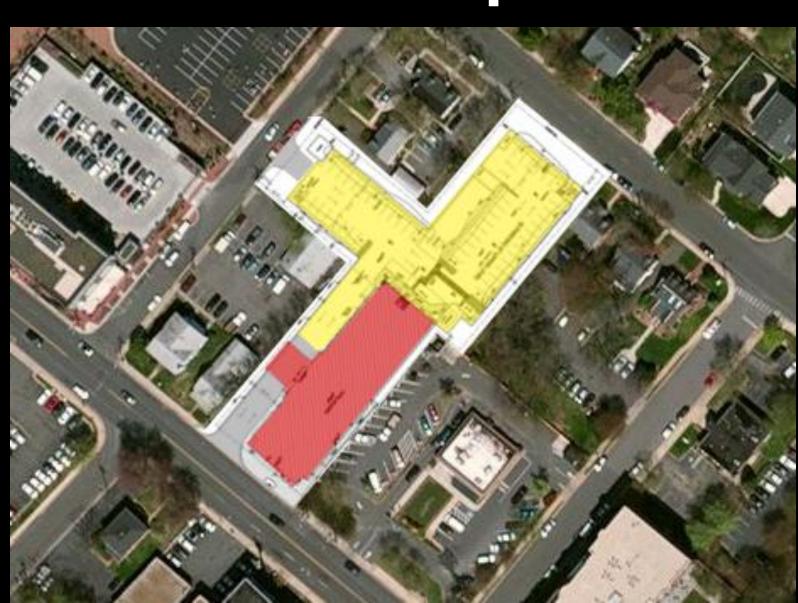

Mountain Hotel Urban Virginia

Benjamin Borden **Structural Option Faculty Advisor: Professor Kevin Parfitt Senior Thesis 2013**



Presentation Outline

Building Introduction

- **Hotel and Conference Center**
- Located in an urban center in Virginia
- 121,000 square feet
- Height 62ft to Roof
- **Project Delivery Method: Design Build**
- **Current Status: Under Permit Review**

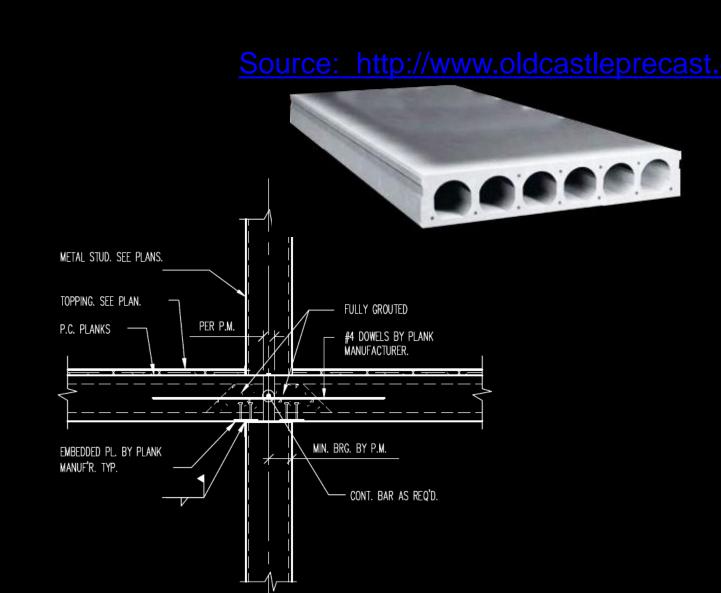
Site Map

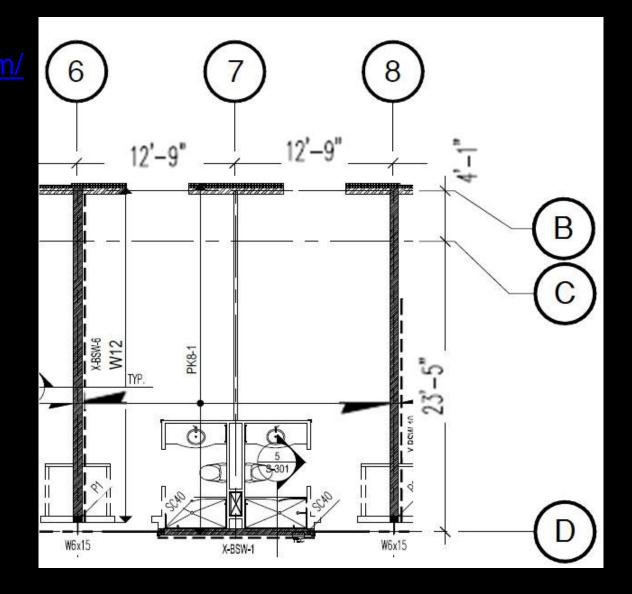


- **Owner: Withheld**
- **Civil Engineer:** Walter L. Phillips inc.
- **Structural Engineer:** Alliance Engineers
- **MEP:** Epic Consultants

