Millennium Science Complex

Mechanical Technical Report I

Building/Plant Energy Analysis & Systems Existing Conditions

Prepared By: Michael Gilroy, Sara Pace, Alexander Stough

Integrated Project Delivery / Building Information Modeling Thesis 2010-11

Building Overview

Revit Information Sharing

GBXL Information Sharing

Load Calculation Summaries

■ Table 8: Office Zone Load Summary

	Cooling (tons)	Heating (MBTUh)	Supply Airflow (cfm)	Outside Air Percentage	cfm/ft ²
Baseline 90.1	113.3	779.6	39,814	16.3	1.39
Existing Design	97.2	513.9	28,974	22.5	1.01

■ Table 9: Laboratory Zone Load Summary

	Cooling (tons)	Heating (MBTUh)	Supply Airflow (cfm)	Outside Air Percentage	cfm/ft ²
Baseline 90.1	295.8	3,151.4	34,078	100.0	2.19
Existing Design	217.7	2,409.2	25,588	100.0	1.64

Equipment Energy Consumption

• Figure 3: ASHRAE 90.1

Figure 4: Existing Design

Summarized Annual Energy Consumption

Table 11: Summarized Annual Results

	ASHRAE 90.1	Existing Design	Percent Savings	Cost Savings
Electricity (kWh)	765,979	684,280	11%	\$6,141
Purchased Chilled Water (therms)	45,039	28,705	44%	\$29,891
Purchased Steam (therms)	26,694	24,119	9%	\$2,111
Total Costs and Savings	\$161,889	\$123,745	23%	\$38,144

Table 12: Comparison of Baseline and Existing Design Energy Intensities

	Baseline ASHRAE 90.1	Existing Design
Energy Intensity (kBTU/ft ²⁻ yr)	221.2	172.2
Cost	\$3.72/SF	\$2.85/SF

Monthly Utility Costs

 Figure 5: Comparison of Baseline and Existing Design Monthly Utility Costs

Building Emission Rates

	ASHRAE 90.1 Standard Emissions	Existing Design
Total Building Energy (Btu/ft ² -yr)	221,194	172,158
Total Source Energy (Btu/ft²-yr)	335,995	280,932
CO ₂ (lbm/yr)	3,487,813	2,714,609
SO ₂ (gm/yr)	26,966	20,988
NO _X (gm/yr)	5,420	4,219

■ Table 14: Comparison of emission rates from Trane TRACE

Typical Airside Diagram for Spaces

RA: Return Air SA: Supply Air EA: Exhaust Air OA: Outside Air

EF: Exhaust Fan

Chilled Water Flow Diagram

Legend

HTX: Heat Exchanger ET: Expansion Tank

CWP: Chilled Water Pump PCWP: Process Chilled Water

Pump

WF: Water Filter

PCWS/R: Process Chilled Water

Supply/Return

CWS/R: Chilled Water

Supply/Return

Hot Water Flow Diagram

Lost Usable Space

Table 22: Lost Usable Area Breakdown

Floor	Lost Usable Area
Basement	9,050 SF
1 st Floor	4,150 SF
2 nd Floor	1,175 SF
3 rd Floor	1,014 SF
4 th Floor: Mechanical	27,287 SF
Penthouse	
Total Area Lost	42,676 SF

LEED Energy Credits

Table 24: LEED Credit Breakdown

Category	Possible Points
Sustainable Sites	11/14
Water Efficiency	3/5
Energy & Atmosphere	5/17
Materials & Resources	5/13
Indoor Environmental	12/15
Quality	
Innovation % Design	5/5
Process	
TOTAL	41/69

Model Coordination

- Revit Models to Navisworks Coordination
 - Architecture
 - Electrical
 - Structural
 - Mechanical

Mechanical Collisions

- Use Coordination to Minimize Collisions
 - Only Main Ducts and Elements Currently Modeled

Laboratory Design Modeling

- Unique Equipment and Room Arrangements
 - Many Elements Not Modeled
 - Piping, Gas Piping, Branch Ductwork

Conclusions

- Energy Savings
- Discipline Coordination

Any Questions???