath{\mathsf{square}}\xspace$ footing with uniform loading, punching shear will control

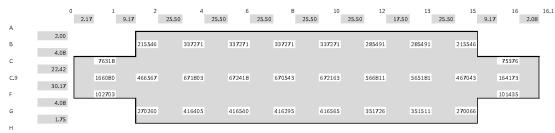
0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 17.50 25.50 9.17 2.08

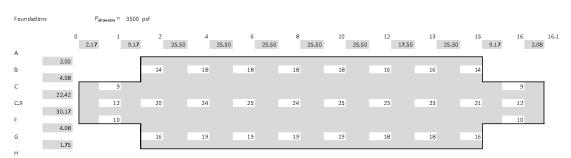
		2.17	9.17	2	5.50	25.50		25.50		25.50		25.50		17.50		25.50		9.17	2.08
A			-																
	2.00																		
в				11.76	16.18		16.18		16.18		16.18		14.39		14.39		11.76		
	4.08																L	_	
С		5.1	19																5.14
	22.42																		
C.9		9.6	58	20.18	25.62		25.64		25.59		25.63		22.95		22.91		20.20		9.60
	30.17																		
F		6.5	59																6.53
	4.08																		
G				13.85	18.69		18.70		18.69		18.70		16.66		16.65		13.84		
	1.75		L																
н																			

d of Footing top reinforcement

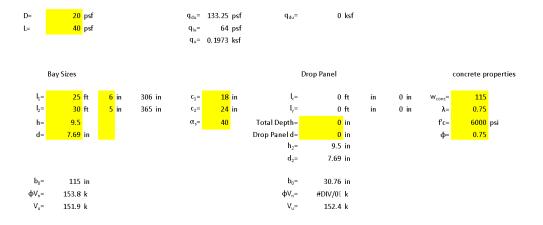
c_c = ____3 in d_b = ____625 in

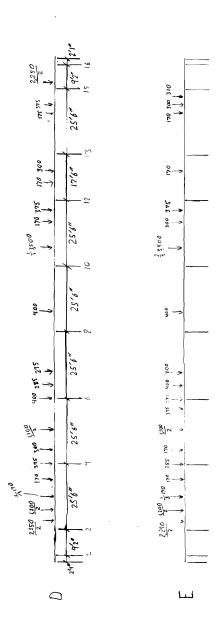

A												
	2.00											
в			12.063	18.063	18.063	18.063	18.063	16.063	16.063	12.063		
	4.08											
С		6.063									6.063	
	22.42											
C.9		10.063	26.063	26.063	26.063	26.063	26.063	26.063	26.063	26.063	10.063	
	30.17											
F		8.063									8.063	
	4.08											
G			14.063	20.063	20.063	20.063	20.063	18.063	18.063	14.063		
	1.75											
н												


Mu k-ft


0 1 2 4 6 8 10 12 13 15 16 16.1 2.17 9.17 25.50 25.50 25.50 25.50 25.50 25.50 9.17 2.08

А											
	2.00										
в			320.2	693.8	693.8	693.8	693.8	505.6	491.1	320.2	
	4.08										
С		59.0									58.2
	22.42										
C.9		199.5	1093.9	1960.5	2059.1	1956.7	2058.3	1572.8	1568.1	1162.0	197.2
	30.17										
F	L	93.3	_								92.1
	4.08										
G			478.6	916.5	916.8	916.2	916.8	723.7	723.2	478.2	
	1.75										
н											


A _{s,req}	in ²											
A		2.17	9.17	2 25.5	4 i0 25.50	6 25.50		10 25.50				16 16.1
в	2.00			6.1	8.8	8.8	8.8	8.8	7.2	7.0	6.1	
с	22.42		2.3									2.2
C.9 F	30.17		4.6 2.7	9.5	17.2	18.0	17.1	18.0	13.7	13.7	10.1	2.6
G	4.08			7.8	10.4	10.4	10.4	10.4	9.2	9.2	7.8	
н	1.75		I									
Coosing	#5% @in 0.0											
Spacing				2	4	6	8					16 16.1
Spacing	0			2 25.5		6 25.50		10 25.50				16 16.1 2.08
	0										0 9.17	
A B C	0			4.8	5.0	25.50 5.0	5.0	25.50 5.0	5.0	25.5	4.8	
А В С С.9	0 2.00 4.08		9.17	25.5	i0 25.50	25.50	25.50	25.50	17.50	25.5	0 9.17	2.08 4.5 4.8
АВС	0 2.00 4.08 22.42		9.17	4.8	5.0	25.50 5.0	5.0	25.50 5.0	5.0	25.5	4.8	4.5
А В С.9 F	0 2.00 4.08 22.42 30.17		9.17	25.5 4.8 5.4	5.0 3.9	25.50 5.0 3.9	25.50 5.0 3.9	25.50 5.0 3.9	17.50 5.0 4.5	25.5 5.0 4.5	0 9.17 4.8 5.5	2.08 4.5 4.8



Punching Shear Calculations:

04-05-2013, 02:42:55 PM

Page 1

Appendix B – SPSlab Sample Output

spSlab v3.50 © StructurePoint Licensed to: Penn State University, License ID: 59919-1033954-4-22545-2CF68 T:\spSlab\floor_3_middle_long.slb

00 00 00 00 00000 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00000 00 00 00 00 00 00 0 00000 00 00 00 00 00 00 0 00000 00 00 00 00 00 00 0 00000 00 00 00 00 00 00 0 00000 000 00 00 00 00 00 0 00000 000 000 000 000 00 00 0 000000 00000 00000 00000 000000 00000					000		0				0				
00 0 00					00	00	00				00				
00 00 <td< td=""><td>00</td><td>000</td><td>0000</td><td>000</td><td>00</td><td></td><td>00</td><td></td><td>000</td><td>000</td><td>00</td><td></td><td></td><td></td><td></td></td<>	00	000	0000	000	00		00		000	000	00				
00000 00 00 00 00 00 00 00 00 00 0 000000 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00 00 0 0000 00 00 00 00 00 00 00 0 000 00	00	0	00	00	00		00		0	00	00				
oo oocooo oo oo oo oo oo oo oo oocoo oo oo oo oo oo oo oo oo oocoo oo oo oo oo oo oo oo oo oo oocoo oo oo oo oo oo oo oo oo oo oocoo oo oocoo (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2011, STRUCTUREPOINT, LLC	00		00	00	00	0	00		000	0000	0000	000			
0 00 00 00 00 00 00 00 00 00 00 00 00000 00	00	000	00	00		000	00		00	00	00	00			
00000 00 00000 000 00000 00000 (TM) spSlab v3.50 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2011, STRUCTUREPOINT, LLC		00	0000	000		00	00		00	00	00	00			
spSlab v3.50 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2011, STRUCTUREPOINT, LLC	0	00	00		00	00	00	0	00	00	00	00			
A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams, One-way and Two-way Slab Systems Copyright © 2003-2011, STRUCTUREPOINT, LLC															
	 00	000 =====	00						000	000 0 	000	000 =====	(TM)	 	
	 A Comp	uter I orced	Progra	rete : ht © :	spSl r Analy Beams, 2003-2	ab v3 ysis, One- 011, :	.50 (Desi way a STRUC	(TM) gn, and T TURE	and 1 Wo-wa	Invest ay Sla	igat:	ion o		 	

for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program. program.

[2] DESIGN RESULTS*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

Strip Widths and Distribution Factors

Units	s: Width	(ft).	Width		Mor	ment Fact	- r
Span	Strip -	Left**	Right**	Bottom*	Left**		Bottom*
1	Column Middle	4.58 21.71	4.58 21.71	4.58 21.71		1.000 0.000	
2	Column Middle	4.58 21.71	4.58 21.71		1.000 0.000		
3	Column Middle	4.58 25.79	12.75 17.63	12.75 17.63	0.750 0.250	0.750 0.250	0.600 0.400
4	Column Middle	12.75 17.63	12.75 17.63	12.75 17.63	0.750 0.250	0.750 0.250	0.600 0.400
5	Column Middle	12.75 17.63	12.75 17.63	12.75 17.63	0.750 0.250	0.750 0.250	0.600 0.400
6	Column Middle	12.75 17.63	12.75 17.63	12.75 17.63	0.750 0.250	0.750 0.250	
7	Column Middle		8.75 21.63	12.75 17.63	0.750 0.250	0.750 0.250	0.600 0.400
8			8.75 21.63	8.75 21.63	0.750 0.250	0.750 0.250	
9			4.58 25.79	12.75 17.63	0.750 0.250	0.750 0.250	
10			4.58 21.71		0.750 0.250		
	Middle	21.71	21.71			1.000 0.000 einforcem	0.400

Top Reinforcement

Units: Widtl	h (ft), Mr	max (k-ft),	Xmax (ft), As (ir	n^2), Sp (in)				
Span Strip	Zone	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars	
1 Column	Left	4.58	1.39	0.674	1.188	13.395	0.030	13.750	4-#5 *3	3
	Midspan	4.58	4.65	1.251	1.188	13.395	0.102	13.750	4-#5 *3	3
	Right	4.58	11.01	1.925	1.188	13.395	0.241	9.167	6-#5 *3	3

spSlab v3.50 © StructurePoint			
Licensed to: Penn State University,	License II	D: 59919-1033954-4-22545-2CF68	
T:\spSlab\floor_3_middle_long.slb			

04-05-2013, 02:42:55 PM

Mi		Left Midspan Right	21.71 21.71 21.71	0.00 0.00 0.00	0.000 0.962 1.925	5.627 5.627 5.627	63.441 63.441 63.441	0.000 0.000 0.000	13.710 13.710 13.710	19-#5 *3 19-#5 *3 19-#5 *3
2 Cc		Left Midspan Right	4.58 4.58 4.58	39.70 81.47 141.89	3.373 5.585 8.167	1.188 1.188 1.188	13.395 13.395 13.395	0.874 1.812 3.203	9.167 9.167 4.583	6-#5 *3 6-#5 12-#5
Mi		Left Midspan Right	21.71 21.71 21.71	3.81 15.81 47.31	3.373 5.585 8.167	5.627 5.627 5.627	63.441 63.441 63.441	0.083 0.345 1.034	13.710 13.710 14.068	19-#5 *3 19-#5 *3 22-#5 *3
3 Co		Left Midspan Right	4.58 12.75 12.75	158.59 0.00 236.97	1.000 12.750 24.500	1.188 0.000 3.305	13.395 37.262 37.262	3.595 0.000 5.274	4.583 0.000 8.500	12-#5 18-#5
Mi		Left Midspan Right	25.79 17.63 17.63	52.86 0.00 78.99	1.000 12.750 24.500	6.685 0.000 4.568	75.377 51.510 51.510	1.156 0.000 1.731	14.068 0.000 14.100	22-#5 *3 15-#5 *3
4 Cc		Left Midspan Right	12.75 12.75 12.75	231.44 0.00 215.80	1.000 12.750 24.500	3.305 0.000 3.305	37.262 37.262 37.262	5.149 0.000 4.794	8.500 0.000 9.563	18-#5 16-#5
Mi		Left Midspan Right	17.63 17.63 17.63	77.15 0.00 71.93	1.000 12.750 24.500	4.568 0.000 4.568	51.510 51.510 51.510	1.691 0.000 1.576	14.100 0.000 14.100	15-#5 *3 15-#5 *3
5 Cc		Left Midspan Right	12.75 12.75 12.75	217.18 0.00 217.16	1.000 12.750 24.500	3.305 0.000 3.305	37.262 37.262 37.262	4.825 0.000 4.825	9.563 0.000 9.563	16-#5 16-#5
Mi		Left Midspan Right	17.63 17.63 17.63	72.39 0.00 72.39	1.000 12.750 24.500	4.568 0.000 4.568	51.510 51.510 51.510	1.586 0.000 1.586	14.100 0.000 14.100	15-#5 *3 15-#5 *3
6 Cc		Left Midspan Right	12.75 12.75 12.75	215.77 0.00 231.53	1.000 12.750 24.500	3.305 0.000 3.305	37.262 37.262 37.262	4.793 0.000 5.151	9.563 0.000 8.500	16-#5 18-#5
Mi		Left Midspan Right	17.63 17.63 17.63	71.92 0.00 77.18	1.000 12.750 24.500	4.568 0.000 4.568	51.510 51.510 51.510	1.576 0.000 1.691	14.100 0.000 14.100	15-#5 *3 15-#5 *3
7 Cc		Left Midspan Right	12.75 12.75 8.75	237.10 0.00 159.47	1.000 12.750 24.500	3.305 0.000 2.268	37.262 37.262 25.572	5.277 0.000 3.548	8.500 0.000 8.750	18-#5 12-#5
Mi		Left Midspan Right	17.63 17.63 21.63	79.03 0.00 53.16	1.000 12.750 24.500	4.568 0.000 5.605	51.510 51.510 63.200	1.732 0.000 1.163	14.100 0.000 13.658	15-#5 *3 19-#5 *3
8 Cc		Left Midspan Right	8.75 8.75 8.75	139.74 28.87 154.58	1.000 11.075 16.500	2.268 2.268 2.268	25.572 25.572 25.572	3.101 0.632 3.437	8.750 13.125 8.077	12-#5 8-#5 *3 13-#5
Mi	iddle	Left Midspan Right	21.63 21.63 21.63	46.58 9.62 51.53	1.000 11.075 16.500	5.605 5.605 5.605	63.200 63.200 63.200	1.018 0.210 1.127	13.658 13.658 13.658	19-#5 *3 19-#5 *3 19-#5 *3
9 Cc		Midspan	8.75 12.75 4.58	179.24 0.00 179.58	1.000 12.750 24.500	2.268 0.000 1.188	25.572 37.262 13.395	3.998 0.000 4.093	8.077 0.000 3.929	13-#5 14-#5
Mi	iddle	Left Midspan Right	21.63 17.63 25.79	59.75 0.00 59.86	1.000 12.750 24.500	5.605 0.000 6.685	63.200 51.510 75.377	1.307 0.000 1.309	13.658 0.000 14.068	19-#5 *3 22-#5 *3
LO Co	olumn	Left Midspan Right	4.58 4.58 4.58	158.62 88.42 42.09	1.000 3.581 5.794	1.188 1.188 1.188	13.395 13.395 13.395	3.596 1.969 0.927	3.929 7.857 7.857	14-#5 7-#5 7-#5 *3
Mi	iddle	Left Midspan Right	21.71 21.71 21.71	52.88 17.16 4.04	1.000 3.581 5.794	5.627 5.627 5.627	63.441 63.441 63.441	1.157 0.375 0.088	14.068 13.710 13.710	22-#5 *3 19-#5 *3 19-#5 *3
L1 Cc	olumn	Left Midspan Right	4.58 4.58 4.58	8.80 3.75 1.12	0.365 0.966 1.482	1.188 1.188 1.188	13.395 13.395 13.395	0.192 0.082 0.024	7.857 13.750 13.750	7-#5 *3 4-#5 *3 4-#5 *3
Mi	iddle	Left Midspan Right	21.71 21.71 21.71	0.00 0.00 0.00	0.365 1.224 2.083	5.627 5.627 5.627	63.441 63.441 63.441	0.000 0.000 0.000	13.710 13.710 13.710	19-#5 *3 19-#5 *3 19-#5 *3

