Brian Genduso Structural Option Faculty Consultant – Dr. Linda Hanagan University of Cincinnati Athletic Center Cincinnati, Ohio

Courtesy of Bernard Tschumi Architects

Lateral System Analysis and Confirmation Design November 14, 2003

Executive Summary

The University of Cincinnati Athletic Center will be an 8-story, multi-use facility located in the heart of the university's athletic complex. The gravity framing system consists of typical steel composite wide flange beams with composite metal decking supporting one-way slab diaphragms. The lateral system is an unusual combination of a triangulated perimeter frame system called a diagrid, braced frames, "V" columns, foundation shear walls, anchor rods, and floor diaphragms.

Gravity and lateral loads were calculated using the Ohio Basic Building Code and ASCE Standard 7-98. Typical dead load is approximately 2500 kips per floor, live loads are usually 50 ksf. It was determined that West wind controls the lateral loading case for most but not all members.

Lateral load distribution through the building starts with the diagrid, which acts as a structural mesh, transferring forces in several directions. The rigid above-grade diaphragms help the diagrid carry shear down to the ground level, where it is picked up by the large V columns and braced frames. These two elements then transfer forces into the below-grade slabs and into the foundation shear wall and anchor rods, which safely spread the load into the surrounding soil.

A lateral analysis was performed with two separate computer programs. ETABS was used to find node displacement, V column support reactions, and member forces. STAAD was used to find braced frame stiffnesses. Results from both were combined through several spreadsheets and manual calculations to obtain stiffness element rigidities. The results of each individual analysis type are:

Analysis Type	Conclusion
Diagrid Story Drift	OK – High rigidity of the diagrid and its diaphragms. $\Delta_{actual} \approx \frac{1}{4} \Delta_{allowable}$
Ground Floor Story Drift	OK – Braced frames provide most resistance. $\Delta_{actual} \approx \frac{1}{2} \Delta_{allowable}$
Torsion	OK – Elliptical shape of building is well-suited to torsional effects.
Total Building Drift	OK – Even with torsion considered $\Delta_{actual} \approx 1/3 \Delta_{allowable}$
Overturning	OK – Low building height and wide diagrid frame base prevent instability
Braced Frame Check	OK – Actual member size is slightly larger than calculated member sizes
Diagrid Member Check	OK – Max utilization factor of the evaluated members = 0.861 < 1.0

Overall, the building performs well under lateral loading conditions.

Index

Introduction	3
General Building Description	3
Gravity Framing System	3
Lateral System	4
Loads Calculations Wind Seismic Load Cases	5 5 6 6
Distribution	7
Above-grade	7
Below-grade	9
Lateral Analysis	10
Theory	10
Diagrid Story Drifts	12
Ground Floor Story Drift	14
ETABS Analysis	15
STAAD Analysis	20
Combined Results	21
Torsion	23
Total Building Drift	25
Overturning	25
Member Checks	26
Braced Frames	26
Diagrid Members	27
Conclusions	32
Appendices Appendix A – Gravity Load Calculations Appendix B – Wind and Seismic Load Calculations	

- Appendix C Node Numbering System
- Appendix D ETABS Analysis Results
- Appendix E STAAD Analysis Results
- Appendix F Diagrid Member Checking Spreadsheets

Introduction

General Building Description

The University of Cincinnati Athletic Center is an 8 story, 220,000 ft² multi-use facility to be located in the heart of UC's "Varsity Village" athletic complex. The building is designed to accommodate various sports-related activities all under one roof and to function as the social link and architectural centerpiece of a multi-stage athletic expansion plan. As such, it will be situated between two main sports facilities, the Nippert Football Stadium and the Shoemaker

Center, with easy access to other sports fields and areas. The structure consists of 3 below-grade stories (levels 100-300) and 5 above-grade stories (levels 400-800), accommodating offices, public meeting areas, computer labs, locker rooms, treatment areas, and other related athletic spaces.