Questions/Comments

Building Introduction

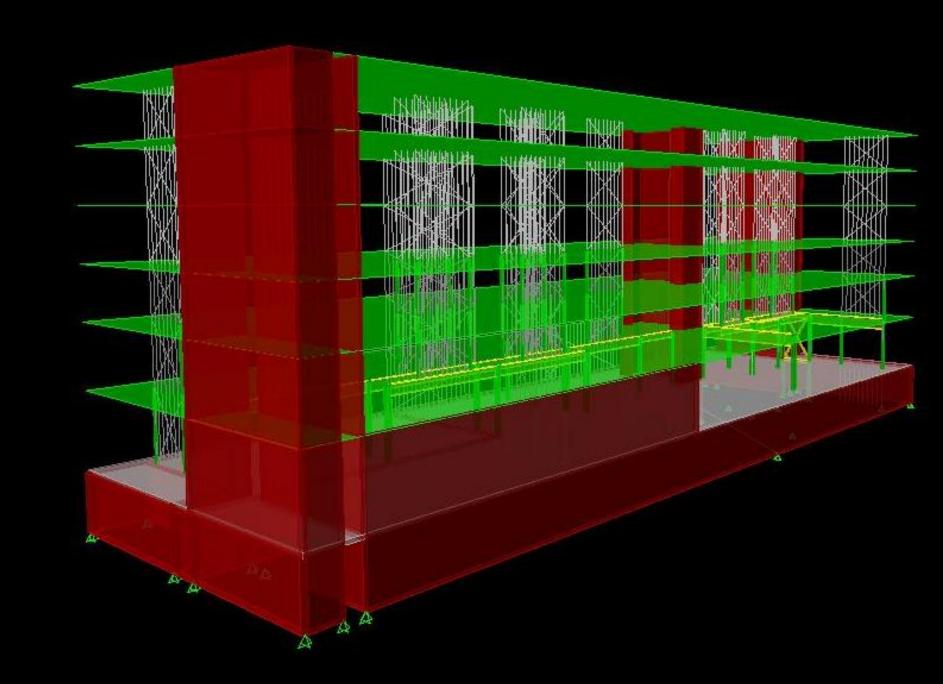

Architect: Enviro Architects



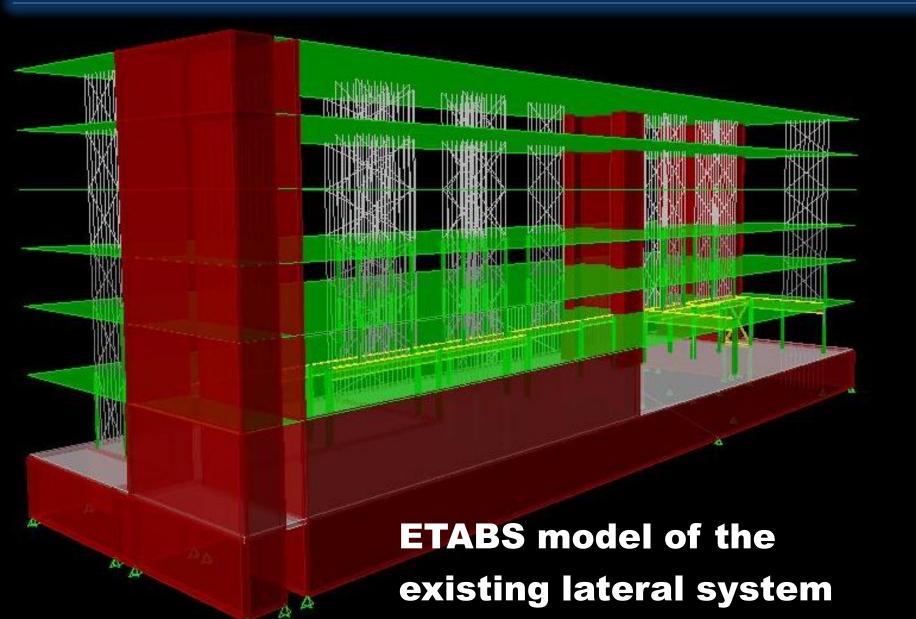
Site Map

4"-8"x4' precast hollow core planks resting on light gage steel stud bearing walls at every other column line

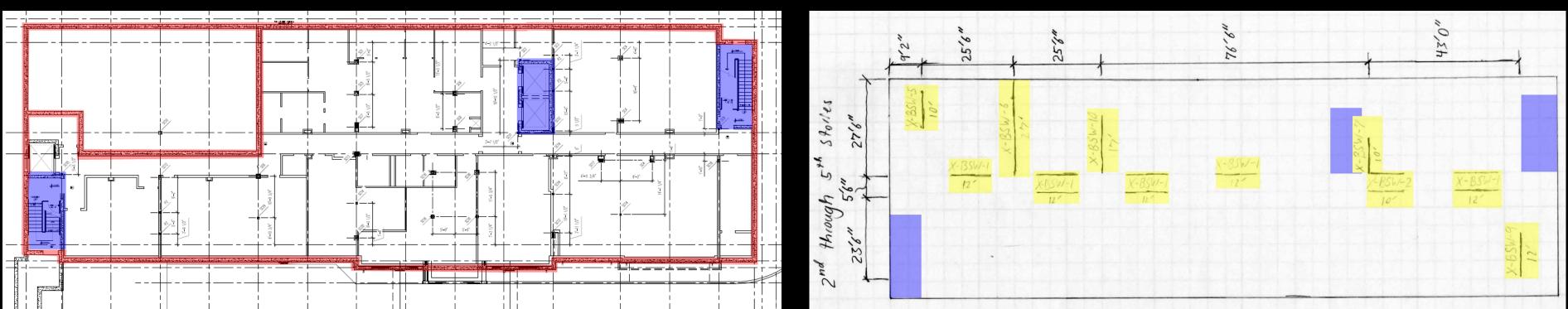
Gravity System



Typical Bay


Flat Strap **Braces**

Lateral System


- **Three lateral elements** resist the lateral forces in the Mountain Hotel
 - **Specially Reinforced Masonry Shear Walls**
- **Concrete Foundation Walls**

Mountain Hotel

Basement plan showing location of Concrete Foundation walls in red, and location of Specially **Reinforced Masonry Shear Walls surrounding stair** and elevator bays in blue.