04-05-2013, 02:42:55 PM

Page 3

Top Bar Details

Units: Length (ft)

			Left			Conti			Righ		
Span	Strip	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length
1	Column					4-#5	2.33	2-#5	1.41		
	Middle					19-#5	2.33				
2	Column					6-#5	9.17	3-#5	4.33	3-#5	2.51
	Middle					19-#5	9.17	3-#5	2.62		
3	Column	6-#5	8.76	6-#5	5.70			11-#5	8.76	7-#5	5.70
	Middle	22-#5	6.17					15-#5	7.72		
4	Column	11-#5	8.76	7-#5	5.70			11-#5	8.76	5-#5	5.70
	Middle	15-#5	7.97					15-#5	7.72		
5	Column	11-#5	8.76	5-#5	5.70			11-#5	8.76	5-#5	5.7
	Middle	15-#5	7.72					15-#5	7.72		
6	Column	11-#5	8.76	5-#5	5.70			11-#5	8.76	7-#5	5.7
	Middle	15-#5	7.72					15-#5	7.97		
7	Column	11-#5	8.76	7-#5	5.70			8-#5	8.76	4-#5	5.7
	Middle	15-#5	7.72					19-#5	6.17		
8	Column	4-#5	6.12			8-#5	17.50	5-#5	6.12		
	Middle					19-#5	17.50				
9	Column	8-#5	8.76	5-#5	5.70			7-#5	8.76	7-#5	5.70
	Middle	19-#5	6.47					22-#5	6.22		
10	Column	4-#5	4.05	3-#5	2.48	7-#5	9.17				
	Middle	3-#5	2.62			19-#5	9.17				
11	Column	3-#5	1.36			4-#5	2.08				
	Middle					19-#5	2.08				

Bottom Reinforcement

Unit		(ft), Mmax							
Span	Strip	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars
1	Column Middle	4.58 21.71	0.00	0.962	0.000	13.395 63.441	0.000	0.000 0.000	
2	Column Middle	4.58 21.71	0.00	4.583	0.000	13.395 63.441	0.000	0.000	
3	Column Middle	12.75	126.95 84.63	12.000	3.305 4.568	37.262 51.510	2.799 1.855	13.909 14.100	11-#5 *3 15-#5 *3
4	Column Middle	12.75 17.63	112.58 75.06	13.000	3.305	37.262 51.510	2.479	13.909	11-#5 *3 15-#5 *3
5	Column Middle	12.75 17.63	117.63	12.750	3.305 4.568	37.262 51.510	2.591 1.719	13.909 14.100	11-#5 *3 15-#5 *3
6	Column Middle	12.75 17.63	113.08 75.39	12.500 12.500	3.305 4.568	37.262 51.510	2.490 1.652	13.909 14.100	11-#5 *3 15-#5 *3
7	Column Middle	12.75 17.63	128.27 85.52	13.250 13.250	3.305 4.568	37.262 51.510	2.828 1.875	13.909 14.100	11-#5 *3 15-#5 *3
8	Column Middle	8.75 21.63	25.75 17.17	8.500 8.500	2.268 5.605	25.572 63.200	0.563 0.375	13.125 13.658	8-#5 *3 19-#5 *3
9	Column Middle	12.75 17.63	140.80 93.87	12.750 12.750	3.305 4.568	37.262 51.510	3.108 2.059	13.909 14.100	11-#5 *3 15-#5 *3
10	Column Middle	4.58 21.71	0.88 0.58	8.417 8.417	1.188 5.627	13.395 63.441	0.019 0.013	13.750 13.710	4-#5 *3 19-#5 *3
11	Column Middle	4.58 21.71	0.00	1.224 1.224	0.000	13.395 63.441	0.000 0.000	0.000	

NOTES: *3 - Design governed by minimum reinforcement.

Bottom Bar Details

04-05-2013, 02:42:55 PM Page 4

2	Column Middle				
3	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
4	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
5	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
6	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
7	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
8	Column Middle	8-#5 19-#5	0.00 0.00	17.50 17.50	
9	Column Middle	11-#5 15-#5	0.00 0.00	25.50 25.50	
10	Column Middle	4-#5 19-#5	0.00 0.00	9.17 9.17	
11	Column Middle				

Flexural Capacity

Units Span	s: x (tt), Strip 		AsTop	niMn (k-ft) AsBot 	PhiMn-	PhiMn+
1	Column Middle	0.000 0.674 0.925 1.167 1.251 1.925 2.333 0.000 0.674 1.167 1.251 1.925 2.333	$\begin{array}{c} 1.24\\ 1.24\\ 1.24\\ 1.39\\ 1.44\\ 1.86\\ 1.86\\ 1.86\\ 5.89\\ 5.89\\ 5.89\\ 5.89\\ 5.89\\ 5.89\\ 5.89\\ 5.89\end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c} -56.11\\ -56.11\\ -56.11\\ -62.79\\ -65.12\\ -83.60\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\end{array}$	$\begin{array}{c} 0.00\\$
2	Column	0.000 0.792 3.373 4.583 4.839 5.585 5.950 6.654 7.766 8.167 9.167	1.86 1.86 1.86 1.86 2.48 2.79 2.79 3.72 3.72 3.72	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-83.60 -83.60 -83.60 -83.60 -110.94 -124.16 -124.16 -163.88 -163.88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	Middle	0.000 0.792 3.373 4.583 5.585 6.544 7.544 8.167 9.167	5.89 5.89 5.89 5.89 5.89 5.89 5.89 6.82 6.82 6.82	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-266.49 -266.49 -266.49 -266.49 -266.49 -266.49 -307.93 -307.93 -307.93	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3	Column	$\begin{array}{c} 0.000\\ 1.000\\ 4.453\\ 5.701\\ 7.508\\ 8.755\\ 9.225\\ 12.750\\ 16.275\\ 16.745\\ 17.965\\ 19.799\\ 21.020\\ 24.500\\ 25.500 \end{array}$	$\begin{array}{c} 3.72\\ 3.72\\ 1.86\\ 1.86\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.41\\ 3.41\\ 5.58\\ 5.58\\ 5.58\end{array}$	3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41	$\begin{array}{c} -163.88\\ -163.88\\ -163.88\\ -83.60\\ -83.60\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -154.32\\ -154.32\\ -250.42\\ -250.42\\ -250.42\end{array}$	$\begin{array}{c} 154.32\\$
	Middle	0.000	6.82	4.65	-308.68	210.47

04-05-2013, 02:42:55 PM

pstap/floor_	3_midale_	long.s	al		
	1.000 5.171 6.171 9.225 12.750 16.275 17.781 18.781 24.500 25.500	6.82 6.82 0.00 0.00 0.00 0.00 4.65 4.65 4.65	$\begin{array}{c} 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\end{array}$	-308.68 -308.68 0.00 0.00 0.00 0.00 -210.47 -210.47 -210.47	210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47
4 Column	$\begin{array}{c} 0.000\\ 1.000\\ 4.509\\ 5.701\\ 7.564\\ 8.755\\ 9.225\\ 12.750\\ 16.275\\ 16.745\\ 17.992\\ 19.799\\ 21.047\\ 24.500\\ 25.500 \end{array}$	$\begin{array}{c} 5.58\\ 5.58\\ 5.58\\ 3.41\\ 3.41\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.41\\ 3.41\\ 4.96\\ 4.96\\ 4.96\end{array}$	3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41	$\begin{array}{c} -250.42 \\ -250.42 \\ -250.42 \\ -154.32 \\ -154.32 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ -154.32 \\ -154.32 \\ -223.13 \\ -223.13 \\ -223.13 \end{array}$	$\begin{array}{c} 154.32\\$
Middle	0.000 1.000 6.969 7.969 9.225 12.750 16.275 17.781 18.781 24.500 25.500	$\begin{array}{c} 4.65 \\ 4.65 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 4.65 \\ 4.65 \\ 4.65 \end{array}$	$\begin{array}{c} 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\\ 4.65\end{array}$	$\begin{array}{c} -210.47\\ -210.47\\ -210.47\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -210.47\\ -210.47\\ -210.47\end{array}$	210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47
5 Column	$\begin{array}{c} 0.000\\ 1.000\\ 4.445\\ 5.701\\ 7.499\\ 8.755\\ 9.225\\ 12.750\\ 16.275\\ 16.745\\ 18.000\\ 19.799\\ 21.055\\ 24.500\end{array}$	$\begin{array}{c} 4.96\\ 4.96\\ 3.41\\ 3.41\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.41\\ 3.41\\ 4.96\\ 4.96\\ 4.96\end{array}$	3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41	$\begin{array}{c} -223.13\\ -223.13\\ -223.13\\ -154.32\\ -154.32\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -154.32\\ -154.32\\ -154.32\\ -223.13\\ -223.13\\ -223.13\end{array}$	154.32 154.
Middle	25.500 0.000 6.719 7.719 9.225 12.750 16.275 17.781 18.781 24.500 25.500	$\begin{array}{c} 4.96 \\ 4.65 \\ 4.65 \\ 4.65 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 4.65 \\ 4.65 \\ 4.65 \end{array}$	3.41 4.65 4.65 4.655 5.655 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.555 5.5555 5.5555 5.5555 5.55555 5.55555555555555555555555555555555555	$\begin{array}{c} -223.13\\ -210.47\\ -210.47\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -210.47\\ -210.47\\ -210.47\end{array}$	154.32 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47 210.47
6 Column	0.000 1.000 4.453 5.701 7.508 8.755 9.225 12.750 16.275 16.275 16.745 17.936 19.799 20.991 20.991	$\begin{array}{c} 4.96\\ 4.96\\ 3.41\\ 3.41\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.41\\ 3.41\\ 5.58\\ \end{array}$	3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41	$\begin{array}{c} -223.13\\ -223.13\\ -223.13\\ -154.32\\ -154.32\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -154.32\\ -154.32\\ -154.32\\ -250.42\end{array}$	154.32 154.
Middle	24.500 25.500 0.000 6.719 7.719 9.225 12.750 16.275	5.58 5.58 4.65 4.65 4.65 0.00 0.00 0.00 0.00 0.00	3.41 3.41 4.65 4.65 4.65 4.65 4.65 4.65 4.65	-250.42 -250.42 -210.47 -210.47 -210.47 0.00 0.00 0.00 0.00	154.32 154.32 210.47 210.47 210.47 210.47 210.47 210.47 210.47

04-05-2013, 02:42:55 PM

pSla	ab\floor_	_3_middle_	long s	lb		
		17.531 18.531 24.500 25.500	0.00 4.65 4.65 4.65	4.65 4.65 4.65 4.65	0.00 -210.47 -210.47 -210.47	210.47 210.47 210.47 210.47
7	Column Middle	$\begin{array}{c} 0.000\\ 1.000\\ 4.480\\ 5.701\\ 7.534\\ 8.755\\ 9.225\\ 12.750\\ 16.275\\ 16.745\\ 17.976\\ 19.799\\ 21.031\\ 24.500\\ 0.000\\ 25.500\\ 0.000\\ 1.000\\ 6.719\\ 7.719\\ 9.225\\ 12.750\end{array}$	$\begin{array}{c} 5.58\\ 5.58\\ 5.58\\ 3.41\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.48\\ 2.48\\ 3.72\\ 3.72\\ 3.72\\ 3.72\\ 3.72\\ 4.65\\ 4.65\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	3.41 3.45 4.65 4.55 4.65 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55	$\begin{array}{c} -250.42\\ -250.42\\ -250.42\\ -154.32\\ -154.32\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -112.14\\ -112.14\\ -112.14\\ -167.05\\ -167.05\\ -167.05\\ -210.47\\ -210.47\\ -210.47\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	$\begin{array}{c} 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 154.32\\ 210.47\\$
		16.275 19.329 20.329 24.500 25.500	0.00 0.00 5.89 5.89 5.89	4.65 4.65 4.65 4.65 4.65	0.00 0.00 -266.48 -266.48 -266.48	210.47 210.47 210.47 210.47 210.47
8	Column	$\begin{array}{c} 0.000\\ 1.000\\ 5.039\\ 6.115\\ 6.425\\ 8.750\\ 11.075\\ 11.385\\ 12.486\\ 16.500\\ 17.500\end{array}$	3.72 3.72 2.48 2.48 2.48 2.48 2.48 2.48 2.48 4.03 4.03 4.03	2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48	$\begin{array}{c} -167.05\\ -167.05\\ -167.05\\ -112.14\\ -112.14\\ -112.14\\ -112.14\\ -112.14\\ -112.14\\ -112.14\\ -120.66\\ -180.66\\ -180.66\end{array}$	112.14 112.14 112.14 112.14 112.14 112.14 112.14 112.14 112.14 112.14 112.14 112.14
	Middle	0.000 1.000 6.425 8.750 11.075 16.500 17.500	5.89 5.89 5.89 5.89 5.89 5.89 5.89	5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89	-266.48 -266.48 -266.48 -266.48 -266.48 -266.48 -266.48 -266.48	266.48 266.48 266.48 266.48 266.48 266.48 266.48 266.48
9	Column	$\begin{array}{c} 0.000\\ 1.000\\ 4.420\\ 5.701\\ 7.475\\ 8.755\\ 9.225\\ 12.750\\ 16.275\\ 16.745\\ 17.962\\ 19.799\\ 21.017\\ 24.500\\ 25.500 \end{array}$	$\begin{array}{c} 4.03\\ 4.03\\ 4.03\\ 2.48\\ 2.48\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.17\\ 2.17\\ 4.34\\ 4.34\\ 4.34 \end{array}$	3.41 3.41	$\begin{array}{c} -180.66\\ -180.66\\ -180.66\\ -112.14\\ -112.14\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -97.21\\ -97.21\\ -189.90\\ -189.90\\ -189.90\end{array}$	$\begin{array}{c} 154.32\\$
	Middle	0.000 1.000 5.469 6.469 9.225 12.750 16.275 19.281 20.281 24.500 25.500	5.89 5.89 5.89 0.00 0.00 0.00 0.00 6.82 6.82 6.82	$\begin{array}{c} 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \\ 4 & .65 \end{array}$	-266.48 -266.48 -266.48 -266.48 0.00 0.00 0.00 -308.68 -308.68 -308.68	$\begin{array}{c} 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ 210.47\\ \end{array}$
10	Column	0.000 1.000 2.476 2.979 3.581 4.049 4.583 5.794	4.34 4.34 3.41 3.41 2.71 2.17 2.17 2.17	1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	-189.90 -189.90 -150.73 -150.73 -120.78 -97.21 -97.21	56.11 56.11 56.11 56.11 56.11 56.11 56.11 56.11 56.11