Gravity Framing System

The floor framing system consists of typical steel composite wide flange beams with composite metal decking supporting one-way slab diaphragms. Most connections are shear only, though some elements framing into full height columns near the atrium are designed with moment connections to support atrium walkways. The layout is irregular due to the highly curved shape of the building, however, the N-S direction spacing is typically 9' o.c. within 27' bays. A representative above-grade framing plan is show in Figure 1.

Figure 1: Main framing areas

Lateral System

Diagrid and Diaphragms

The above-grade enclosure of the UC Athletic Center is a triangulated, curved perimeter frame system called a diagrid. The diagrid acts as a rigid shell, and for structural purposes can be considered a very thin, deep beam. It is composed of wide flange rolled sections welded or bolted for full restraint. The steel will be covered with concrete or similar material to produce a monolithic appearance. Between the beams are triangular window glazings. A rendering of a typical diagrid connection is shown in Figure 2. The above-grade diaphragms are 6.5" reinforced concrete slabs on metal deck, supported by steel framing. There are numerous slab openings, including the main atrium and several elevator and stair shafts.

Figure 2

Braced Frames

There are four types of braced frames. Two of them, labeled BF2 and BF3, are light braced frames around the atrium staircase. They both span from Level 100 to Level 400 (ground floor) and provide lateral support for the staircase only. The other two, labeled BF1 and BF4, are heavy braced frames to resist lateral movement for the entire building. Two BF1s brace against E-W deflection around an elevator shaft in the northern half of the building, while the lone BF4 braces against E-W deflection in the southern half. Frame elevations are shown below in Figure 3.

Figure 3: Braced Frame Elevations

<u>Columns</u>

There are two kinds of columns found in the UC Athletic Center. Within the perimeter of the building are two rows of full height vertical columns, supporting the floor and partition gravity loads of the interior bays. Between Levels 300 and 500 are large "V" columns which are rigidly connected to both the diagrid and the substructure. Though their primary function is to carry gravity load from the diagrid, they also play a significant role in the transfer of lateral forces from the bottom of the diagrid to ground level. They are made of either heavy wide flange rolled shapes or built-up boxes, and sit on single below-grade columns. A rendering of a V column is shown in Figure 4.

Figure 4

Foundation Shear Walls and Diaphragms

The foundation utilizes a combination of spread footings and drilled piers, set into sound gray shale. Reinforced concrete shear walls below grade serve as the retaining walls as well and are typically 1'6" thick. They are rectangular in plan and therefore do not carry the loading from the curved above-grade floors. They do, however, work with the below-grade diaphragms to resist shear forces. There are 16 threadbar anchor rods embedded in the foundation walls to resist shear. As in the upper floors, the foundation diaphragms are 6.5" reinforced concrete slabs on metal deck.

<u>Loads</u>

Calculations

Building loads were obtained using ASCE 7-98 Standard, which is referenced in the 1998 Ohio Basic Building Code. The loading can be split into two main categories, gravity loads and lateral loads. This report focuses on the lateral loading of the building due to wind and seismic forces, however gravity load calculations and summaries as found in Technical Report #1 are included in Appendix A.1 for reference.

Wind Loads

Wind loads are based on a 90mph basic wind speed, exposure B, and an importance factor of 1.15. Though the shape of the building is unusual, it is assumed that the building can be modeled as a simple rectangular box, 5 stories high. The high roof is not taken into consideration for purposes of simplicity. Calculations are found in Appendix B.1. Wind pressures gradients are evaluated in both the N-S and E-W directions, as found in Appendix B.2. The summation of story shear is evaluated in Appendix B.3. They are summarized in graphical format in Figures 5 and 6 below, with total base shear equal to 122.5 kips N-S, 408.3 kips E-W.