Lateral System

bracing walls shown in yellow

Typical upper story layout of lateral elements with light gage flat strap

Existing floor system most efficient compared to several alternatives

Existing Structure

Lateral system more than adequate

	Systems									
	Existing									
Consideration	Precast Hollow Core Planks	Composit Steel Deck on W- Shapes on Shear Walls	One-way Concrete Joist System	Two-way Flat Plate						
General Information										
Weight	57 psf	66.8 psf	79.5 psf	118 psf						
Fire Rating	2-Hr	2-Hr	2-Hr	2-Hr						
Fire Protection	Thickness of Planks Adaquate for Fire Protection	Requires Additional Fireproofing for underside of Deck and Beams	Thickness of Slab Controlled by Fire Protection Criteria	Thickness of Slab Adaquat for Fire Protection						
Architectural										
Bay Size	25' 6" x 27' 6"	25' 6" x 27' 6"	25' 6" x 33' 0"	25' 6" x 33' 0"						
Overall Depth	10"	14"	22"	9.5"						
Slab Depth	10"	6"	5"	9.5"						
Ceiling Height	8' 6"	8'2"	8' 11''	8' 6.5"						
Other	Exposed Ceilings	Requires a Ceiling	Can Expose Ceilings for Queen Rooms Only Without Obstructions	Exposed Ceilings						
Structural										
Gravity System Considerations	No Change	Special Considerations for Attachment of Beams to Walls	Redesign using Concrete Columns	Redesign using Concrete Columns						
Lateral System Considerations	No Change	No Change	Redesign using Concrete Moment Frames	Change From Light Gauge to Concrete Shear Walls						
Foundation Considerations	No Change	Very Similar	Increase Foundation Size to Carry Larger Building Weight	Increase Foundation Size to Carry Larger Building Weigh						
Construction										
Assembly Cost	\$13.23/sf	\$23.9/sf	\$15.78/sf	\$15.24/sf						
Formwork Required	None	Minimal	Yes	Yes						
Constructability	Easy	Slightly Moderate	Slightly Difficult	Moderate						
Lead Time	Long	Moderate	Moderate	Moderate						
Servicability										
Vibration and Deflection Control	Slightly Moderate	Moderate	Great	Good						
Face site la		D1	D1	N N						
Feasible Reason	Yes	No Significant increase in price, requires a ceiling, reduces ceiling height	No King and ADA Rooms would have a low ceiling height due to 22" deep beam in center of ceiling	Yes						

San Francisco

Problem Statement

- Interest in expanding knowledge on the seismic design of reinforced concrete
- **New scenario created**
 - The owner of the Mountain Hotel would like to evaluate the use of existing design parameters for a reinforced concrete design able to be occupied immediately after a seismic event in

Proposed Solution

- **Redesign the structure of the Mountain** Hotel to reinforced concrete.
 - Using a Flat Slab floor system
 - **Concrete Columns for Gravity Loading**
 - **Specially Reinforced Concrete Shear** Walls for lateral resistance

in ASCE 41-06.

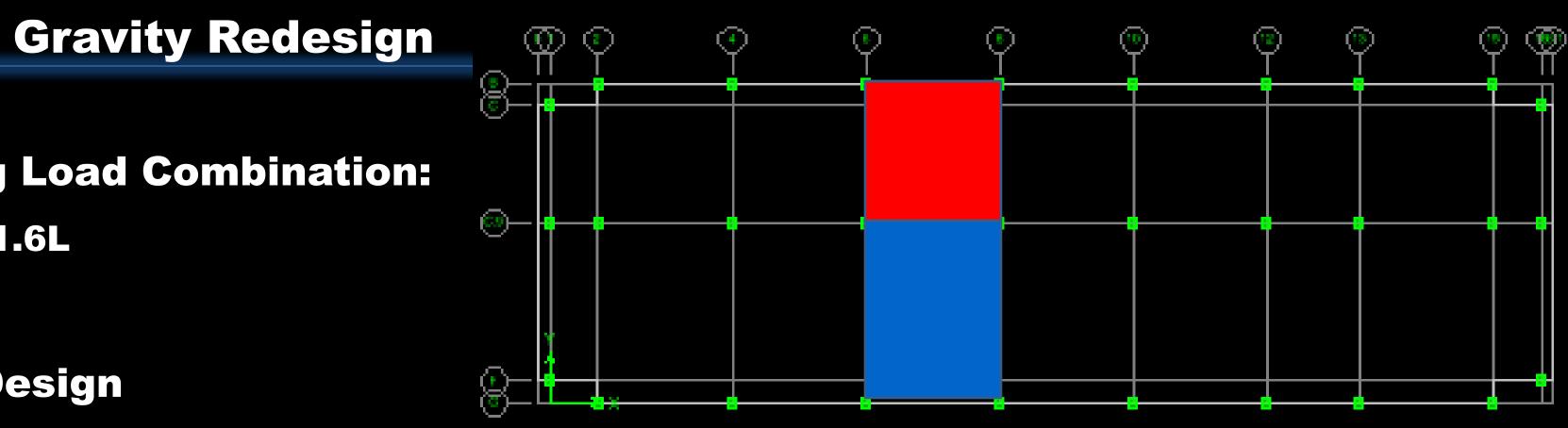
P-Delta effects.