04-05-2013, 02:42:55 PM

Page 7

1 .					
Middle	$\begin{array}{c} 8.375\\ 9.167\\ 0.000\\ 1.000\\ 1.623\\ 2.623\\ 3.581\\ 4.583\\ 5.794\\ 8.375\\ 9.167\end{array}$	2.17 2.17 6.82 6.82 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89	1.24 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.89	-97.21 -97.21 -307.93 -307.93 -266.49 -266.49 -266.49 -266.49 -266.49 -266.49 -266.49	$\begin{array}{c} 56.11\\ 56.11\\ 266.49\\ 2$
11 Column Middle	0.365 0.966 1.042 1.365 1.482 2.083	2.17 2.17 1.61 1.54 1.24 1.24 1.24 1.24 1.24 5.89 5.89 5.89 5.89 5.89 5.89	$\begin{array}{c} 0.00\\$	$\begin{array}{c} -97.21\\ -97.21\\ -72.59\\ -69.47\\ -56.11\\ -56.11\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\\ -266.49\end{array}$	$\begin{array}{c} 0 & 0 \\$

Slab Shear Capacity

Flexural Transfer of Negative Unbalanced Moment at Supports

Units:	Width (in), Munb	(k-ft),	As (in^2)						
Supp	Width	Width-c	d	Munb	Comb	Pat	GammaF	AsReq	AsProv	Add Bars
1	62.00	62.00	10.19	13.40	U2	Odd	0.622	0.182	1.860	
2	66.00	66.00	10.19	53.93	U2	Odd	0.619	0.733	3.720	
3	66.00	66.00	10.19	33.90	U2	Odd	0.619	0.460	2.407	
4	66.00	66.00	10.19	29.96	U2	Odd	0.619	0.406	2.140	
5	66.00	66.00	10.19	30.26	U2	Odd	0.619	0.410	2.140	
6	66.00	66.00	10.19	35.68	U2	Odd	0.619	0.484	2.407	
7	66.00	66.00	10.19	62.55	U2	Odd	0.619	0.851	2.338	
8	66.00	66.00	10.19	65.58	U2	Odd	0.619	0.893	2.533	
9	66.00	66.00	10.19	58.65	U2	All	0.619	0.798	4.340	
10	62.00	62.00	10.19	12.89	U2	A11	0.622	0.175	2.170	

Flexural Transfer of Positive Unbalanced Moment at Supports

Units: Width (in). Munb (k-ft). As (in^2)

UNIUS:	width ((in), Munp	(K-IC), P	AS (1n~2)						
Supp	Width	Width-t	d	Munb	Comb	Pat	GammaF	AsReq	AsProv	Add Bars
1	62.00	62.00	10.19	0.21	U2	S3	0.622	0.003	0.000	1-#5
2	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	0.000	
3	66.00	66.00	10.19	0.00	U1	All	0.619	0.000	1.471	
4	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.471	
5	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.471	
6	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.471	
7	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.559	
8	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.559	
9	66.00	66.00	10.19	0.00	U1	A11	0.619	0.000	1.240	
10	62.00	62.00	10.19	6.03	U2	S8	0.622	0.082	1.240	

Punching Shear Around Columns

Critical Section Properties

Units:	b1,	b2,	b0,	davg,	CG,	c()	left), c(1	ight) (in	l), Ac (i)	n^2), Jc	(in^4)	
Supp		b1		b2		b0	davg	CG	c(left)	c(right)	Ac	Jc
1	30.	19	31	6.19	96	.56	10.19	5.66	20.75	9.44	983.13	1.0454e+005
2	34.	19	4 (0.19	148	.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
3	34.	19	4 (0.19	148	.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
4	34.	19	4 (0.19	148	.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
5	34.	19	4 (0.19	148	.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005

⁻⁻⁻⁻⁻

Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu Xu 1 3.87 1.000 0.65 315.49 10.19 280.08 41.82 79.28 75.72 2 315.49 10.19 1.000 280.08 7.32 315.49 364.50 364.50 364.50 364.50 364.50 230.08 323.59 323.59 323.59 323.59 323.59 23.65 1.85 1.85 10.19 10.19 3 1.000 4 5 10.19 1.000 74.83 75.73 79.31 10.19 10.19 1.000 23.65 1.85 6 7 364.50 364.50 315.49 315.49 48.87 74.85 45.38 2.38 323.59 323.59 280.08 8 10.19 1.000 15.65 10.19 10.19 1.000 9 23.65 1.85 10 11 10.19 1.000 280.08 1.68

04-05-2013, 02:42:55 PM

Page 8

6	34.19	40.19	148.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
7	34.19	40.19	148.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
8	34.19	40.19	148.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
9	34.19	40.19	148.75	10.19	0.00	17.09	17.09	1515.4	3.1313e+005
10	30.19	36.19	96.56	10.19	-5.66	9.44	20.75	983.73	1.0454e+005

Punching Shear Results

Units:	Vu (kip), M	unb (k-ft), v	u (psi),	Phi*v	/c (p	si)		
Supp	Vu	vu	Munb	C omb	Pat	GammaV	vu	Phi*vc
1	18.10	18.4	-15.65	U2	S1	0.378	32.5	174.3
2	133.73	88.2	52.06	U2	All	0.381	101.2	174.3
3	178.23	117.6	-10.94	U2	All	0.381	120.3	174.3
4	172.01	113.5	2.73	U2	All	0.381	114.2	174.3
5	172.00	113.5	-2.74	U2	All	0.381	114.2	174.3
6	178.27	117.6	11.01	U2	All	0.381	120.4	174.3
7	139.46	92.0	-52.42	U2	All	0.381	105.1	174.3
8	146.91	96.9	58.83	U2	All	0.381	111.6	174.3
9	141.76	93.5	-58.65	U2	A11	0.381	108.2	174.3
10	14.11	14.3	15.97	U2	S10	0.378	28.7	174.3

Deflections

_ _ _ _ _ _ _ _ _

Section properties

Units: I		e (in^4), M	cr, Mmax ()	r-tt)				Load		
	Ie,av							Dead	Dead+	
Span	Dead	Dead+Live	Zone	Ig	Icr	Mcr	Mmax	Ie	Mmax	I
1	45431	45431	Right	45431	5617	274.93	-9.66	45431	-12.52	45433
2	45431	45431	Left	45431	5617	274.93	-2.74	45431	-3.55	4543:
			Midspan	45431	45431	274.93	0.00	45431	0.00	4543
			Right	45431			-142.79		-185.10	45433
3	52488	52488	Left	52488	7467	317.63	-173.89	52488	-225.41	5248
			Midspan	52488	5923	317.63	126.39	52488	163.83	52488
			Right	52488	7279	317.63	-241.63	52488	-313.22	52488
4	52488	52488	Left	52488	7279	317.63	-235.10	52488	-304.75	5248
			Midspan	52488	5923	317.63	104.97	52488	136.07	52488
			Right	52488	6898	317.63	-221.58	52488	-287.23	52488
5	52488	52488	Left	52488	6898	317.63	-223.21	52488	-289.35	5248
			Midspan	52488	5923	317.63	110.10	52488	142.73	52488
			Right	52488	68 98	317.63	-223.19	52488	-289.32	52488
6	52488	52488	Left	52488	6898	317.63	-221.55	52488	-287.20	52488
			Midspan	52488	5923	317.63	104.95	52488	136.04	5248
			Right	52488	7279	317.63	-235.17	52488	-304.85	5248
7	52488	52488	Left	52488	7279	317.63	-241.75	52488	-313.38	5248
			Midspan	52488	5923	317.63	126.52	52488	164.00	52488
			Right	52488	6898	317.63	-173.53	52488	-224.95	52488
8	52488	52488	Left	52488	6898	317.63	-142.22	52488	-184.36	52488
			Midspan	52488	6121	317.63	7.04	52488	9.13	52488
			Right	52488	7089	317.63	-157.84	52488	-204.60	5248
9	52488	52488	Left	52488	7089	317.63	-192.98	52488	-250.16	52488
			Midspan	52488	5923	317.63	140.18	52488	181.71	52488
			Right	52488	7839	317.63	-193.27	52488	-250.54	52488
10	45431	45431	Left	45431	7666	274.93	-158.24	45431	-205.12	4543
			Midspan	45431	5225	274.93	1.29	45431	1.67	45433
			Right	45431	128	274.93	1.29	45431	1.67	4543
11	45431	45431	Left	45431	5811	274.93	-7.70	45431	-9.98	45433

Maximum Instantaneous Deflections - Direction of Analysis

Units: D	(in),	Ig	(in^4)
----------	-------	----	--------

		Frame					Strips			
Span	Ddead	Dlive	Dtotal	Strip	Ig	LDF	Ratio	Ddead	Dlive	Dtotal
1	0.003	0.001	0.004	Column	7920.03	0.800	4.589	0.015	0.004	0.019
				Middle	37510.8	0.200	0.242	0.001	0.000	0.001
2	-0.006	-0.002	-0.007	Column	7920.03	0.738	4.230	-0.024	-0.007	-0.031
				Middle	37510.8	0.262	0.318	-0.002	-0.001	-0.002
3	0.060	0.018	0.077	Column	22032	0.675	1.608	0.096	0.028	0.125
				Middle	30456	0.325	0.560	0.033	0.010	0.043
4	0.042	0.012	0.055	Column	22032	0.675	1.608	0.068	0.020	0.088
				Middle	30456	0.325	0.560	0.024	0.007	0.031
5	0.046	0.014	0.060	Column	22032	0.675	1.608	0.075	0.022	0.097
				Middle	30456	0.325	0.560	0.026	0.008	0.034
6	0.042	0.012	0.055	Column	22032	0.675	1.608	0.068	0.020	0.088
				Middle	30456	0.325	0.560	0.024	0.007	0.031
7	0.060	0.018	0.078	Column	22032	0.675	1.608	0.096	0.029	0.125
				Middle	30456	0.325	0.560	0.034	0.010	0.043
8	-0.008	-0.002	-0.011	Column	15120	0.675	2.343	-0.019	-0.006	-0.025
				Middle	37368	0.325	0.457	-0.004	-0.001	-0.005
9	0.072	0.021	0.093	Column	22032	0.675	1.608	0.116	0.034	0.150
				Middle	30456	0.325	0.560	0.040	0.012	0.052
10	-0.006	-0.002	-0.008	Column	7920.03	0.738	4.230	-0.027	-0.008	-0.035
				Middle	37510.8	0.262	0.318	-0.002	-0.001	-0.003
11	0.003	0.001	0.004	Column	7920.03	0.800	4.589	0.015	0.004	0.019

04-05-2013, 02:42:55 PM

Page 9

Middle 37510.8 0.200 0.242 0.001 0.000 0.001

Maximum Long-term Deflections - Direction of Analysis

Time dependant factor for sustained loads = 2.000 Units: D (in)

			Column	Strip					Middl	e Strip		
Span	Dsust	Lambda	Dcs	Dcs+lu	Dcs+1	Dtotal	Dsust	Lambda	Dcs	Dcs+lu	Dcs+1	Dtotal
1	0.015	2.000	0.030	0.034	0.034	0.049	0.001	2.000	0.002	0.002	0.002	0.003
2	-0.024	2.000	-0.047	-0.055	-0.055	-0.078	-0.002	2.000	-0.004	-0.004	-0.004	-0.006
3	0.096	2.000	0.192	0.221	0.221	0.317	0.033	2.000	0.067	0.077	0.077	0.110
4	0.068	2.000	0.135	0.155	0.155	0.223	0.024	2.000	0.047	0.054	0.054	0.078
5	0.075	2.000	0.149	0.171	0.171	0.246	0.026	2.000	0.052	0.060	0.060	0.086
6	0.068	2.000	0.135	0.155	0.155	0.223	0.024	2.000	0.047	0.054	0.054	0.078
7	0.096	2.000	0.192	0.221	0.221	0.317	0.034	2.000	0.067	0.077	0.077	0.110
8	-0.019	2.000	-0.038	-0.044	-0.044	-0.063	-0.004	2.000	-0.007	-0.009	-0.009	-0.012
9	0.116	2.000	0.231	0.266	0.266	0.381	0.040	2.000	0.081	0.093	0.093	0.133
10	-0.027	2.000	-0.054	-0.062	-0.062	-0.089	-0.002	2.000	-0.004	-0.005	-0.005	-0.007
11	0.015	2.000	0.029	0.033	0.033	0.048	0.001	2.000	0.002	0.002	0.002	0.003

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	4206.7	lb	<=>	21.77	lb/ft	<=>	0.728	lb/ft^2
Bottom Bars:	4861.8	lb	<=>	25.16	lb/ft	<=>	0.842	lb/ft^2
Stirrups:	0.0	lb	<=>	0.00	lb/ft	<=>	0.000	lb/ft^2
Total Steel:	9068.5	lb	<=>	46.93	lb/ft	<=>	1.570	lb/ft^2
Concrete:	5777.1	ft^3	<=>	29.89	ft^3/ft	<=>	1.000	ft^3/ft^2

04-05-2013, 02:43:58 PM

Page 1

					000	000	0				0		
					00	00	00				00		
	00	000	0000	000	00		00		00	000	00		
	00	0	00	00	00		00		0	00	00		
	00		00	00	00	0	00		00	0000	000	000	
	00	000	00	00		000	00		00	00 00		00	
	00 000000		000		00	00		00	00	00	00		
	0	00	00		00	00	00	0	00	00	00	00	
	00	000	00		000	000	oc	0	00	000 0	00	000	(TM)
	A Comp Reinf	orced	Conc	rete 1 ht © 2	1	One-1 011, :	Desi Way a STRUC	gn, nd T TURE	lwo-w	ay Sla	ເb້ິSy		
Licensee stated	abo	ve a	acknow	wleda	es t	hat	STRI	CTUR	REPOII		SP)	is	not and cannot

be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spSlab computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spSlab program. Although STRUCTUREPOINT has endeavored to produce spSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spSlab program. program.

[2] DESIGN RESULTS*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

Strip Widths and Distribution Factors

Units: Width (ft).

		Width		ment Fact	or	
Span Str:	ip Left**	Right**	Bottom*	Left**	Right**	Bottom*
1 Colu		12.75	12.75	1.000	1.000	0.600
Mida		12.75	12.75	0.000	0.000	0.400
2 Colu		12.75	12.75	1.000	0.750	0.600
Mida		12.75	12.75	0.000	0.250	0.400
3 Colu		12.75	12.75	0.750	1.000	0.600
Mida		12.75	12.75	0.250	0.000	0.400
4 Colu		12.75	12.75	1.000	1.000	0.600
Mida		12.75	12.75	0.000	0.000	0.400
*Used for		nforcement	. **Used	for top r	einforcem	ent.