Figure 5: Wind shear in N-S direction

Figure 6: Wind shear in E-W direction

Seismic Loads

The governing code used in the structural design of the UCAC is the 2002 OBBC, which is adapted from the IBC 2000. IBC 2000 references ASCE 7, and therefore seismic analysis was performed using ASCE 7-98 for consistency with the wind analysis. The design is based on Seismic Use Group II, Site Class B, and an importance factor of 1.25. Using these provisions, the building fell under Seismic Design Category A, and therefore the story shear could be calculated as F_x =0.01*g. Calculations to determine the SDC are found in Appendix B.4. Seismic story shear is the same in both directions, summarized in Figure 7 below. The total base shear equal to 392 kips.

Figure 7: Seismic shear in both directions

Load Cases

The wind and seismic base shear calculated in the previous section are very similar for the E-W direction, while seismic appears to control in the N-S direction. However, the two load types behave quite differently on the diagrid itself. In the case of wind, story by story distribution of the forces is fairly even. In the seismic case, the highest forces occur at the top of the structure and decrease towards the ground floor (Level 400). This implies that wind will be the controlling load case for lower story members, while seismic is likely to control for upper story members.

For purposes of keeping the amount of computer modeling and calculations to a minimum only one load case will be evaluated. It is assumed that a thorough study of one particular loading situation will be sufficient to understand the concepts behind the lateral design, and that additional loading situations would simply reinforce those concepts. With that in mind, the West wind situation was chosen as the overall controlling load case. This case provides the highest base shear, which will be critical in evaluating Level 400 story drift and the braced frames. It also allows an opportunity to look at unbalanced loading and torsion issues.

For the West wind load situation, there are four applicable cases from the Basic Load Combinations found in section 2.3 of ASCE 7-98. They will be used to check member sizes in subsequent sections. They are:

Case 1: 1.4D Case 2: 1.2D + 1.6L + 0.5S Case 3: 1.2D + 0.5L + 1.6S Case 4: 1.2D + 1.6W + 0.5L + 0.5S Where D = Dead Load, L = Live Load, S = Snow Load, W = Wind Load

Distribution

Above-grade

The distribution of lateral loads through the structure is looked at in the E-W direction since it is the critical case.

First, the diagrid is loaded by wind or seismic forces. The shear created by the load is transferred from a higher story to lower story through the diagonal members. When these forces reach the floor level below, horizontal beams help pick up part of the load along with diagonal members in the story below (Figure 8). This redundant geometry can be considered a continuous structural mesh around the entire perimeter. It might be easier to visualize the diagrid as a trampoline. When force is applied to a trampoline the load is carried by the mesh in all directions. Of course, the diagrid is much more rigid than a trampoline, but the analogy still holds true!

Figure 8: Load path into diagrid

The high rigidity of the diagrid acts with the help of the floor diaphragm as well. Shear forces are transferred through the floor slab. Even with the large atrium running N-S through the middle of the building, there is enough slab around the perimeter and through the middle of the diaphragm to transfer the shear. This is reinforced with additional rebar that is added to the slab in critical shear sections. A diagram of the shear transfer through the diaphragm is show in Figure 9.

Figure 9: Shear transfer through the diaphragm

When lateral load reaches Level 500, the bottom of the diagrid, it is picked up by the braced frames and the v columns. The braced frames carry most of the lateral load due to their higher stiffness and orientation parallel to the load. They also help resist torsion, because they are located on opposites sides of the building. The V columns also play a large role in resisting torsion. Because of the building's semi-elliptical shape, the V columns are arranged around the perimeter in such a way that their strong axis is nearly perpendicular to the center of rigidity, which will provide the maximum resistance to torsion forces. Three of the larger V columns under auditorium at the north end of the building sits on pilasters and are considered roller supported. Therefore, no lateral loads are transferred at the northern end of the building. The forces resisted by each frame and column can be evaluated by the stiffness method. Figure 10 shows the shear transfer elements at ground level.

Brian Genduso – Technical Report #3 Lateral System Analysis and Confirmation Design

Below-grade

At Level 300 the lateral load begins to be picked up by the ground floor shear walls and diaphragm. At each subsequent level more and more of the lateral load is taken out of the braced frames and perimeter columns and transferred into the belowgrade shear walls and diaphragms. This theory is validated by observing that the lower braced frame diagonals in BF1 are actually smaller member sections than the upper braced frame diagonals. In fact, BF4 does not even need diagonal members below Level 300. If lateral load is not being taken out at each level the lower diagonal members would need to be greater than the upper members.