MAE coursework was used to accomplish all of the above tasks.

Design the lateral system such that the drift is less then the recommended limit

Create an ETABS model of the lateral system and evaluate including torsional

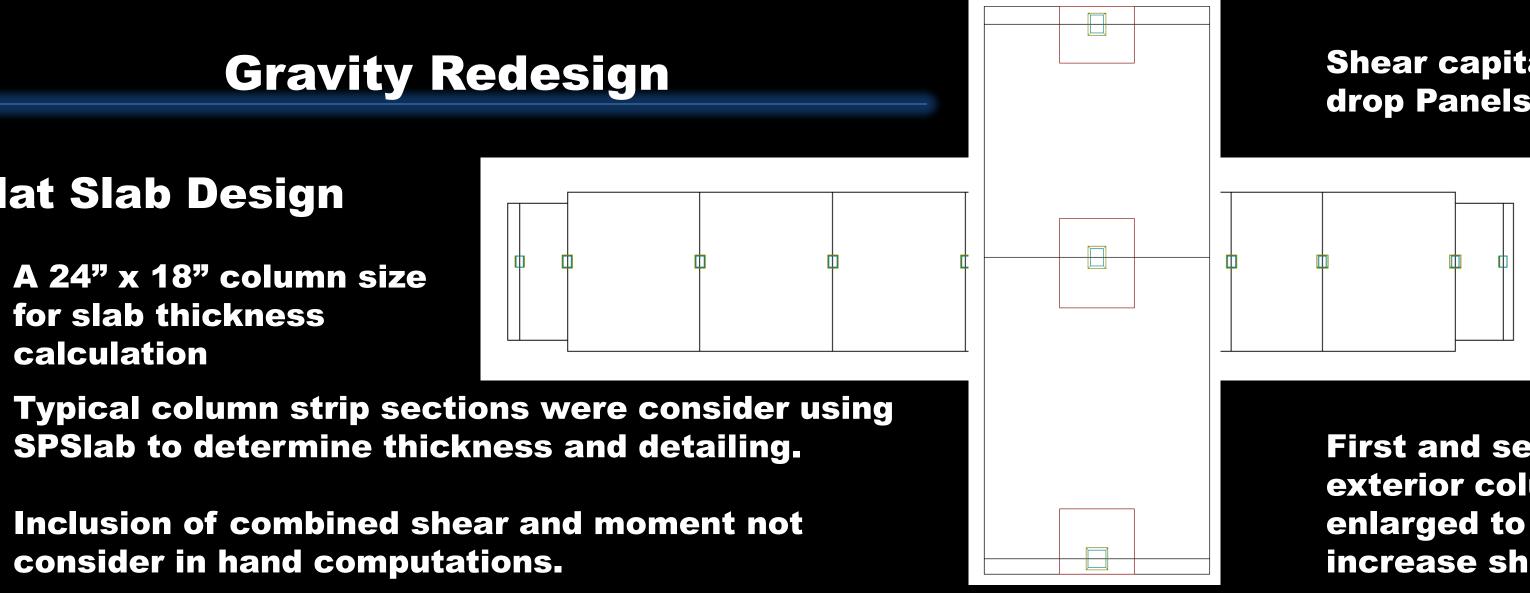
Glazing Thermal Load Evaluation


Thermal load through existing glazing was evaluated for each location and it was to be determined what glazing would be needed to produce similar heat gain as original design.

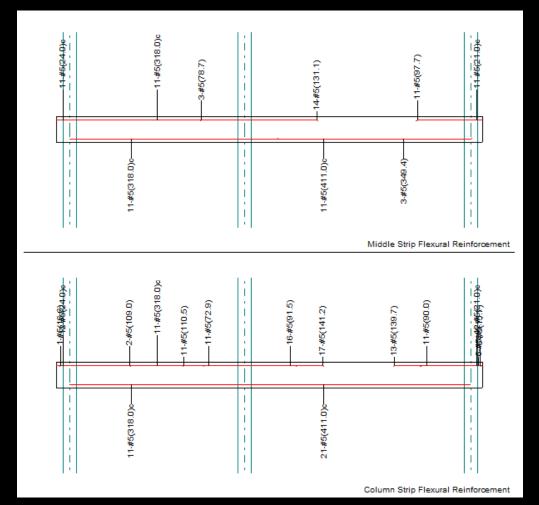
Impact on Other Building Systems

Acoustic Sound Isolation Analysis

The acoustic properties of the two floor systems were to be analyzed to show that the new floor system meets the same standard as the existing floor system. (This analysis will not be covered in this presentation)


Controlling Load Combination: Introduction 1.2D + 1.6L**Existing Structural Systems Thesis Proposal Concrete Redesign** Flat Slab Design **Glazing Evaluation** Bays were divided up using the existing bearing walls between the upper story hotel rooms Conclusions as natural bay divisions. The decision was made to use only one central column line to eliminate the 5' central span. This created several larger 34' x 26' (shown in blue) on one **Questions/Comments** side, and a smaller 27' x 26' span (shown in red).