Top Reinforcement _____

	Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in)												
Span	Strip	Zone	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars			
1	Column	Left Midspan Right		1.47 4.95 11.64	0.577 1.073 1.650	3.305 3.305 3.718	37.262 45.492 30.328	0.032 0.088 0.208	12.750 12.750 11.769	12-#5 *3 12-#5 *3 13-#5 *3			
	Middle	Left Midspan Right	12.75 12.75 12.75	0.00 0.00 0.00	0.000 0.825 1.650	3.305 3.305 3.305	37.262 37.262 37.262	0.000 0.000 0.000	13.909 13.909 13.909	11-#5 *3 11-#5 *3 11-#5 *3			
2	Column	Left Midspan Right	12.75 12.75 12.75	144.71 9.44 461.50	1.125 16.806 25.250	3.856 3.305 3.856	32.157 37.262 32.157	2.465 0.206 8.061	11.769 13.909 4.636	13-#5 *3 11-#5 *3 33-#5			
	Middle	Left Midspan Right	12.75 12.75 12.75	0.75 1.83 153.84	2.224 16.806 25.250	3.305 3.305 3.305	37.262 37.262 37.262	0.016 0.040 3.399	13.909 13.909 10.929	11-#5 *3 11-#5 *3 14-#5			
3	Column	Left Midspan Right	12.75 12.75 12.75	572.62 0.00 411.02	1.250 17.188 33.125	3.856 0.000 3.856	32.157 37.262 32.157	10.095 0.000 7.150	4.636 0.000 6.375	33-#5 24-#5			
	Middle	Left Midspan Right	12.75 12.75 12.75	190.88 0.00 2.92	1.250 17.188 31.266	3.305 0.000 3.305	37.262 37.262 37.262	4.231 0.000 0.064	10.929 0.000 13.909	14-#5 11-#5 *3			

spSlab v3.50 © Licensed to: P T:\spSlab\floo	enn State 1	University,	License	ID: 59919	-1033954	-4-22545-2	CF68			04-0
4 Column	Left Midspan Right	12.75 12.75 12.75	8.91 3.79 1.09	0.306 0.812 1.245	3.580 3.305 3.305	28.499 42.749 37.262	0.170 0.072 0.024	6.375 12.750 12.750	24-#5 12-#5 12-#5	*3
Middle	Left Midspan Right	12.75 12.75 12.75	0.00 0.00 0.00	0.306 1.028 1.750	3.305 3.305 3.305	37.262 37.262 37.262	0.000 0.000 0.000	13.909 13.909 13.909	11-#5 11-#5 11-#5	*3

NOTES: *3 - Design governed by minimum reinforcement.

Top Bar Details

Units: Length (ft)

	-		Lef	Īt		Conti	nuous		Right			
Span	Strip	Bars	Length									
1	Column					12-#5	2.00	1-#5	1.39			
	Middle					11-#5	2.00					
2	Column	2-#5	9.09			11-#5	26.50	11-#5	9.21	11-#5	6.08	
	Middle					11-#5	26.50	3-#5	6.56			
3	Column	17-#5	11.77	16-#5	7.63			13-#5	11.64	11-#5	7.50	
	Middle	14-#5	10.93					11-#5	8.14			
4	Column	6-#5	1.31	6-#5	1.31	12-#5	1.75					
	Middle					11-#5	1.75					

Bottom Reinforcement

Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in)

Span	Strip	Width	Mmax	Xmax	AsMin	AsMax	AsReq	SpProv	Bars
1	Column Middle	12.75 12.75	0.00 0.00	0.825 0.825	0.000 0.000	37.262 37.262	0.000 0.000	0.000 0.000	
2	Column Middle	12.75 12.75		10.637 10.637	3.305 3.305	37.262 37.262		13.909 13.909	11-#5 11-#5 *3
3	Column Middle	12.75 12.75		18.614 18.614	3.305 3.305	37.262 37.262	6.246 4.131	7.286 10.929	21-#5 14-#5
4	Column Middle	12.75 12.75	0.00	1.028 1.028	0.000 0.000	37.262 37.262	0.000 0.000	0.000	

NOTES: *3 - Design governed by minimum reinforcement.

```
Bottom Bar Details
```

Units: Start	(ft), Ler	ngth (ft)					
	Lo	ong Bars		Short Bars				
Span Strip	Bars	Start	Length	Bars	Start	Length		
1 Column								
Middle								
2 Column	11-#5	0.00	26.50					
Middle	11-#5	0.00	26.50					
3 Column	21-#5	0.00	34.25					
Middle	11-#5	0.00	34.25	3-#5	5.14	29.11		
4 Column								
Middle								

Flexural Capacity

Units: x (ft), Span Strip					PhiMn+
1 Column	0.000 0.000 0.577 0.614	3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.84 3.86	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.00 -168.14 -168.14 -205.81 -205.81 -212.36 -212.30	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Middle	1.614 1.650 2.000 0.000 0.577 1.000 1.073 1.650	4.03 4.03 4.03 3.41 3.41 3.41 3.41 3.41 3.41 3.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-221.34 -221.34 -221.34 -154.32 -154.32 -154.32 -154.32 -154.32 -154.32 -154.32	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

04-05-2013, 02:43:58 PM

04-05-2013, 02:43:58 PM

Units:	b, d (in),	Xu (ft)	, PhiVc,	Vu(kip)		
Span	b	d	Vratio	PhiVc	Vu	Xu
1	306.00	10.19	1.000	271.65	0.00	0.00
2	306.00	10.19	1.000	271.65	112.90	24.40
3	306.00	10.19	1.000	271.65	136.02	2.10
4	306.00	10.19	1.000	271.65	0.00	0.00

		C 17										
				lanced Mome								
Supp	Width W	∛idth-c	d	As (in^2) Munb								
1	69.00	69.00	13.19	223.14	U2 Eve	en 0.582	2.220	1.817	2-#5			
2 3	69.00 75.00	69.00 75.00	13.19 13.19	223.14 265.88 539.59	U2 Odd U2 All	1 0.582 L 0.602	2.653 5.661	4.614 3.647	 7-#5			
_	Shear Arou											
Critic	al Section	n Proper	ties									
Units:	b1, b2, ł	o0, davo	r, CG, c()	left), c(ri- davg					D.c.	Ta		
2	43.19	37.19	160.75	13.19 13.19 13.19	0.00	21.59 14.13	21.59	2119	.9 6.50	9e+005 4e+005		
	.ng Shear I		120.00	10.17		11.10	20110	1055		10.000		
			(k-ft), vı	ı (psi), Ph	i*vc (psi	L)						
Supp		/u 	vu 	Munb Co	mb Pat G	FammaV						
1 2	102.8 281.0	33 6 01 13	53.1 32.6	151.91 U2 177.05 U2 -451.63 U2	All All	0.418 0.418	95.7 162.0	174.3 174.3				
3	141.4	46 E	3.6	-451.63 U2	All	0.398	168.9	174.3				
	Shear Arou											
	al Section											
Units: Supp	b1, b2, b b1	b0, davo b2	r, CG, c(1 b0	left), c(ri- davg	ght) (in) CG	, Ac (in^ c(left) c	2), Jc ((right)	in^4)	Ac	Jc		
2 3	131.69 94.59	112.19 112.19	487.75 301.38	10.19 10.19 10.19	7.75 -43.90	65.84 29.69	65.84 64.90	49 3070	69 1.381 .3 3.058	1e+007 8e+006		
	.ng Shear H											
Units:	Vu (kip),	, vu (ps	si), Phi*v	vc (psi)								
Supp 1				vu Phi	*VC 							
1 2 3	251.5	53 UZ	ALL		F 2							
	121 3	26 UZ 35 TT2	All	30.5 13 50.6 12 39.7 13	5.3 3.5 1 3							
		35 U2	A11 A11	30.5 13 50.6 12 39.7 13	5.3 3.5 1.3							
flectio)ns ===		All All	30.5 13 50.6 12 39.7 13	5.3 3.5 1.3							
flectio Sectio	ons == on propert:	ies							Lo	ad Level		
flectio Sectio Units:	ons == on propert: Ig, Icr, Ie,	ies Ie (in^ .avg	4), Mcr,	Mmax (k-ft)	Icr	: Mcr	 	Dead	D	ead+Live	
flectio Sectio Units: Span	ons propert: Ig, Icr, Le, Dead	ies Je (in^ .avg d Deac 	4), Mcr, H+Live Zon	Mmax (k-ft ne) Ig			Mmax	Dead	D IeMma:	ead+Live x 	 60182
flectio Sectio Units: Span	ons propert: Ig, Icr, Le, Dead	ies Je (in^ .avg d Deac 2	4), Mcr, +Live Zon 60182 Ric 43321 Let	Mmax (k-ft ae ght) Ig 60182 60182 44064	7889 7889 5007	332.25 332.25 266.65	Mmax -7.37 -94.75 105.53	Dead 601 601 440	D Mma: 82 -12.4 82 -164.0 64 183.3	ead+Live x 7 9	Ie 60182 60182 44064
flectio Sectio Units: Span 1	ns Ig, Icr, Deac 60182	ies Je (in^ .avg d Deac 2 }	4), Mcr, H+Live Zon 60182 Rig 43321 Lei Mi⊲	Mmax (k-ft ne ht ft dspan ght ft	Ig 60182 60182 44064 60182 60182	7889 7889 5007 13433 13433	332.25 332.25 266.65 332.25 332.25 332.25	Mmax -7.37 -94.75 105.53 -325.30 -399.92	Dead 601 601 440 601 402	D Ie Mmar 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2	ead+Live x 7 7 9 1 2	Ie 60182 60182
flectio Sectio Units: Span - 1 2 3	ons Ig, Icr, Deac 60182 48998	ies Ie (in^ avg d Deac 2 3	4), Mcr, +Live Zon 60182 Ric 43321 Lei Mic 26086 Lei Mic Ric Ric	Mmax (k-ft ne ght ft sepan ght ft dspan ght	Ig 60182 60182 44064 60182 60182 44064 60182	7889 7889 5007 13433 13433	332.25 332.25 266.65 332.25 332.25 332.25	Mmax -7.37 -94.75 105.53 -325.30 -399.92	Dead 601 601 440 601 402	D Ie Mma: 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span 1 2 3 4	ons Ig, Icr, Ie, Deac 6018; 45908 6018;	ies Ie (in^ avg d Deac 9 3	(4), Mcr, (+Live Zor 60182 Ric 43321 Lei Mic Ric 26086 Lei Mic Ric 60182 Lei	Mmax (k-ft ne ft lspan ght ft lspan ght ft	Ig 60182 44064 60182 60182 44064 60182 60182 60182	7889 7889 5007 13433 13433 7450 10669 10669	332.25 332.25 266.65 332.25 332.25 332.25	Mmax -7.37 -94.75 105.53 -325.30 -399.92	Dead 601 601 440 601 402	D Ie Mmar 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081
flectio Sectio Units: Span - 1 2 3 4 Maximu	ns Ig, Icr, Ig, Icr, 00182 48892 45902 60182 m Instanta	ies avg_ d Deac 2 3 3 2 2 aneous I	4), Mcr, 1+Live Zon 60182 Ric 43321 Let Mic 26086 Let Mic 60182 Let 00182 Let	Mmax (k-ft ne ght ft sepan ght ft dspan ght	Ig 60182 60182 44064 60182 60182 44064 60182 60182 60182 60182	7889 7889 5007 13433 13433 7450 10669 10669 nalysis	332.25 332.25 266.65 332.25 332.25 332.25	Mmax -7.37 -94.75 105.53 -325.30 -399.92	Dead 601 601 440 601 402	D Ie Mma: 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span 1 2 3 4 Maximu Units:	ns Ig, Icr, Deac 6018; 4899; 6018; m Instant; D (in),	ies Ie (in [^] avg <u></u> d Deac 2 9 3 3 3 4 2 aneous I 1g (in [^] Frame	4), Mcr, 4+Live Zon 60182 Ric 43321 Lei Ric 26086 Lei Mi 60182 Lei 0eflection 	Mmax (k-ft ne ght ft lapan ght ft ft ns - Direct	Ig 60182 60182 44064 60182 60182 60182 60182 60182 ion of Ar	7889 7889 5007 13433 7450 10669 10669 nalysis	332.25 332.25 266.65 332.25 266.65 332.25 266.65 332.25 332.25 332.25	Mmax -7.37 -94.75 105.53 -325.30 -399.92 195.79 -232.92 -5.65	Dead 601 601 440 601 402 440 601 601	D Mmax 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 340.2 82 -403.6 82 -9.5	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span 1 2 3 4 Maximu Units: Span	nn propert: Ig, Icr, Ie, Dead 6018; 4590; 6018; um Instant; D (in), Ddead	ies Ie (in^ avg d Deac 2 3 3 2 anneous I Ig (in^ Frame Dlive	(4), Mcr, (+Live Zor 60182 Ric 43321 Lei 816 26086 Lei Mic 60182 Lei 0eflection 4) Dtotal	Mmax (k-ft he pht sepan pht ft sapan pht ft sspan Strip 	Ig 60182 44064 60182 44064 60182 44064 60182 60182 ion of Ar	7889 7885 5007 13433 13433 7450 10665 10665 10665 10665	332.25 332.25 266.65 332.25 266.65 322.25 332.25 332.25 332.25 Strips	Mmax 	Dead601 601 440 601 402 440 601 601 Dlive	D Mmax 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 340.2 82 -403.6 82 -9.5	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span - 1 2 3 4 Maximu Units: Span - 1	ns Ig, Icr, Ig, Icr, 00182 48892 45908 60182 m Instanta D (in), Ddead -0.012	ies Ie (in [^] avg d Deac 2 2 3 3 2 2 aneous I Ig (in [^] Frame Dlive -0.010	4), Mcr, 4+Live Zon 60182 Ric 43321 Lei Mic 26086 Lei Mic 60182 Lei 0eflection 4) Dtotal -0.022	Mmax (k-ft he 	Ig 60182 60182 44064 60182 60182 60182 60182 60182 1 1 2203 2203	7889 7885 5007 13433 13433 7450 10669 10669 10669 10669 10669 10669 20.800 32 0.800	332.25 332.25 266.65 332.25 332.25 332.25 332.25 332.25 332.25 332.25 332.25 	Mmax -7.37 -94.75 105.53 -325.30 -399.92 195.79 -232.92 -5.65 Ddead -0.019 -0.005	Dead 601 601 400 601 601 601 601 Dlive -0.016 -0.004	D 1e Mmax 82 -12.4 82 -164.0 64 183.3 82 -693.2 64 340.2 82 -403.6 82 -9.5 Dtotal -0.035 -0.009 -0.009	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span - 1 2 3 4 Maximu Units: Span - 1 2 2	nn propert: Ig, Icr, Dead 6018; 4889; 4590; 6018; m Instant; D (in), Ddead -0.012 0.055	ies Ie (in [^] avg <u></u> 2 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3	4), Mcr, 1+Live Zon 60182 Ric 43321 Lei Mic Ric 26086 Lei Ric 60182 Lei 0eflection -4) Dtotal -0.022 0.105	Mmax (k-ft ne ft depan ght ft depan ght ft ns - Direct Column Middle Column Middle	Ig 60182 60182 60182 60182 60182 60182 60182 60182 60182 100 of Ar 2203 2203 2203	7889 7889 5007 13433 7450 10669 1069 10	332.25 332.25 266.65 332.25 332.25 332.25 332.25 332.25 332.25 332.25 332.25 	Mmax -7.37 -94.75 105.53 -325.30 -399.92 195.79 -232.92 -5.65 Ddead 	Dead 601 400 601 402 400 601 601 601 001 001 001 0.026	D 1e Mmax 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 183.3 82 -403.6 82 -9.5 Dtottal -0.035 -0.035 -0.055 0.055	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span 1 2 3 4 Maximu Units: Span 1 2 3 4 Maximu Units: 3 4 Maximu Units: 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 5 5 1 3 4 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5	nn propert: Ig, Icr, Ie, Dead 6018; 4889; 4590; 6018; m Instant; D (in), Ddead -0.012 0.055 0.211	ies Ie (in' avg d Deac 2 3 3 2 aneous I Ig (in' Frame Dlive -0.010 0.050 0.323	(4), Mcr, (+Live Zor 60182 Ric 43321 Lef Mic 26086 Lef Mic 60182 Lef 0eflection (Mmax (k-ft he ft lapan pht ft lapan pht ft sapan pht ft Strip Column Middle Column Middle	Ig 60182 44064 60182 44064 60182 60182 60182 60182 100 of Ar 2203 2203 2203 2203 2203	7889 7885 5007 13433 13433 7450 10665 10665 10665 10665 10665 20.200 32 0.200 32 0.200 32 0.200 32 0.262	332.25 332.25 266.65 332.25 266.65 332.25 332.25 332.25 332.25 332.25 1.475 0.525	Mmax -7.37 -94.75 105.53 -325.30 -399.92 195.79 -232.92 -5.65 Ddead -0.019 -0.005 0.081 0.029 0.311 0.111	Dead601 601 440 601 402 440 601 601 601 001 001 0.004 0.073 0.026 0.476 0.169	D Te Mmax 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 340.2 82 -403.6 82 -9.5 Dtotal -0.035 -0.009 0.155 0.787 0.280	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span - 1 2 3 4 Maximu Units: Span - 1 2 2	nn propert: Ig, Icr, Ie, Dead 6018; 4889; 4590; 6018; m Instant; D (in), Ddead -0.012 0.055 0.211	ies Ie (in' avg d Deac 2 3 3 2 aneous I Ig (in' Frame Dlive -0.010 0.050 0.323	4), Mcr, 1+Live Zon 60182 Ric 43321 Lei 26086 Lei 060182 Lei 0eflection 0.022 0.105 0.534 -0.047	Mmax (k-ft he ft lapan pht ft lapan pht ft sapan pht ft Strip Column Middle Column Middle) GO182 GO182 44064 GO182 44064 GO182	7889 7889 5007 13433 13433 7450 10669 1066	332.25 332.25 266.65 332.25 266.65 332.25 332.25 332.25 332.25 332.25 332.25 1.600	Mmax -7.37 -94.75 105.53 -325.30 -399.92 195.79 -232.92 -5.65 Ddead -0.019 -0.005 0.081 0.029 0.311 0.111	Dead 601 400 601 402 440 601 601 601 001 001 001 004 0.073 0.026 0.476 0.476 0.476 0.479 -0.039	D Te Mmax 82 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 340.2 82 -403.6 82 -9.5 Dtotal -0.035 -0.009 0.155 0.787 0.280	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287
flectio Sectio Units: Span - 1 2 3 4 Maximu Units: Span - 1 2 3 4 Maximu	m propert: Ig, Icr, Peac 6018; 4889; 4590; 6018; m Instant; D (in), Ddead -0.012 0.055 0.211 -0.023 m Long-te:	ies Ie (in [^] avg d Deac 2 2 3 2 aneous I Ig (in [^] Frame Dlive -0.010 0.050 0.323 -0.024 cm Defle	<pre>4), Mcr, 1+Live Zon 60182 Ric 43321 Lei Mic Ric 26086 Lei Ric 60182 Lei 0eflection 0.022 0.105 0.534 -0.047 ections -</pre>	Mmax (k-ft he ft dspan pht ft dspan yht ft as - Direct Column Middle Column Middle Column	J GO182 GO182 44064 GO182 44064 GO182	7889 7889 5007 13433 7450 10669 10669 10669 10669 10800 2 0.200 2 0.200 2 0.202 2 0.262 32 0.260 32 0.200	332.25 332.25 266.65 332.25 266.65 332.25 332.25 332.25 332.25 332.25 332.25 1.600	Mmax -7.37 -94.75 305.53 -325.30 -399.92 2195.79 -232.92 -5.65 Ddead -0.019 -0.005 0.081 0.029 0.311 0.111 -0.037	Dead 601 400 601 402 440 601 601 601 001 001 001 004 0.073 0.026 0.476 0.476 0.476 0.479 -0.039	D R2 -12.4 82 -164.0 64 183.3 82 -563.9 39 -693.2 64 340.2 82 -403.6 82 -9.5 Dtotal -0.035 -0.035 -0.055 0.787 0.280 -0.076 -0.076	ead+Live x 7 7 9 1 2	Ie 60182 60182 44064 22994 18580 25081 38287