The load transferred out of the braced frames and columns then flows into the foundation retaining walls. These shear walls transfer some of the shear forces safely into the surrounding soil. The rest of the forces are taken down into the footings. Because the UC Athletic Center will connect to an existing structure below grade at its southern end, anchor rods embedded into sound gray shale at that end reinforce the shear walls and mitigate forces from reaching the existing structure. The rods also tie down the building in case of wind uplift on the foundation wall.

Finally, the column footings and piers transfer the remaining lateral loads into the soil below the structure. By this point much of the load has been resisted by the shear walls and anchor rods. The only lateral-induced loads left are the uplifts on the columns of BF1 and BF4. These forces are resisted by the concrete piers which are set into sound rock below. The below-grade distribution of forces is shown in Figure 11 with a section view of the building. The section cuts through BF4.

Lateral Analysis

Theory

Much time was spent assessing the lateral behavior of the UC Athletic Center and how it should be modeled for a lateral analysis. In the end, though the building could have been simplified enough to perform hand calculations, it was determined that a more accurate 3-dimensional computer model is the best method of analysis. The flow of forces through the unique lateral system of the diagrid is difficult to visualize compared to a traditional box-shaped building. As you will see by the graphicintensive nature of this report, a 3D model presents a clearer picture of the structure's response to load, yet also provides an opportunity to check the results of the output using manual methods. Learning a new structural analysis software program is an additional benefit.

ETABS was chosen to perform the analysis. ETABS is a non-linear, finite element pre and post-processing software package enhanced for the structural analysis of buildings. The benefits of ETABS include dxf file import, unlimited node and member input, graphical and tabular output options including forces and displacements, and pre-loaded steel member section properties.

Even with these computational capabilities, the procedure for modeling the structure in ETABS was simplified. Only the above-grade diagrid structure was included. Foundation shear walls and braces would have to be a separate analysis. The procedure was done so that all of the separate required analyses (i.e. story drift, total drift, torsion, overturning) could be modeled individually. For instance, the diagrid drifts were treated separately from Level 400 drifts because of potential for torsion effects and disproportionately high Level 400 drifts. Also, because it was not determined how to accurately model braced frames and V columns at the same time, the stiffnesses of the V columns were assessed first, the braced frames second. The two were then put together to obtain total stiffness at the ground level.

The model was constructed in the following fashion:

It was first drawn in 3D AutoCAD using the column positions, floor heights, and member lengths found on the drawings. Figure 12 shows the model skeleton.

Figure 12: 3D AutoCAD model perspective

It was then imported into ETABS using an AutoCAD dxf file. Rigid diaphragms were added to model the floor framing and slab system and to stabilize the structure against unnecessary P-delta effects. All elements were modeled with their true member sections as called out on the drawings. A rendered ETABS image of the diagrid and diaphragms is shown in Figure 13.

Figure 13: ETABS model perspective

The bottom points of the V columns were given support conditions as necessary. Most of the nodes are pinned to represent a V column connected to a single column at ground level. The three previously mentioned V columns under the auditorium are given roller supports. All supports are numbered for easy reference in the future (Figure 14). The structure is now completely modeled.

Figure 14: Support conditions

Diagrid Story Drifts

To estimate diagrid story drifts, unfactored wind load was added to the structural model as a uniform line load at each floor diaphragm in the west direction. The values of these loads were obtained from the wind load calculations in a previous section. Windward and leeward loads were separated and applied on their respective sides. Tabular and visual summaries of distributed loads are included below (Table 1 and Figure 15). For full results see Appendix B.