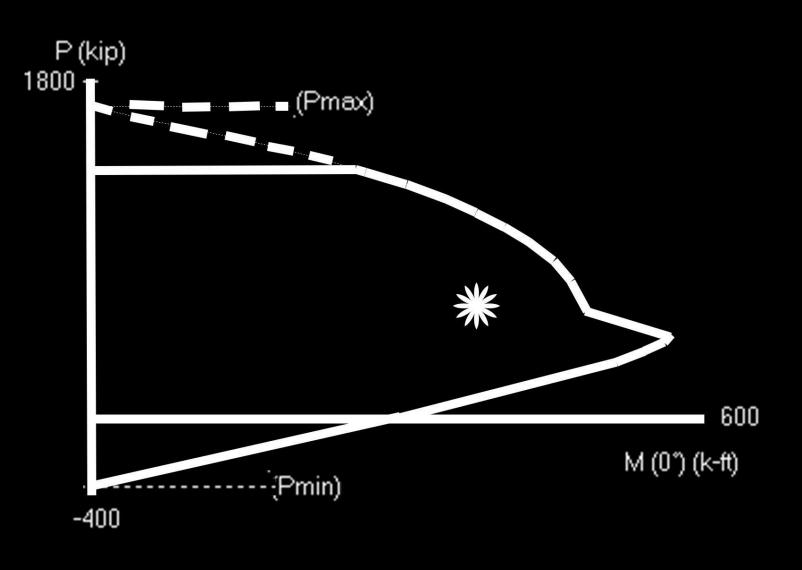
Flat Slab Design


A 24" x 18" column size for slab thickness calculation

Deflections controlled thickness to 12"

Shear capitals and some drop Panels Required

First and second floor exterior columns were enlarged to 24" x 24" to increase shear resistance.

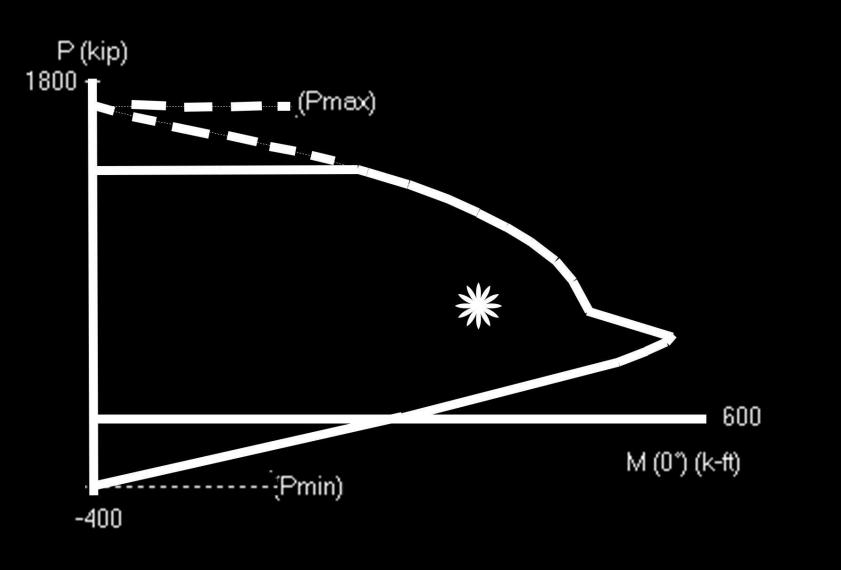


Gravity Redesign

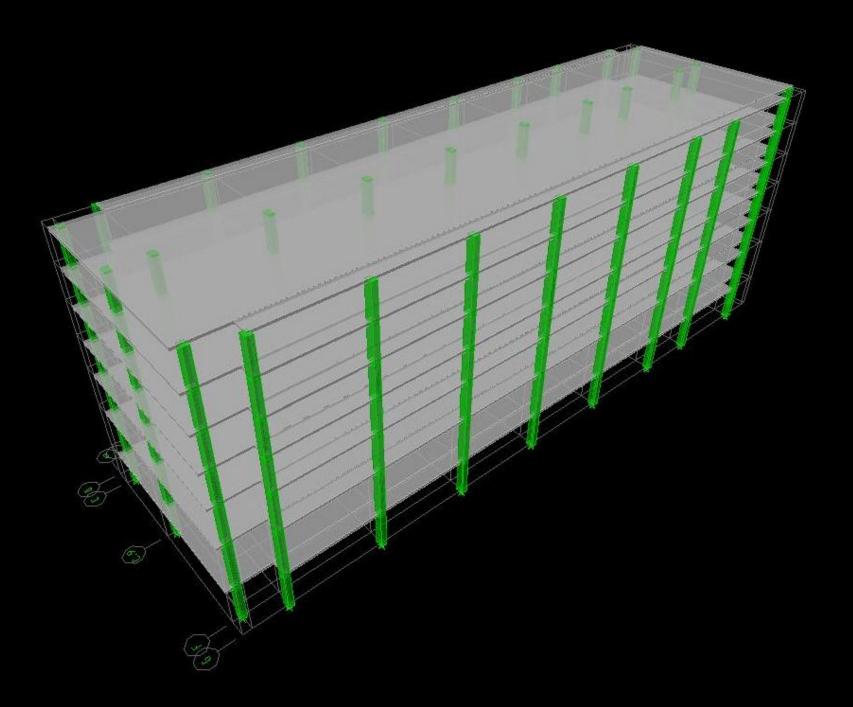
Left: Reinforcement of a 1st story bay

RIGHT: Reinforcement in a typical upper story bay

			<u> </u>
	3.46(低 (古)0.0)c —3.#5(29.7)		
11:#5(308.0)c	6.#5(88.4) -6.#5(105.1)	15.#5(306.0)c	-22-#5(74.0)
	-11.#5(105.1) 		
11-#5(306.0)c	7#5(88.4) 11#5(105.1)	15.#6(306.0)c	
	-11.#5(105.1) 		
11.#5(306.0)o		15.#5(306.0).	- 15.#5(92.8)
	-11.#5(105.1) 		
11.#5(306.0)o		15.#5(306.0)0-	
	-11.#5(105.1) 		-15.#5(95.8)
11-#5(306.0)o	7#5(88.4) 11#5(105.1)	15.#5(308.0)o	
	-8.#5(105.1) 		
8-#5(210.0)c		19.#5(2.10.0)c -	-19-#5(2 10.0)c
11.#6(306.0).			
	-7.#5(105.1) -7.#5(88.4)	p Flexural R	
4#5(110.0)	-3.#5(29.12) -3.#5(29.12) -4.#6#625.606	einforoemen	
ſ	L	_	_