04-05-2013, 02:43:58 PM

Page 5

Span	Dsust	Lambda	Dcs	Dcs+lu	Dcs+l	Dtotal	Dsust	Lambda	Dcs	Dcs+lu	Dcs+l	Dtotal
1	-0.019	2.000	-0.038	-0.054	-0.054	-0.073	-0.005	2.000	-0.009	-0.013	-0.013	-0.018
2	0.081	2.000	0.163	0.236	0.236	0.318	0.029	2.000	0.058	0.084	0.084	0.113
3	0.311	2.000	0.622	1.098	1.098	1.408	0.111	2.000	0.221	0.391	0.391	0.501
4	-0.037	2.000	-0.074	-0.113	-0.113	-0.150	-0.009	2.000	-0.019	-0.028	-0.028	-0.038

Material Takeoff

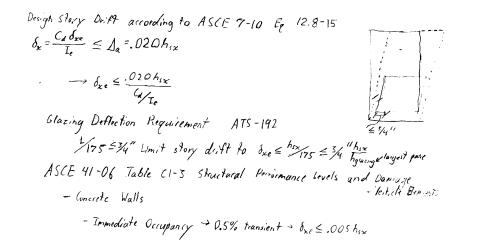
Reinforcement in the Direction of Analysis

Top Bars:	1763.5	lb	<=>	27.34	lb/ft	<=>	1.072	lb/ft^2			
Bottom Bars:	1842.3	lb	<=>	28.56	lb/ft	<=>	1.120	lb/ft^2			
Stirrups:	0.0	lb	<=>	0.00	lb/ft	<=>	0.000	lb/ft^2			
Total Steel:	3605.8	lb	<=>	55.90	lb/ft	<=>	2.192	lb/ft^2			
Concrete:	1695.8	ft^3	<=>	26.29	ft^3/ft	<=>	1.031	ft^3/ft^2			

Appendix C – Seismic Calculations

Specially ninferced concrete shear walls
$$\rightarrow h \leq 140^{10} - 0K$$

M.2 + ditailing requirements
 $R = 6 \ \Omega_{p} = 2K \ C_{p} = 5$
Risk Catagory II + ASCE Table 1.5 -1
Importance tador = 1.0 + ASCE Table 1.5 -2
Site Class $C = S_{hS} = 1.240$ $S_{h} = 1.000 + 600 tabload Rypoit
ASCE
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{1} = \frac{1.000(\frac{1}{2})}{1.3 \text{ tabling}} = 1.165 \times .5 \rightarrow SDC E$
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{1} = \frac{1.000(\frac{1}{2})}{1.3 \text{ tabling}} = 100 \text{ table action of the product Report
ASCE
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{1} = \frac{1.000(\frac{1}{2})}{1.3 \text{ tabling}} = 100 \text{ table action of the product Report
ASCE
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{1} = \frac{1.000(\frac{1}{2})}{1.3 \text{ table action}} = 0 \text{ the observed action of the product Report
ASCE
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{1} = \frac{1.000(\frac{1}{2})}{1.3 \text{ table action}} = 0 \text{ the observed action of the product Report
ASCE
 $\frac{S_{0} \cdot \frac{5}{2}}{F_{V}} = S_{0} = \frac{1.000(\frac{1}{2})}{1.400(\frac{1}{2})} = \frac{1.000(\frac{1}{2})}{1.000(\frac{1}{2})} =$$$$$$


	Par	crete 115 tition 8 Brick 48 EIFS 10 Inicel 18000	Ib/ft ³ psf psf psf Ibs														
Story Floor Height T (tt)	Slab Fhickness Floor (in) (ft		Weight Ler	all Wall Unit	Interior InteriorWa Wall Story Weight Contributio (Ibs) (Ibs)	il Brick Façade n Wall Length (t)	Brick Facade Unit Weight (ps1)		ck Façade Story Intribution (Ibs)	EIFS Façade Wall Length (tt)	EIFS Façade Unit Weight (psf)	EIFS Façade Weight (lbs)	EIFS Façade Story Contribution (lbs)	Mechanical Equipment (Ibs)	Totel Story Weight (k)	Ultimate Story Weight (k)	Sesimic Mass (k-in)
7.5 Roof 9.33 8th 9.33 4th 9.33 4th 9.33 3rd 11.17 2nd 13.33 1st 10.00	12 122 12 125 12 122 12 122 12 122 12 122 12 122 12 122 12 122 12 122 12 110	287 115	1413005 13 1413005 13 1413005 13 1413005 13	100 8 9 100 8 9 100 8 9 100 8 1	0 48533.33 7066.67 97066.68 7056.67 97066.68 7056.67 97066.68 7066.67 106600 16133.3 116733.3 116733.3 81866.68 46400	7 65 7 76 7 76 76 76 13 510	48 48 48 48 48 48 48 48	29120 34048 34048 34048 273360	14560 31584 34048 34048 153704 295800 285600	510 445 434 434 434 0 0 0	10 10 10 10 10 10 10	38250 41533,33333 40506,66667 40506,66667 40506,66667 0 0 0	59017 41020 40507 40507 20253 0 0	18000	1553.1 1582.7 1584.6 1584.6 1693.6 1829.6 1634.0	1863.7 1899.2 1901.6 2032.3 2195.5 1960.8	2.72608E-06 2.77797E-06 2.78139E-06 2.78139E-06 2.9726E-06 3.21141E-06 3.19976E-06
	X-Dire	ection Loa	ding														
			S _{DS} = S _{D1} =	1.01		C _t = x =	0.75	T k	= 1.0	493 000	s						
			C _d = I _e =		T from	C _u = Model =	1.4	Vb Cs=		388 . <mark>21</mark>	kips						
	i	h _i ft	h ft	w kips	w*h ^ĸ	\mathbf{C}_{VX}	f _i kips	V _i kips		Зу ft	5%By ft	Ax	M _z k-ft	:	M _{over} k-ft	M,	
	Roof 6 5 4 3 2 1 0	9.33 9.33 9.33 11.17 13.33 10.00 0.00	71.83 62.50 53.17 43.83 34.50 23.33 10 0	1863.7 1899.2 1901.6 1901.6 2032.3 2195.5 1960.8 0.0	133879 118701 101099 83351 70113 51229 19608 0	0.232 0.205 0.175 0.144 0.121 0.089 0.034 0.000	669 593 505 417 350 256 98 0	669 1262 1768 2184 2534 2790 2888 2888	6 6 6 6	55 55 55 55 55 55 55 55	3 3 3 3 3 3 3 3 3 3 3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2174 1923 1642 1354 1135 832 318 0	83 222 41 91 24	8061 7076 6862 8259 2089 5974 980 0		
			Σ	13754.6	577980		2888						938	8 14	19300	1000	649
	Y-Dire	ection Loa	ding	T from	C _t = x = C _u = n Model =	0.02 0.75 1.4		T k Vb Cs=	= 1.0 = 28	493 000 388 . <mark>21</mark>	s kips						
	i	h _i ft	h ft	w kips	w*h ^ĸ	C _{VX}	f _i kips	V _i kips		Bx ft	5%Bx ft	Ax	M _z k-ft		M _{over} k-ft	M,	
	Roof 6 5 4 3 2 1 0	9.33 9.33 9.33 9.33 11.17 13.33 10 0	71.83 62.50 53.17 43.83 34.50 23.33 10 0	1863.738 1899.211 1901.552 1901.552 2032.275 2195.542 1960.754 0	133879 118701 101099 83351 70113 51229 19608 0	0.232 0.205 0.175 0.144 0.121 0.089 0.034 0.000	669 593 505 417 350 256 98 0	669 1262 1768 2184 2534 2790 2888 2888	1: 1: 1: 1: 1: 1:	94 94 94 94 94 94 94 94	10 10 10 10 10 10 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0	6490 575- 490 404 3399 2483 950 0	4 3 1 2 1 1 9 1 3 {	8061 7076 6862 8259 2089 5974 980 0		
			Σ	13754.62	577980		2888						2801	8 14	19300	33526	8.9

Drift Limits

								Controlling	Max
		Height Above	Max Glazing	Glazing	Glazing	0.5%		Story Drift	Building
	Story Height	Seismic Base	Height	Limit	Ratio	transient	Code Allowable	Limit	Drift at h
	h _i	h			h _i /175		$0.020h_{sx}/(C_d/I_e)$		
	(ft)	(ft)	(ft)	(in)	(in)	(in)	(in)	(in)	(in)
Roof	9.33	71.83	5.84	1.20	0.6400	0.5600	0.4480	0.4480	3.4480
6th	9.33	62.50	5.84	1.20	0.6400	0.5600	0.4480	0.4480	3.0000
5th	9.33	53.17	5.84	1.20	0.6400	0.5600	0.4480	0.4480	2.5520
4th	9.33	43.83	5.84	1.20	0.6400	0.5600	0.4480	0.4480	2.1040
3rd	11.17	34.50	5.50	1.52	0.7657	0.6700	0.5360	0.5360	1.6560
2nd	13.33	23.33	6.50	1.54	0.9143	0.8000	0.6400	0.6400	1.1200
1st	10.00	10.00	7.5	1.00	0.6857	0.6000	0.4800	0.4800	0.4800
Base	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000

Drift Limits

Allowable Story Drift according to ASCE 7-10 Table 12.12-1 $\Delta_a = .020 h_{sx}$

WIM reccommend wall thickness
$$\geq h_{15} \rightarrow \frac{13\frac{4}{15}}{15} = 10\frac{2}{3} \rightarrow USE 12''$$

ASCE 41-06 reccomends A = .5% fransient + code drif equation controls @ .02/5= $\frac{1}{250}$

Ļ	ŀ	ł	1	ł	¥	l
	_]