E-W Direction Windward			
Level	Story Dist. Load		
	(plf)		
Roof	99		
800	191		
700	178		
600	162		
500	158		

E-W Direction Leeward

Level	Story Dist. Load (plf)
Roof	61
800	123
700	123
600	123
500	143

Table 1: Wind load values

Figure 15: Applied wind loads

The model was analyzed and the west direction node displacement output was obtained from ETABS. Because of the complexity and size of the output tables, a method to visualize the displacement values was developed. All nodes were numbered along along Level 500 (bottom of diagrid, see Appendix C for numbering system). Every third node along the perimeter and the nodes directly above at Level 700 and Level 900 were evaluated for displacement. Displacements at Level 600 and Level 800 were interpolated. These displacements were referenced from Level 500 to determine net displacement. The results are tabulated in an Excel spreadsheet (Table 2) and each displacement is colorized by its magnitude. At the bottom of the table the maximum story drifts are calculated for each level. Furthermore, the colors from the spreadsheet are superimposed onto an AutoCAD frame of the diagrid, shown below in Figure 16.

	Total Displacement			Net Displacement			
Node	Level 500	Level 700	Level 900	Level 600	Level 700	Level 800	Level 900
1	1.425	1.527	1.586	0.051	0.102	0.132	0.161
4	1.357	1.464	1.524	0.054	0.107	0.137	0.167
7	1.274	1.388	1.450	0.057	0.114	0.145	0.176
10	1.191	1.311	1.374	0.060	0.120	0.152	0.183
13	1.107	1.233	1.298	0.063	0.126	0.159	0.191
16	1.021	1.154	1.221	0.067	0.133	0.167	0.200
19	0.936	1.075	1.144	0.070	0.139	0.174	0.208
22	0.851	0.997	1.068	0.073	0.146	0.182	0.217
25	0.767	0.919	0.992	0.076	0.152	0.189	0.225
28	0.687	0.845	0.919	0.079	0.158	0.195	0.232
31	0.676	0.835	0.909	0.080	0.159	0.196	0.233
34	0.746	0.900	0.973	0.077	0.154	0.191	0.227
37	0.824	0.972	1.043	0.074	0.148	0.184	0.219
40	0.905	1.046	1.116	0.071	0.141	0.176	0.211
43	0.99	1.123	1.191	0.068	0.135	0.169	0.203
46	1.072	1.200	1.267	0.064	0.128	0.162	0.195
49	1.156	1.279	1.343	0.062	0.123	0.155	0.187
52	1.242	1.358	1.420	0.058	0.116	0.147	0.178
55	1.327	1.436	1.497	0.055	0.109	0.140	0.170
58	1.411	1.514	1.573	0.052	0.103	0.133	0.162
61	1.493	1.590	1.647	0.049	0.097	0.126	0.154
64	1.570	1.659	1.713	0.045	0.089	0.116	0.143
67	1.613	1.701	1.756	0.044	0.088	0.116	0.143
70	1.635	1.722	1.776	0.044	0.087	0.114	0.141
73	1.634	1.721	1.775	0.044	0.087	0.114	0.141
76	1.599	1.690	1.744	0.046	0.091	0.118	0.145
79	1.519	1.614	1.670	0.048	0.095	0.123	0.151
82	1.466	1.565	1.623	0.050	0.099	0.128	0.157
			Max	0.080	0.080	0 117	0 117

Color Key	
in.	
0 - 0.06	
0.06 - 0.11	
0.11 - 0.14	
0.14 - 0.17	
0.17 - 0.20	
0.20 - 0.23	
0.23 - 0.24	

Table 2: Diagrid node displacement chart

As you can see from Figure 16, the diagrid net displacements are very consistent at the north end of the building. This is no doubt due to the projecting "hook" in the E-W direction, which provides stability against the west wind. At the south end of the building displacement increases substantially. The further away from the stable north end the member is, the more it is displaced. The southern top tip of the building moves 0.233 in., compared to 0.14 in. at the northern tip.