Gravity Redesign

Column Design


Maximum column axial loads were determined by tributary area above.

Live loads were reduced per ASCE 7-10 where less than 100psf.

Column eccentricity from SPSIab analysis performed for the design of the floor system.

Gravity Redesign

Immediate Occupancy Design Philosophy

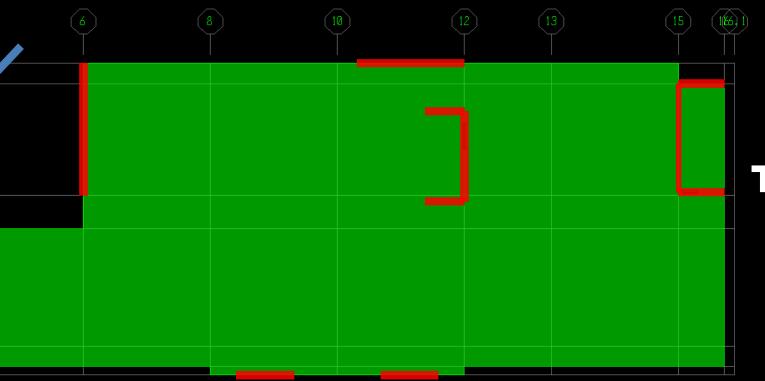
Approach to Immediate Occupancy Design

During a design seismic event if the structure does not deflect greater than the amount which causes damage requiring repair before reoccupancy can begin than the structure will satisfy Immediate Occupancy

ATS-192 General Glazing Guidelines: hsx/175

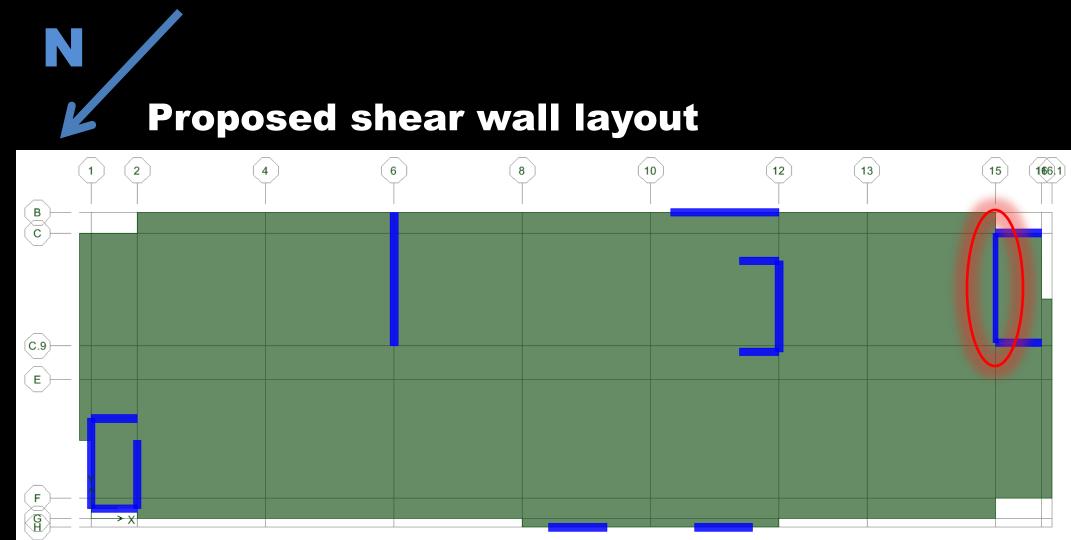
ASCE41-06: 0.005 hsx

Introduction **Existing Structural Systems Thesis Proposal Concrete Redesign Glazing Evaluation** Conclusions **Questions/Comments**


Inter-story Drift limits:

ASCE7-10 Seismic limit: 0.020hsx/(Cd/le)

 \mathbf{N}


Lateral Redesign

Proposed shear wall layout

To minimize impact on existing architecture:

Stair and elevator towers In solid walls **Maintains original function**

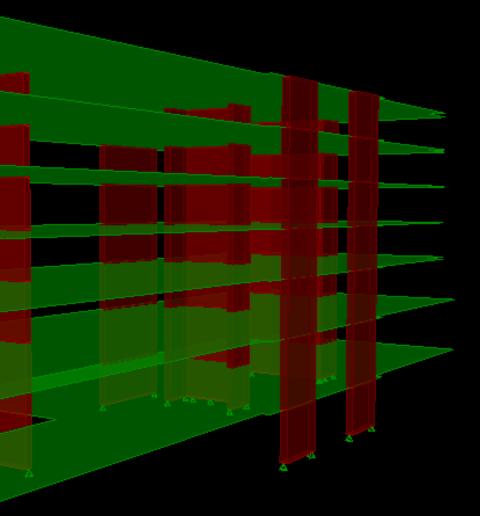
Lateral Redesign

9 x 18" thick shear walls required to resist story drift in x-direction

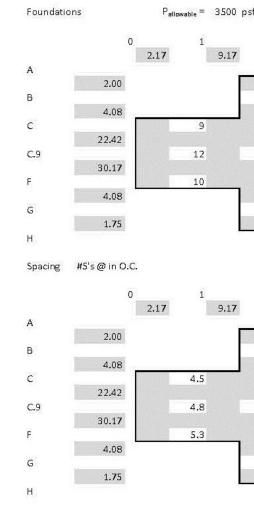
5 x 18" thick shear walls used to resist story drift in y-direction

to 12" after torsional analysis was performed.