ACI 318-11 Section 21.1.4.3 limits lightweight concrete strength to 5000¹¹ for frames and walks of the lateral force resisting system is use normal weight higher elasticity and the

$$V_{n} = A_{cv} \left(\mathcal{U}_{c} \ \lambda \sqrt{r'c} + f_{s} f_{y} \right)$$

$$= A_{cv} \left(3.0 \ (1.0) \sqrt{8000} + .00287 \ (60,000) \right)$$

$$= A_{cv} \left(440.5 \right)$$

$$V_{b} = 2888^{k} \leq .75 \ A_{cr} \left(440.5 \right)^{psl} \ f_{or} \ 18^{m} \ \text{thick wall}$$

$$= J_{bv} \geq \frac{2888^{k}}{.75 \left(18^{m} \right) \left(440.5^{ksl} \right)} \times \frac{1^{2r}}{12^{m}} = \left(40.5^{n} \right)^{psl}$$

$$c \geq \frac{J_{w}}{600 \ (4w/hw)}$$

$$d_{iglacement} \otimes \frac{1}{10} + \frac{1}{10}$$

Appendix D – Wall Shears Forces and Moments

			EX	EXT To	tal E	X EX	те	X EX	т	EX	EXT	EX	EXT	Total			
Story	Pier	height Loc		P P	ital E. V						Mower	M3		M3			
ROOF	WH1	71.83 Top	r 0	г г 0	o	30.18	0.01	30.18	0.01		0.718333	1413		0			
ROOF	WH1	Bottom	0	0	0	30.18	0.01	30.18	0.01	2107.95	0./16555	3380.234		3381.101			
6TH	WH1	62.50 Top	0	0	0	61.56	0.01	31.38	0.01	1961.25	5 6 2 5	3380.234		3381.101			
6TH	WH1	Bottom	ő	ő	ő	61.56	0.1	31.38	0.09	1501.25	0.020	10274.62		10287.14			
5TH	WH1	53.17 Top	0	0	ő	93.03	0.41	31.30	0.31	1673 155	16.48167			10287.14			
5TH	WH1	Bottom	ŏ	ő	ŏ	93.03	0.41	31.47	0.31	1075.155	10.40107	20694.48		20753.22			
4TH	WH1	43.83 Top	õ	ŏ	ŏ	116.55	0.56	23.52	0.15	1030.96	6 575	20694.48		20753.22			
4TH	WH1	Bottom	0	0	ō	116.55	0.56	23.52	0.15	1000000	0107.0	33748.47		33869.76			
3RD	WH1	34.50 Top	ő	ő	ő	135.6	0.63	19.05	0.07	657.225	2,415	33748.47		33869.76			
3RD	WH1	Bottom	0	0	0	135.6	0.63	19.05	0.07			51919.23		52125.26			
2ND	WH1	23.33 Top	0	0	0	163.45	1.02	27.85	0.39	649.8333	9.1	51919.23		52125.26			
2ND	WH1	Bottom	0	0	ō	163.45	1.02	27.85	0.39			78071.9		78440.54			
1ST	WH1	10.00 Top	0	0	0	234.43	3.13	70.98	2.11	709.8	21.1	78071.9		78440.54	P =	0.15	
1ST	WH1	Bottom	0	Ū	0	234.43	3.13	70.98	2.11			106203.8		106948.3	w., =	1.5	
															I.,, =	15.25	
										0050.450	60 04 F	0040.460	- 14				
										8850.153	62.015	8912.168	= IVI _{over}	≤	1V1 ₀ =	18 7 9.396	
			EX	EXT To	otal E	X EX	т е	X EX	т	EX	EXT	EX	EXT	Total			
Story	Pier	height Loc		P P	V V					Mower	Mower	M3		M3			
ROOF	WH2	71.83 Top	. 0	 0	0	30.18	0.01	30.18	0.01		0.718333	0		0			
ROOF	WH2	Bottom	0	ő	ŏ	30.18	0.01	30.18	0.01	2107.55	0.710333	3380.234		3381.101			
6TH	WH2	62.50 Top	ő	ŏ	ŏ	61.56	0.1	31.38	0.09	1961.25	5.625	3380.234		3381.101			
6TH	WH2	Bottom	0	0	0 0	61.56	0.1	31.38	0.09	1001120	01010	10274.62		10287.14			
5TH	WH2	53.17 Top	ů 0	ő	ŏ	93.03	0.41	31.47	0.31	1673.155	16.48167			10287.14			
5TH	WH2	Bottom	0	0 0	ō	93.03	0.41	31.47	0.31	10/01100	10110101	20694.48		20753.22			
4TH	WH2	43.83 Top	0	0	0	116.55	0.56	23.52	0.15	1030.96	6.575	20694.48		20753.22			
4TH	WH2	Bottom	0	0	ō	116.55	0.56	23.52	0.15			33748.47		33869.76			
3RD	WH2	34.50 Top	0	0	0	135.6	0.63	19.05	0.07	657.225	2.415	33748.47		33869.76			
3RD	WH2	Bottom	0	0	0	135.6	0.63	19.05	0.07			51919.23		52125.26			
2ND	WH2	23.33 Top	0	0	0	163.45	1.02	27.85	0.39	649.8333	9.1	51919.23		52125.26			
2ND	WH2	Bottom	0	0	0	163.45	1.02	27.85	0.39			78071.9	368.638	78440.54			
1ST	WH2	10.00 Top	0	0	0	234.43	3.13	70.98	2.11	709.8	21.1	78071.9	368.638	78440.54	P =	0.15	
1ST	WH2	Bottom	0	0	0	234.43	3.13	70.98	2.11			106203.8	744.547	106948.3	w., =	1.5	
															_w =	15.25	
										8850.153	62.015	8912.168	=Maure	≤		1879.396	
										00001100	02.010	0512.100	ower	-		10/01000	
			EX	EXT To	tal E	X EX	т е	X EX	т	EX	EXT	EX	EXT	Total			
Story	Pier	height Loc	P	р р	V	'2 V2	F	E Fi		Mover	Mover	M3	M3	M3			
ROOF	WF.5	- 71.83 Top	3.89	-0.58	4.47	237.87	4.63	237.87	4.63		332.5883	-4215.94	-92,215	4308.154			
ROOF	WF.5	Bottom	9.09	-2.73	11.82	237.87	4.63	237.87	4.63			4825.883		4889.826			
6TH	WF.5	62.50 Top	9.48	-3.65	13.13	381.66	7.25	143.79	2.62	8986.875	163.75			1644.656			
6TH	WF.5	Bottom	11.69	-8.4	20.09	381.66	7.25	143.79	2.62			10074.14	99.874	10174.01			
5TH	WF.5	53.17 Top	11.93	-9.86	21.79	497.78	9.34	116.12	2.09	6173.713	111.1183	1066.774	-83.37	1150.144			
5TH	WF.5	Bottom	12.19	-16.67	28.86	497.78	9.34	116.12	2.09			16674.96	143.244	16818.2			
4TH	WF.5	43.83 Top	11.96	-18.62	30.58	595.63	11.14	97.85	1.8	4289.092	78.9	5544.27	-81.869	5626.139			
4TH	WF.5	Bottom	11.73	-27.17	38.9	595.63	11.14	97.85	1.8			24501.94	189.993	24691.94			
3RD	WF.5	34.50 Top	10.73	-29.5	40.23	654.49	12.44	58.86	1.3	2030.67	44.85	11879.87	-69.728	11949.6			
3RD	WF.5	Bottom	1.15	-41.84	42.99	654.49	12.44	58.86	1.3			34296.53	235.465	34531.99			
2ND	WF.5	23.33 Top	-2.61	-44.61	47.22	668.74	12.01	14.25	-0.43	332.5	-10.0333	20897.52		20933.37			
2ND	WF.5	Bottom	-33.24	-62.66	95.9	668. 7 4	12.01	14.25	-0.43			46690.56	280.082	46970.64			
1ST	WF.5	10.00 Top	-38.3	-66.13	104.43	542.16	8.89	-126.58	-3.12	-1265.8	-31.2	33995.26	46.786	34042.04	P =	0.15	
1ST	WF.5	Bottom	-45.23	-80.52	125.75	542.16	8.89	-126.58	-3.12			56949.02	329.171	5 7 2 7 8.19	w., =	1.5	
															I.,, =	9.166667	
										37634.05	689.9733	38324.02	= M _{over}	≤	Mr =	679.0495	

			EX EX	гт	Total E	EX EXT	EX	EXT	г	EX	EXT	EX	EXT	Total		
Story	Pier	height Loc	р р	F	, ر	/2 V2	Fi	Fi		Mover	Mover	M3	M3	M3		
ROOF	WE.2	71.83 Top	0.61	0.79	1.4	22.06	-2.56	22.06	-2.56		-183.893	33.667	43.686	77.353		
ROOF	WE.2	Bottom	-11.93	4.49	16.42	22.06	-2.56	22.06	-2.56			1814.74	-39.345	1854.085		
6TH	WE.2	62.50 Top	-17.48	5.7	23.18	45.65	-3.88	23.59	-1.32	1474.375	-82.5	1509.335	27.115	1536.45		
6TH	WE.2	Bottom	-36.36	11.93	48.29	45.65	-3.88	23.59	-1.32			5584.413	-64.406	5648.819		
5TH	WE.2	53.17 Top	-44.75	13.76	58.51	73.26	-5.09	27.61	-1.21	1467.932	-64.3317	5122.896	36.349	5159.245		
5TH	WE.2	Bottom	-84.11	22.11	106.22	73.26	-5.09	27.61	-1.21			11163.56	-74.074	11237.63		
4TH	WE.2	43.83 Top	-97.16	24.44	121.6	93.47	-6.22	20.21	-1.13	885.8717	-49.5317	10445.82	53.943	10499 .7 6		
4TH	WE.2	Bottom	-150.62	34.62	185.24	93.47	-6.22	20.21	-1.13			17974.81	-83.035	18057.85		
3RD	WE.2	34.50 Top	-168.88	37.35	206.23	123.07	-7.16	29.6	-0.94	1021.2	-32.43	16970.53	6 7.5 69	17038.1		
3RD	WE.2	Bottom	-265.09	52.12	317.21	123.07	-7.16	29.6	-0.94			28170.5		28250.64		
2ND	WE.2	23.33 Top	-290 .7 9	55.13	345.92	149.95	-7.19	26.88	-0.03	62 7. 2	-0.7	26756.81		26842.51		
2ND	WE.2	Bottom	-462.45	73.6	536.05	149.95	-7.19	26.88	-0.03			41306.77		41355.33		
1ST	WE.2	10.00 Top	-503.65	76.45	580.1	216.85	-4.53	66.9	2.66	669	26.6	39040.56	108.023	39148.58	P =	0.15
1ST	WE.2	Bottom	-651.06	87.12	738.18	216.85	-4.53	66.9	2.66			56954.48	151.025	57105.51	w., =	1.5
															_w =	9.166667
										7730.222	-386.787	8117.008	=M _{over}	≤	Mr =	679.0495
			EX EX	гт	iotal E	EX EXT	EX.	EXT	г	EX	EXT	EX	EXT	Total		
Story	Pier	height Loc	P P	F	› ۱	V2 V2	Fi	Fi		Mover	Mover	M3	M3	M3		
ROOF	WD	71.83 Top	5.79	0.28	6.07	30.2	0.41	30.2			29.45167	-274.902	-13.393	288.295		
ROOF	WD	Bottom	40.29	0.9	41.19	30.2	0.41	30.2	0.41			1468.274	3.633	1471.907		
6TH	WD	62.50 Top	53.01	1.17	54.18	53.9	0.74	23.7	0.33	1481.25	20.625	864.173	-9.416	873.589		
6TH	WD	Bottom	116.18	2.63	118.81	53.9	0.74	23.7	0.33			3900.541	3.755	3904.296		
5TH	WD	53.17 Top	136.15	3.11	139.26	80.78	1.19	26.88	0.45	1429.12	23.925	2951.884	-18.925	2970.809		
5TH	WD	Bottom	228.88	5.45	234.33	80.78	1.19	26.88	0.45			7594.04	3.376	7597.416		
4TH	WD	43.83 Top	255.79	6.13	261.92	101.41	1.6	20.63	0.41	904.2817	17.97167	6315.934	-29.051	6344.985		
4TH	WD	Bottom	371.87	9.25	381.12	101.41	1.6	20.63	0.41			12160.52	2.616	12163.14		
3RD	WD	34.50 Top	404.09	10.12	414.21	118.11	2.06	16.7	0.46	576.15	15.87	10630.17	-39.134	10669.3		
3RD	WD	Bottom	572.78	15.04	587.82	118.11	2.06	16.7	0.46			18444.45		18447.45		
2ND	WD	23.33 Top	610.54	16.18	626 .7 2	134.81	2.72	16.7	0.66	389.6667	15.4	16650.59		16701.81		
2ND	WD	Bottom	855.31	23.88	879.19	134.81	2.72	16.7	0.66			26594.09		26613.09		
1ST	WD	10.00 Top	904.89	25.23	930.12	185.24	2.49	50.43	-0.23	504.3	-2.3	24239.07	-45.429	24284.5	P =	0.15
1ST	WD	Bottom	1092.19	31.13	1123.32	185.24	2.49	50.43	-0.23			37571.67	-26.478	37598.15	w., =	1.5
															_w =	7.916667
										7454.135	120.9433	7575.078	= M _{over}	≤	M _e =	506.4811
			EX EX	T 1	Total B	EX EXT	EX	EXT	г	EX	EXT	EX	EXT	Total		
Story	Pier	height Loc	P P	F	> \	√2 V2	Fi	Fi		Mover	Mover	M3	M3	M3		
ROOF	WC.8	71.83 Top	-9.58	1.13	10.71	46.13	-2.09	46.13	-2.09	3313.672	-150.132	-526.98	61.952	588.932		
ROOF	WC.8	Bottom	-52.78	3.34	56.12	46.13	-2.09	46.13	-2.09			2264.044	-51.059	2315.103		
6TH	WC.8	62.50 Top	-68.55	4.32	72.87	79.32	-3.3	33.19	-1.21	2074.375	-75.625	1396.894	2.97	1399.864		
6TH	WC.8	Bottom	-144.7	9.67	154.37	79.32	-3.3	33.19	-1.21			6093.07		6165.719		
5TH	WC.8	53.17 Top	-168	11.27	179.27	113.46	-4.62	34.14	-1.32	1815.11	-70.18	4811.444	15.038	4826.482		
5TH	WC.8	Bottom	-272.93	18.65	291.58	113.46	-4.62	34.14	-1.32			11747.52	-96.185	11843.7		
4TH	WC.8	43.83 Top	-302.99	20.71	323.7	140.04	-5.62	26.58	-1	1165.09	-43.8333	10094.04		10111.02		
4TH	WC.8	Bottom	-430.92	29.7	460.62	140.04	-5.62	26.58	-1			18743.3		18861.53		
3RD	WC.8	34.50 Top	-465.98	32.1	498.08	161.26	-6.37	21.22	-0.75	732.09	-25.875	16814.89		16828.65		
3RD	WC.8	Bottom	-645.64	44.87	690.51	161.26	-6.37	21.22	-0.75			28542.61		28680.66		
2ND	WC.8	23.33 Top	-685.2	47.54	732.74	174.45	-6.65	13.19	-0.28	307.7667	-6.53333			26375.52		
2ND	WC.8	Bottom	-931.2	64.17	995.37	174.45	-6.65	13.19	-0.28	_		40749.47		40890.23	_	
1ST	WC.8	10.00 Top	-980.22	66.87	1047.09	245.35	-5.23	70.9	1.42	709	14.2	38053.51		38060.91	P =	0.15
1ST	WC.8	Bottom	-1160.97	77.46	1238.43	245.35	-5.23	70.9	1.42			57553.68	-37.718	57591.4	w. ^w =	1.5
															I.,, =	9.166667
										10117.1	-357.978	10475.08	= M _{cupr}	5	M. =	679.0495