The allowable story drift must be calculated in order to compare it to the maximum story drifts at the bottom of Table 2. Each level in the diagrid is 13'-6" high. From the building specifications, allowable story wind drift is L/350. The calculated allowable drift is therefore $(13.5')^*(12 \text{ in./ft.})/350 = 0.463 \text{ in.}$

Wind Drifts	Level 600	Level 700	Level 800	Level 900
Allowable	0.463	0.463	0.463	0.463
Actual	0.080	0.080	0.117	0.117
Outcome	OK	OK	OK	ОК

Table 3: Allowable story drift comparison

Therefore, all diagrid story drifts (Levels 500-800) are within the allowable drift.

Ground Floor Story Drift

To estimate ground floor (Level 400) story drifts in the west direction, a more complicated process was necessary. As explained in the Lateral System Theory section, an adequate way to connect the braced frames to the diagrid diaphragm in ETABS was not found, therefore only the V columns were modeled. Stiffnesses for the V columns in the x direction using ETABS were found first. An alternate method was then used to determine stiffnesses of the braced frames. Finally, results from the two analyses were combined to obtain an overall stiffness for Level 400, which was used to calculate story drift.

ETABS Analysis

The ETABS model was analyzed and Level 500 deflections were obtained. The results can be found in Appendix D.1, with support nodes highlighted in green, minimum displacements in yellow, and maximum displacements in red. As you can see from the node displacement results (column "UX"), nodal displacement varies from 0.667 to 1.637. Since the rigid diaphragm in the model keeps the nodes consistently spaced in the xy plane under loading, this means that the building is undergoing slight torsion. This is further reinforced at the bottom of Appendix D.1, where the diaphragm results show that level 500 (story 1) undergoes a -0.00026 rad rotation about the positive z axis (column "RZ"). This rotation is exaggerated below in Figure 17.

Figure 17: Building rotation

Since the building is undergoing torsion, the x direction stiffnesses that could be obtained from this model would be inaccurate. This is because torsion introduces additional forces in the V columns (stiffness elements) based on their distance from the structure's center of rigidity. The center of rigidity is where the resultant load must act to eliminate torsion. The loading condition will be remodeled in an iterative manner until torsion is substantially reduced.

To do this, first the support reactions in the x direction are obtained from ETABS (Appendix D.2). Then the distances of the V column supports from the northernmost tip of the building (d_{north}) are found from the drawings. Figure 18 highlights the stiffness elements in green and their (d_{north}) distances. These two values, along with the support node displacements from Appendix D.1, are used in an Excel spreadsheet to calculate Δ_{unit} , rigidity (k), and k*d_{north} for all pinned columns. The three roller-supported columns do not carry any x direction force and are therefore neglected. The results are displayed in Table 4.

Support Node	Reaction	Displacement	Δ_{unit}	Rigidity (k)	d _{north}	k*d _{north}	
ouppoir	Noue	kips	in.	in.	kips/in.	ft.	kips
1	54	25.36	1.299	0.0512	19.52	103	24130
2	51	3.65	1.214	0.3326	3.01	130	4690
3	48	-0.28	1.129	-4.0321	-0.25	157	-467
4	45	3.08	1.044	0.3390	2.95	183	6479
5	42	12.85	0.960	0.0747	13.39	210	33731
6	39	27.99	0.878	0.0314	31.88	236	90282
7	36	46.69	0.799	0.0171	58.44	261	183020
8	33	66.09	0.722	0.0109	91.54	286	314156
9	26	14.74	0.740	0.0502	19.92	288	68840
10	23	4.15	0.824	0.1986	5.04	262	15834
11	20	-0.05	0.908	-18.1600	-0.06	235	-155
12	17	4.53	0.994	0.2194	4.56	208	11375
13	7	45.04	1.275	0.0283	35.33	115	48749
14	2	265	1.408	0.0053	188.21	73	164872
	Sums	518.84			473.46		965537

Table 4: Rigidity calculations

The negative stiffnesses are likely a result of building geometry, and should be resolved when the load is closer to the center of rigidity.