- The wall called out in red was reduced


BOTTOM: Drifts including torsional irregularity and P-Delta compared to limits

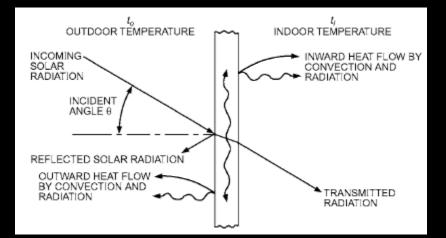
	Height	
Story	(in)	Load
ROOF	112.00	ΕY
STORY6	112.00	ΕY
STORY5	112.00	EY
STORY4	112.00	ΕY
STORY3	134.00	EY
STORY2	159.00	EY
STORY1	120.00	EY
TOTAL	861.00	


Lateral Redesign

Right: ETABS lateral model used to consider torsional irregularity and P-Delta Effects

DriftX	DriftY		DriftX	DriftY	Max Drift X	Max Drift Y	Allowable
(in/in)	(in/in)	Load	(in/in)	(in/in)	(in)	(in)	Drift (in)
0.000103	0.001483	EYT	0.000084	0.000238	0.020944	0.192752	0.4480
0.000102	0.001468	EYT	0.000083	0.000236	0.02072	0.190848	0.4480
0.000093	0.001421	EYT	0.00008	0.000229	0.019376	0.1848	0.4480
0.00008	0.001321	EYT	0.000074	0.000214	0.017248	0.17192	0.4480
0.000061	0.001128	EYT	0.000062	0.00018	0.016482	0.175272	0.5360
0.000033	0.000778	EYT	0.000042	0.000126	0.011925	0.143736	0.6360
0.000007	0.000335	EYT	0.000018	0.000055	0.003	0.0468	0.4800
					0.1097	1.1061	3.4440

Foundation Redesign


8
16.1 8
TT III

From geotechnical report: Not prone to soil liquefaction Allowable Soil Bearing: 3500psf

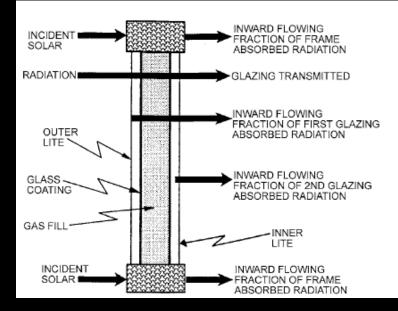
Service loads calculated for base of each column

Rebar spacing determined assuming #5 bars used frequently in slab detailing

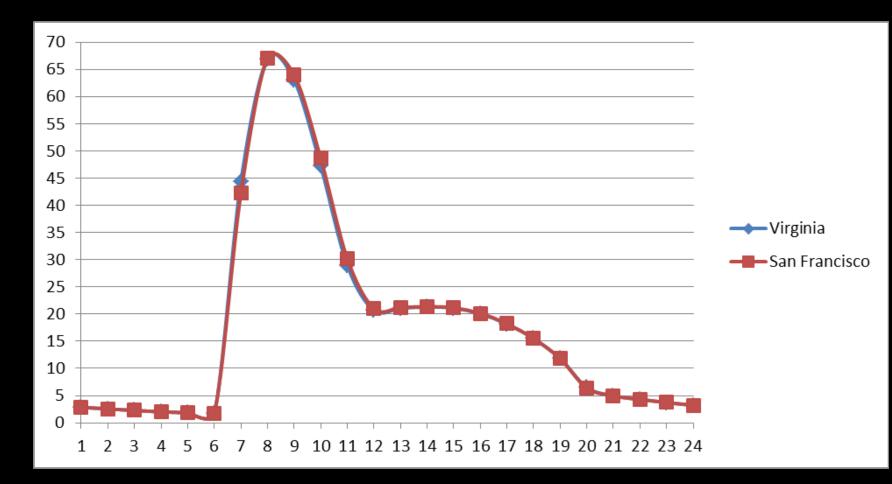
Allowable bearing used to size footings **Punching shear used to determine depth**

Heat from the sun enters the building using three different processes:

- Direct Radiation
- Diffused Radiation
- Convection



Existing Glazing Thermal Analysis


Double Glass Performance Data^{1, 10}

	Nom	inal	Vi	sible Lig	ht²	So	lar Ener	gy²			U-Fa	ictor ⁵				
	Gla Thick		ance ³		tance4 %	nce ³ %	ce ⁴ %	nce² %		.S. mer*		.S. iter*	Euro	ope**	eat Gain cient?	Shading Coefficient ^e
	in.	mm	Transmittance ³	Outside	Inside	Transmittance ³	Reflectance ⁴	UV Transmittance ²	Air	Argon	Air	Argon	Air	Argon	Solar Heat Gain Coefficient?	Sha Coeffi
Pilkington Eclipse Advanta	Pilkington Eclipse Advantage" Outer Lite (Coating on #2 Surface) and Pilkington Optifloat" Clear Inner Lite															
Clear	1/4	6	60	29	31	46	21	24	0.35	0.30	0.35	0.30	1.9	1.6	0.55	0.63
Grey	1/4	6	29	10	29	23	9	8	0.35	0.30	0.35	0.30	1.9	1.6	0.33	0.39
Bronze	1/4	6	34	13	29	28	11	9	0.35	0.30	0.35	0.30	1.9	1.6	0.38	0.44
Blue-Green	1/4	6	51	21	29	29	12	13	0.35	0.30	0.35	0.30	1.9	1.6	0.38	0.44
EverGreen	1/4	6	43	17	30	20	9	6	0.35	0.30	0.35	0.30	1.9	1.6	0.29	0.33
Arctic Blue	<mark>1/4</mark>	6	35	13	30	<mark>19</mark>	9	9	0.35	0.30	0.35	0.30	<mark>1.9</mark>	<mark>1.6</mark>	0.29	0.33

Two pane glass with a low-e coating on the inner face of the outside pane

Comparison of Heat Gain

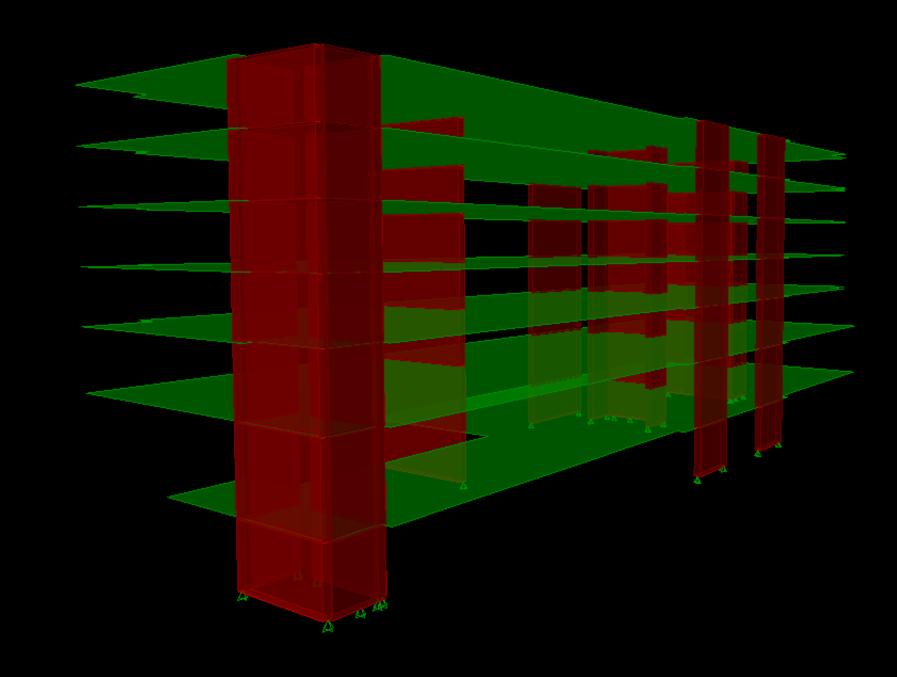
Same orientation as original building

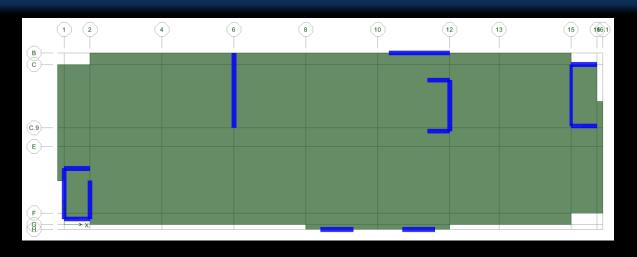
Compared each side as a BTU/sf/hr value for 21day of hottest month of year

Greatest difference in thermal load through glazing was 0.5% greater that of the original design.

Same glazing can be used

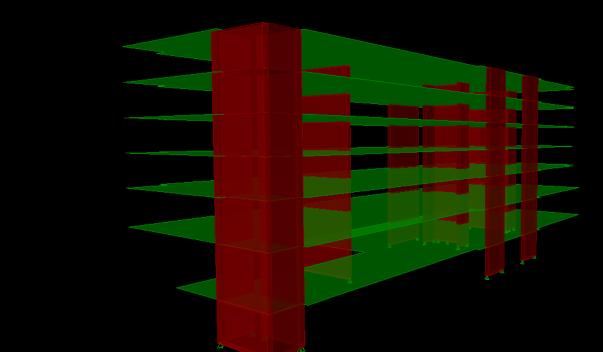
Thermal load plotted for a 24 hour period




Summary: Slabs: 12" thick with #5 bars spaced as noted

Columns: 24" x 18"-24" with (8) #8

Shear Walls: 12"-18" thick from foundation to roof


Design Summary

Questions & Comments

Alliance Engineers:

- Tim Kowalcyk
- **Penn State Architectural Engineering Faculty:**
 - Professor Kevin Parfitt, Professor Robert Holland

 - Ryan Solnosky
- **Applied Technology Council:**
 - Dr. Ronald O. Hamburger

The Lord Jesus Christ

My family and friends

- Dr. Linda Hanagan, Dr. Andres Lepage, Dr. James Freihaut