10117.1 -357.978 10475.08 = M_{over} ≤ M_r = 679.0495

			EX E	ext t	Fotal	EX EX	а е	x F	ЭЛТ	EX	EXT	EX	EXT	Total			
Story	Pier	height Loc	P F			V2 V2				Mover	Mover	M3	M3	M3			
ROOF	WC.2	71.83 Top	6.2	-0.34	6.54	31.2	-0.72	31.2	-0.72			-294.592	16.24	310.832			
ROOF	WC.2	Bottom	42.1	-1.29	43.39	31.2	-0.72	31.2	-0.72			1494.945		1514.475			
6TH	WC.2	62.50 Top	54.61	-1.67	56.28	52.53	-1.07	21.33	-0.35		-21.875			902.475			
6TH	WC.2	Bottom	114.68	-3.53	118.21	52.53	-1.07	21.33	-0.35			3931.015		3964.55			
5TH	WC.2	53.17 Top	133.85	-4.12	137.97	79.07	-1.68	26.54		1411.043	-32.4317			3025.184			
5TH	WC.2	Bottom	223.05	-7.02	230.07	79.07	-1.68	26.54	-0.61			7638.955		7694.897			
4TH	WC.2	43.83 Top	249.05	-7.86	256.91	99.7	-2.18	20.63	-0.5	904.2817	-21.9167			6420.12			
4TH	WC.2	Bottom	361.54	-11.62	373.16	99.7	-2.18	20.63	-0.5			12227.66		12309.04			
3RD	WC.2	34.50 Top	392.55	-12.66	405.21	114.88	-2.61	15.18	-0.43	523. 7 1	-14.835			10786.65			
3RD	WC.2	Bottom	553.78	-18.34	572.12	114.88	-2.61	15.18	-0.43			18490.25		18602.21			
2ND	WC.2	23.33 Top	589.66	-19.61	609.27	129,95	-3.05	15.07	-0,44		-10.2667			16837.26			
2ND	WC.2	Bottom	820.68	-28	848.68	129.95	-3.05	15.07	-0.44			26604.7		26746.44			
1ST	WC.2	10.00 Top	868.77	-29.58	898.35	183.56	-3.66	53.61	-0.61	536.1	-6.1	24320.45		24386.83	P =	0.15	
1ST	WG2	Bottom	1053.19	-36.61	1089.8	183,56	-3.66	53.61	-0.61	00011	011	37588.3		37759.36	w =	1.5	
131	WV C+2	bottom	1055.15	-30.01	1005.0	105.50	-3,00	55.01	-0.01			57500.5	-171.057	37735.30			
																7.916667	
										7301.093	-159.145	7460.238	= M _{over}	5	M _r =	506.4811	
			D/ 1			D/ D	<i>.</i> .			54	DO	54	DO	T . 1			
Ch	Pier	height Loc	EX E			EX EX V2 V2			EXT -,	EX	EXT	EX M3	EXT M3	Total M3			
Story		-								Mover	Mover						
ROOF	WC	71.83 Top	-5.39	-1.05	6.44	40.38	1.64	40.38	1.64	2900.63	117.8067						
ROOF	WC	Bottom	-41.11	-2.88	43.99	40.38	1.64	40.38	1.64			2261.225		2286.863			
6TH	WC	62.50 Top	-54.66	-3.74	58.4	72.97	2.73	32.59	1.09	2036.875	68.125			1537.078			
6TH	WC	Bottom	-120.47	-8.55	129.02	72.97	2.73	32.59	1.09			6068.772		6088.998			
5TH	WC	53.17 Top	-141.54	-9.98	151.52	109.02	3.79	36.05	1.06		56.35667			4968.096			
5TH	WC	Bottom	-239.09	-16.62	255.71	109.02	3.79	36.05	1.06			11754.5		11755.75			
4TH	WC	43.83 Top	-268.04	-18.46	286.5	139.55	4.66	30.53	0.87	1338.232	38,135	10162.24		10262.61			
4TH	WC	Bottom	-394.07	-26.59	420.66	139.55	4.66	30.53	0.87			18859.58		18885.15			
3RD	WC	34.50 Top	-430.01	-28.77	458.78	168.24	5.37	28.69	0.71	989.805	24.495			17027.88			
3RD	WC	Bottom	-620.42	-40.46	660.88	168.24	5.37	28.69	0.71			28954.72		29022.5			
2ND	WC	23.33 Top	-662.44	-42.92	705.36	178.06	6.03	9.82	0.66		15.4	26643.75		26847.29			
2ND	WC	Bottom	-926.48	-58.43	984.91	178.06	6.03	9.82	0.66			40610.99		40703.09			
1ST	WC	10.00 Top	-978.2	-60.77	1038.97	252.69	2.88	74.63	-3.15	746.3	-31.5			37987.54	P =	0.15	
1ST	WC	Bottom	-1168.27	-69.71	1237.98	252.69	2.88	74.63	-3.15			57634.99	-367.019	58002.01	w=	1.5	
															_w =	9.166667	
										10157.63	288.8183	10446.45	= M _{over}	\leq	M _r =	679.0495	
						EX EX			TX	EX	EXT	EX	EXT	Total			
Story	Pier	height Loc	P F	o t	5	V2 V2	2 Fi	F	1	Mover	Mover	M3	M3	M3			
ROOF	WB	71.83 Top	0	0	0	200.8	-1.32	200.8	-1.32	14424.13	-94.82	0	0	0			
ROOF	WB	Bottom	0	0	0	200.8	-1.32	200.8	-1.32			22489.3		2263 7. 4			
6TH	WB	62.50 Top	0	0	0	452.84	-2.68	252.04	-1.36	15752.5	-85	22489.3	-148.103	22637.4			
6TH	WB	Bottom	0	0	0	452.84	-2.68	252.04	-1.36			73207.75	-448.37	73656.12			
5TH	WB	53.17 Top	0	0	0	627.56	-3.76	174.72	-1.08	9289.28	-57.42	73207.75	-448.37	73656.12			
5TH	WB	Bottom	0	0	0	627.56	-3.76	174.72	-1.08			143494.9	-869.182	144364.1			
4TH	WB	43.83 Top	0	0	0	781.08	-4.5	153.52	-0.74	6 7 29.293	-32.4367	143494.9	-869.182	144364.1			
4TH	WB	Bottom	0	0	0	781.08	-4.5	153.52	-0.74			230976.4	-1373.45	232349.8			
3RD	WB	34.50 Top	0	0	0	922.74	-4.99	141.66	-0.49	4887.27	-16.905	230976.4	-1373.45	232349.8			
3RD	WB	Bottom	0	0	0	922.74	-4.99	141.66	-0.49			354623	-2042.31	356665.3			
2ND	WB	23.33 Top	0	0	0	1027.13	-5.9	104.39	-0.91	2435.767	-21.2333	354623	-2042.31	356665.3			
2ND	WB	Bottom	0	0	0	1027.13	-5.9	104.39	-0.91			518963.6		521950.5			
1ST	WB	10.00 Top	0	0	0	793.29	-7.11	-233.84	-1.21	-2338.4	-12.1	518963.6	-2986.86	521950.5	P =	0.15	
1ST	WB	Bottom	0	0	0	793.29	-7.11	-233.84	-1.21			614157.9	-3840.58	617998.5	w., =	1.5	
															l.,, =	21.5	
										51179.84	-319.915	51499.76	= M	≤		3735.558	

51179.84 -319.915 51499.76 = $M_{over} \leq M_r = 3735.558$

Story ROOF	height 71.8 3		EXT V2 0.01		EXT Fi 0.01	EX M _{ower} 48056.5	EXT M _{ower} 0. 7 18333	
6TH	62.50	1261.99	-0.01	592.99	-0.02	37061.88	-1.25	
5TH	53.17	1766.99	-0.01	505	0	26 8 49.1 7	0	
4TH	43.83	2183.98	0	416.99	0.01	182 78. 06	0.438333	
3RD	34.50	2533.99	0	350.01	-1.6E-15	120 7 5.35	-5.3E-14	
2ND	23.33	2 7 89.99	0.01	256	0.01	59 7 3.333	0.233333	
1ST	10.00	2888	-0.01	98.01	-0.02	980.1	-0.2	
Total						149274.4	-0.06	
	0 0	EX	БЛ	EX	EXT	EX	EXT	
Story	height	V2	V2	Fi	Fi	Mover	Mover	
ROOF	71.83333	669	3.55E-15	669	3.55E-15	48056.5	-4.5E-13	
6TH	62.5	1262	-7.1E-15	593	-3.6E-15	37062.5	-2.3E-13	
5TH	53.16667	1766.99	0	504.99	1.07E-14	26848.64	6.82E-13	

ŧ	26848.64	1.07E-14	504.99	0	1766.99	53.16667	5TH
	182 7 8.94	-0.01	417.01	-0.01	2184	43.83333	4TH
	12075	0.01	350	0	2534	34.5	3RD
	5973.567	-0.01	256.01	-0.01	2 7 90.01	23.33333	2ND
	979.8	0.02	97.98	0.01	2 887. 99	10	1ST
	1492 7 4.9						Total

			EY E	YT	Total	EY	EYT I	ЭX	EXT	EX	EXT	EY	EYT	Total		
Story	Pier	height Loc	P F			V2		-	Fi		Mover	M3		M3		
ROOF	W1	71.83 Top	-3.69	1	4.69	221.92	-37.61	221.92	-37.61			-3495.94	614 729	4110.666		
ROOF	W1	Bottom	-4.21	2.98	7.19	221.92	-37.61	221.92			2702100	6666.898		7689.074		
6TH	W1	62.50 Top	-8.56	4.35	12.91	371.38	-63.83	149.46			-1638.75			1569,943		
6TH	W1	Bottom	-26.16	10.31	36.47	371.38	-63.83	149.46	-26.22			16964.12		19600.22		
5TH	W1	53.17 Top	-30.18	11.99	42.17	486.16	-85.52	114.78	-21.69	6102.47	-1153.19	9453.743	-1285.68	10739.43		
5TH	W1	Bottom	-44.82	19.46	64.28	486.16	-85.52	114.78	-21.69			30242.27	-4732.16	34974.43		
4TH	W1	43.83 Top	-48.31	21.52	69.83	580.39	-104.24	94.23	-18.72	4130.415	-820.56	20985.45	-3024.35	24009.8		
4TH	W1	Bottom	-61.91	30.4	92.31	580.39	-104.24	94.23	-18.72			46073.58	-7249.99	53323.57		
3RD	W1	34.50 Top	-64.94	32.76	97.7	656.41	-120.73	76.02	-16.49	2622.69	-568.905	35487.05	-5248.85	40735.89		
3RD	W1	Bottom	-73.13	44.06	117.19	656.41	-120.73	76.02	-16.49			67841.8	-10786.9	78628.74		
2ND	W1	23.33 Top	-74.26	46.56	120.82	657.85	-125.8	1.44	-5.07	33.6	-118.3	56622.17	-8593.6	65215.77		
2ND	W1	Bottom	-72.36	61.96	134.32	657.85	-125.8	1.44	-5.07			94671.54	-15276.4	109947.9		
1ST	W1	10.00 Top	-70.25	64.97	135.22	595.19	-115.25	-62.66	10.55	-626.6	105.5	84173.21	-13136	97309.2	P =	0.15
1ST	W1	Bottom	-51.65	75.89	127.54	595.19	-115.25	-62.66	10.55			117485.7	-18984.2	136469.9	w _w =	1.5
															=	17.83333
										37545.08	-6895.85	44440.93	= M	≤		2570.062
										070-0000	0000100		- Over	-		20701002
			EY E	YT	Total	EY	EYT I	EX .	EXT	EX	EXT	EY	EYT	Total		
Story	Pier	height Loc	P F			V2		1	Fi		Mover	M3		M3		
ROOF	W2	71.83 Top	6.12	-1.63	7.75	-11.65	5	-11.65	5		359.1667	495.827	-132.091	627.918		
ROOF	W2	Bottom	31.41	-8.25	39.66	-11.65	5	-11.65				1240.226		1348.067		
6TH	W2	62.50 Top	39.67	-10.48	50.15	-5.05	5.8	6.6	0.8	412.5	50	1908.975	-288.276	2197.251		
6TH	W2	Bottom	77.36	-20.86	98.22	-5.05	5.8	6.6				4396.311		4875.745		
5TH	W2	53.17 Top	86.19	-23.65	109.84	16.62	4.21	21.67		1152.122	-84.535	5111.507		5817.09		
5TH	W2	Bottom	120.52	-35.71	156.23	16.62	4.21	21.67	-1.59			9754.399	-1210.29	10964.68		
4TH	W2	43.83 Top	128.58	-38.91	167.49	32.11	3.64	15.49	-0.57	678.9783	-24.985	10406.99	-1469.74	11876.73		
4TH	W2	Bottom	160.94	-52.64	213.58	32.11	3.64	15.49	-0.57			16624.23	-2174.2	18798.43		
3RD	W2	34.50 Top	168.42	-56.2	224.62	43.95	3.42	11.84	-0.22	408.48	-7.59	17229.78	-2462.98	19692. 7 6		
3RD	W2	Bottom	204.55	-74.75	279.3	43.95	3.42	11.84	-0.22			26046.48	-3507.05	29553.52		
2ND	W2	23.33 Top	207.58	-77.98	285.56	92.6	-4.5	48.65	-7.92	1135.167	-184.8	26292.17	-3768.25	30060.42		
2ND	W2	Bottom	203.07	-94.62	29 7. 69	92.6	-4.5	48.65				40742.1	-5836.96	46579.06		
1ST	W2	10.00 Top	190.14	-95.78	285.92	212.41	-25.13	119.81	-20.63	1198.1	-206.3	39695.23	-5930.46	45625.68	P =	0.15
1ST	W2	Bottom	106.85	-95.59	202.44	212.41	-25.13	119.81	-20.63			58438.16	-8931.43	67369.59	ww =	1.5
															I.,, =	13.5
										4148.488	-99.0433	4247.532	= M _{over}	≤	M _r =	1472.808
			EY E	YT	Total	EY	EYT I	EX.	EXT	EX	EXT	EY	EYT	Total		
Story	Pier	height Loc	P F)	P	V2	V2 I	i i	Fi	Mover	Mover	M3	M3	M3		
ROOF	W6	71.83 Top	0	0	0	93.4	-5.02	93.4	-5.02			0	0	0		
ROOF	W6	Bottom	0	0	0	93.4	-5.02	93.4	-5.02			10460.27	-561.807	11022.08		
6TH	W6	62.50 Top	0	0	0	229.28	-15.21	135.88	-10.19	8492.5	-636.875	10460.27	-561.807	11022.08		
6TH	W6	Bottom	0	0	0	229.28	-15.21	135.88	-10.19			36139.16	-2265.67	38404.83		
5TH	W6	53.17 Top	0	0	0	343.57	-22.41	114.29		6076.418	-382.8	36139.16	-2265.67	38404.83		
5TH	W6	Bottom	0	0	0	343.57	-22.41	114.29	-7.2			74619.38		79395.34		
4TH	W6	43.83 Top	0	0	0	439.88	-28.59	96.31			-270.89	74619.38		79395.34		
4TH	W6	Bottom	0	0	0	439.88	-28.59	96.31				123886.5		131864.3		
3RD	W6	34.50 Top	0	0	0	528.34	-33.82	88.46			-180.435	123886.5		131864.3		
3RD	W6	Bottom	0	0	0	528.34	-33.82	88.46				194683.9		207194.1		
2ND	W6	23.33 Top	0	0	0	619.62	-38.41	91.28			-107.1	194683.9		207194.1		
2ND	W6	Bottom	0	0	0	619.62	-38.41	91.28				293823		3124 78. 1		
1ST	W6	10.00 Top	0	0	0	613.81	-31.1	-5.81			73.1			3124 78. 1	P =	0.15
1ST	W6	Bottom	0	0	0	613.81	-31.1	-5.81	7.31			36 7 480	-2238 7	389867.1	w. ^w =	1.5
															۱ _w =	26.5
										30623.38	-1865.6	32488.98	=M _{over}	≤	M _r =	5675.058

			EY E	YT.	Total	EY	EYT	EX .	EXT	EX	EXT	EY	EYT	Total		
Story	Pier	height Loc	P F)	Р	V2	V2	i	Fi	Mover	Mover	M3	M3	M3		
ROOF	W12	71.83 Top	-0.43	0.18	0.61	142.12	9.01	142.12	9.01	10208.95		-3145.54	-201.157	3346.695		
ROOF	W12	Bottom	-3.04	1.19	4.23	142.12	9.01	142.12	9.01			4991.485	302.464	5293.949		
6TH	W12	62.50 Top	-4.09	1.48	5.57	249.95	16.26	107.83	7.25	6739.375	453.125	1849.551	93.977	1943.528		
6TH	W12	Bottom	-9.35	2.67	12.02	249.95	16.26	107.83	7.25			13808.06	845.205	14653.27		
5TH	W12	53.17 Top	-10.55	3.03	13.58	361.57	25.35	111.62	9.09	5934.463	483.285	8861.194	498.18	9359.374		
5TH	W12	Bottom	-14.45	4.69	19.14	361.57	25.35	111.62	9.09			25981.12	1649.867	27630.99		
4TH	W12	43.83 Top	-15.42	5.15	20.57	458.2	33.33	96.63	7.98	4235.615	349.79	19334.2	1159.572	20493.77		
4TH	W12	Bottom	-19.08	7.08	26.16	458.2	33.33	96.63	7.98			41062.25	26 77. 595	43739.84		
3RD	W12	34.50 Top	-19.94	7.57	27.51	544.01	41.31	85.81	7.98	2960.445	275.31	32981.4	2058.15	35039.55		
3RD	W12	Bottom	-23.54	9.84	33.38	544.01	41.31	85.81	7.98			62040.23	4178.871	66219.1		
2ND	W12	23.33 Top	-23.99	10.23	34.22	622.83	51.06	78.82	9.75	1839.133	227.5	52461.41	3400.853	55862.26		
2ND	W12	Bottom	-24.02	12.29	36.31	622.83	51.06	78.82	9.75				6387.347			
1ST	W12	10.00 Top	-22.61	12.98	35.59	695.94	60.4	73.11	9.34	731.1	93.4		5438.714		P =	0.15
1ST	W12	Bottom	-12.54	16.37	28.91	695.94	60.4	73.11	9.34			117932.5	8519.475	126451.9	ww=	1.5
															I =	18
										32649.09	2529.628	35178.71	= M _{over}	5	Mr = 2	618.325
			EY E	YT	Total	EY	EYT	ex.	EXT	EX	EXT	EY	EYT	Total		
Story	Pier	height Loc	EY E P F						EXT Fi		EXT M _{owr}	EY M3	EYT M3	Total M3		
Story ROOF	Pier W15	height Loc 71.83 Top							Fi		Mover		M3			
		-	P F)	Р	V2	V2	-1	Fi	M _{ower} 16033.92	Mover	M3	M3 -848.101	M3		
ROOF	W15	71.83 Top	P F 0.56	-0.23	P 0. 7 9	V2 223.21	V2 1	1 223.21	Fi 28.62 28.62	M _{ower} 16033.92	M _{ower} 2055.87	M3 -6604.58 5985. 77 5	M3 -848.101 782.334	M3 7452.676 6768.109		
ROOF ROOF	W15 W15	71.83 Top Bottom	P F 0.56 3.74	-0.23 -1.36	P 0.79 5.1	V2 223.21 223.21	V2 28.62 28.62	7 223.21 223.21	Fi 28.62 28.62	M _{owr} 16033.92	M _{ower} 2055.87	M3 -6604.58 5985. 77 5 623.855	M3 -848.101 782.334	M3 7452.676 6768.109 689.621		
ROOF ROOF 6TH	W15 W15 W15	71.83 Top Bottom 62.50 Top	P F 0.56 3.74 4.93	-0.23 -1.36 -1.73	P 0.79 5.1 6.66	V2 223.21 223.21 416.44	V2 28.62 28.62 56.98	223.21 223.21 223.21 193.23	Fi 28.62 28.62 28.36 28.36	M _{ower} 16033.92 120 7 6.88	M _{ower} 2055.87 1 77 2.5	M3 -6604.58 5985. 775 623.855 18081.94	M3 -848.101 782.334 65.766	M3 7452.676 6768.109 689.621 20571.06		
ROOF ROOF 6TH 6TH	W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom	P F 0.56 3.74 4.93 10.8	-0.23 -1.36 -1. 7 3 -3.35	P 0.79 5.1 6.66 14.15	V2 223.21 223.21 416.44 416.44	V2 28.62 28.62 56.98 56.98	223.21 223.21 223.21 193.23 193.23	Fi 28.62 28.62 28.36 28.36	M _{ower} 16033.92 120 7 6.88	M _{ower} 2055.87 1 77 2.5	M3 -6604.58 5985.775 623.855 18081.94 9493.794	M3 -848.101 782.334 65.766 2489.114	M3 7452.676 6768.109 689.621 20571.06 10805.56		
ROOF ROOF 6TH 6TH 5TH	W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top	P F 0.56 3.74 4.93 10.8 12.14	-0.23 -1.36 -1.73 -3.35 -3.85	P 0.79 5.1 6.66 14.15 15.99	V2 223.21 223.21 416.44 416.44 559.07	V2 28.62 28.62 56.98 56.98 78.37	223.21 223.21 193.23 193.23 142.63	Fi 28.62 28.62 28.36 28.36 28.36 21.39 21.39	M _{ower} 16033.92 120 7 6.88	M _{ower} 2055.87 1 77 2.5 113 7. 235	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44	M3 -848.101 782.334 65.766 2489.114 1311.767	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22		
ROOF ROOF 6TH 6TH 5TH 5TH	W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom	P P P 0.56 3.74 4.93 10.8 12.14 16.65	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07	P 0.79 5.1 6.66 14.15 15.99 22.72	V2 223.21 223.21 416.44 416.44 559.07 559.07	V2 28.62 28.62 56.98 56.98 78.37 78.37	223.21 223.21 193.23 193.23 142.63 142.63	Fi 28.62 28.62 28.36 28.36 28.36 21.39 21.39	M _{owr} 16033.92 12076.88 7583.162 5012.342	M _{ower} 2055.87 1 77 2.5 113 7. 235	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27		
ROOF ROOF 6TH 6TH 5TH 5TH 4TH	W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top	P F 0.56 3.74 4.93 10.8 12.14 16.65 1 7.77	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47	V2 223.21 223.21 416.44 416.44 559.07 559.07 673.42	V2 28.62 28.62 56.98 56.98 78.37 78.37 95.85	223.21 223.21 193.23 193.23 142.63 142.63 114.35	Fi 28.62 28.62 28.36 28.36 21.39 21.39 1 7. 48 1 7. 48	M _{owr} 16033.92 12076.88 7583.162 5012.342	M _{ower} 2055.87 1772.5 1137.235 766.2067	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15		
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH	W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32	V2 223.21 223.21 416.44 416.44 559.07 559.07 673.42 673.42	V2 28.62 28.62 56.98 56.98 78.37 78.37 95.85 95.85	223.21 223.21 193.23 193.23 142.63 142.63 144.35 114.35 114.35 87.87 87.87	Fi 28.62 28.62 28.36 28.36 21.39 21.39 1 7. 48 1 7. 48	M _{ower} 16033.92 120 76.88 758 3.162 5012.342 3031.515	M _{ower} 2055.87 1772.5 1137.235 766.2067 481.965	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84	M3 7452,676 6768,109 689,621 20571,06 10805,56 37242,22 24810,27 56764,15 42390,02 82603,91		
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH 3RD 3RD 2ND	W15 W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom 34.50 Top	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13 27.75	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28 -9.96 -13.19 -13.77	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32 40.32 41.52	V2 223.21 223.21 416.44 559.07 559.07 673.42 673.42 761.29 761.29 797.11	V2 28.62 28.62 56.98 78.37 78.37 78.37 95.85 95.85 109.82	223.21 223.21 193.23 193.23 142.63 142.63 144.35 114.35 114.35 87.87 87.87 35.82	FI 28.62 28.62 28.36 28.36 21.39 21.39 17.48 17.48 13.97 13.97 7.82	M _{ower} 16033.92 12076.88 7583.162 5012.342 3031.515 835.8	M _{ower} 2055.87 1772.5 1137.235 766.2067 481.965	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06 58124.01	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84 8579.436	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15 42390.02 82603.91 66703.45		
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH 3RD 3RD 2ND 2ND	W15 W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom 34.50 Top Bottom	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13 27.75 28.1	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28 -9.96 -13.19	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32	V2 223.21 416.44 416.44 559.07 559.07 673.42 673.42 761.29 761.29	V2 28.62 28.62 56.98 78.37 78.37 95.85 95.85 109.82 109.82	223.21 223.21 193.23 193.23 142.63 142.63 144.35 114.35 114.35 87.87 87.87	Fi 28.62 28.62 28.36 28.36 21.39 21.39 17.48 17.48 13.97 13.97	M _{ower} 16033.92 12076.88 7583.162 5012.342 3031.515 835.8	Mower 2055.87 1772.5 1137.235 766.2067 481.965 182.4667	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06 58124.01 99580.92	M3 848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84 8579.436 14884.84	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15 42390.02 82603.91 66703.45 114465.8		
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH 3RD 3RD 2ND	W15 W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom 23.33 Top	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13 27.75	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28 -9.96 -13.19 -13.77	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32 40.32 41.52	V2 223.21 223.21 416.44 559.07 559.07 673.42 673.42 761.29 761.29 797.11	V2 28.62 28.62 56.98 56.98 78.37 78.37 95.85 95.85 109.82 109.82 109.82 117.64	223.21 223.21 193.23 193.23 142.63 142.63 144.35 114.35 114.35 87.87 87.87 35.82	FI 28.62 28.62 28.36 28.36 21.39 21.39 17.48 17.48 13.97 13.97 7.82	Mower 16033.92 12076.88 7583.162 5012.342 3031.515 835.8	Mower 2055.87 1772.5 1137.235 766.2067 481.965 182.4667	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06 58124.01	M3 848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84 8579.436 14884.84	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15 42390.02 82603.91 66703.45	Ρ =	0.15
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH 3RD 3RD 2ND 2ND	W15 W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom 34.50 Top Bottom 23.33 Top Bottom	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13 27.75 28.1	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28 -9.96 -13.19 -13.77 -17.15	P 0.79 5.1 6.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32 41.52 45.25	V2 223.21 223.21 416.44 559.07 559.07 673.42 761.29 761.29 761.29 797.11 797.11	V2 28.62 28.62 56.98 78.37 78.37 95.85 95.85 109.82 109.82 117.64 117.64	223.21 223.21 193.23 142.63 142.63 144.63 114.35 87.87 87.87 35.82 35.82	Fi 28.62 28.62 28.36 28.36 21.39 21.39 17.48 17.48 13.97 13.97 7.82 7.82	M _{owr} 16033.92 12076.88 7583.162 5012.342 3031.515 835.8 -264.7	Mower 2055.87 1772.5 1137.235 766.2067 481.965 182.4667	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06 58124.01 99580.92	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84 8579.436 14884.84 12921.1	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15 42390.02 82603.91 66703.45 114465.8	P = w _w =	0.15
ROOF ROOF 6TH 6TH 5TH 5TH 4TH 4TH 3RD 3RD 2ND 2ND 2ND 2ND	W15 W15 W15 W15 W15 W15 W15 W15 W15 W15	71.83 Top Bottom 62.50 Top Bottom 53.17 Top Bottom 43.83 Top Bottom 43.50 Top Bottom 23.33 Top Bottom 10.00 Top	P F 0.56 3.74 4.93 10.8 12.14 16.65 17.77 22.08 23.06 27.13 27.75 28.1 26.42	-0.23 -1.36 -1.73 -3.35 -3.85 -6.07 -6.7 -9.28 -9.96 -13.19 -13.77 -17.15 -18.18	P 0.79 5.1 16.66 14.15 15.99 22.72 24.47 31.36 33.02 40.32 41.52 45.25 44.6	V2 223.21 416.44 416.44 559.07 673.42 673.42 673.42 761.29 761.29 797.11 797.11 770.64	V2 28.62 28.62 56.98 78.37 78.37 95.85 95.85 109.82 109.82 117.64 117.64 111.09	223.21 223.21 193.23 193.23 142.63 142.63 114.35 114.35 87.87 87.87 87.87 87.87 87.87 87.87 87.87	Fi 28.62 28.62 28.36 28.36 21.39 21.39 17.48 17.48 13.97 13.97 7.82 7.82 -6.55	M _{owr} 16033.92 12076.88 7583.162 5012.342 3031.515 835.8 -264.7	Mower 2055.87 1772.5 1137.235 766.2067 481.965 182.4667	M3 -6604.58 5985.775 623.855 18081.94 9493.794 32615.44 21704.6 49592.59 36999.42 72025.06 58124.01 99580.92 85670.9	M3 -848.101 782.334 65.766 2489.114 1311.767 4626.785 3105.679 7171.558 5390.595 10578.84 8579.436 14884.84 12921.1	M3 7452.676 6768.109 689.621 20571.06 10805.56 37242.22 24810.27 56764.15 42390.02 82603.91 66703.45 114465.8 98591.99		

 $1_{w} = 21.75$ 44308.91 6330.743 50639.66 = $M_{over} \leq M_{r} = 3822.936$