The new center of rigidity in the x direction is calculated by dividing the sum of k^*d_{north} values by the sum of k values, which is the total stiffness in the x direction.

Center of Rigidity = $\Sigma(k^*d)/\Sigma k$ = 965537/473.46 = 2039 in. = 170 ft.

The resultant load from the distributed wind loads acts along the geometric center of the building's N-S length, or 300'/2 = 150' from the northernmost tip. The actual center of rigidity for the stiffness elements is at 170', a distance of 20' from the resultant load. This accounts for the diaphragm rotation at level 500. Since rigidity is concentrated toward the southern end of the building, it is to be expected that the building's northern end is displaced more.

Now that a center of rigidity has been calculated, the next iteration is to modify the wind load to act along the center of rigidity. The distributed load used in the first iteration is resolved into a single point load, applied at Level 500. The magnitude of the point load is taken from the sum of the reactions found in Table 4. This is shown in Figure 19.

Figure 19: Load recentered at $d_{north} = 170'$

An ETABS analysis is run. See Appendix D.3 for reactions and Appendix D.4 for node displacements and rigid diaphragm rotation. The same process is used again to try and obtain an even more accurate estimation of the center of rigidity location. Results are obtained using the spreadsheet in Table 5.

Support Node	Reaction	Displacement	Δ _{unit}	Rigidity (k)	d _{north}	k*d _{north}	
Support	Noue	kips	in.	in.	kips/in.	ft.	kips
1	54	20.76	1.141	0.0550	18.19	103	22488
2	51	3.10	1.090	0.3516	2.84	130	4437
3	48	0.85	1.038	1.2212	0.82	157	1543
4	45	5.32	0.987	0.1855	5.39	183	11837
5	42	15.93	0.937	0.0588	17.00	210	42843
6	39	31.96	0.887	0.0278	36.03	236	102041
7	36	51.83	0.839	0.0162	61.78	261	193482
8	33	72.10	0.793	0.0110	90.92	286	312039
9	26	21.78	0.804	0.0369	27.09	288	93621
10	23	9.68	0.854	0.0882	11.33	262	35637
11	20	3.02	0.906	0.3000	3.33	235	9400
12	17	5.45	0.957	0.1756	5.69	208	14214
13	7	36.90	1.127	0.0305	32.74	115	45184
14	2	240.17	1.207	0.0050	198.98	73	174307
	Sums	518.85			512.15		1063074

Table 5: Rigidity calculations for $d_{north} = 170'$

As suspected, the rigidities are all positive now that the load has been moved. The new center of rigidity in the x direction is again calculated by dividing the sum of k^*d values by the sum of k values.

Center of Rigidity = $\Sigma(k^*d)/\Sigma k$ = 1063074/512.15 = 2076 in. = 173 ft.

This new center of rigidity is now only 3 feet away from the previous center of rigidity, yet the rotation of the rigid diaphragm as found in Appendix D.4 remains fairly high, -0.00016 rad as opposed to -0.00026 rad from the first load situation. It is obvious that the method developed above is not going to converge at the true center of rigidity. This might be due to the 2D nature of V column stiffness. In this method only stiffness in the x direction has been considered, when in fact a large portion of the structure's resistance is being resolved in the y direction. The above method, however, gives us a starting point to proceed further. By using a simple linear relationship, a new trial center of rigidity is obtained. The process is now based on the relative differences in diaphragm rotation. New trial locations are calculated, again iteratively, until a reasonable accuracy is found.

$$\frac{(-0.00026 - (-0.00016 \text{rad}))}{-0.00026 \text{rad}} = \frac{20'}{d_c}, \quad d_c = 52.0'$$

The term d_c is the distance from the center of the building geometry (150' from the northernmost tip). Therefore, the load will need to be moved an additional 52'-20' = 32' south for the next trial.

Another ETABS analysis is performed with the load centered at $d_{north} = 150'+52' = 202'$, as shown in Figure 20. See Appendix D.5 for node displacements and rigid diaphragm rotation.

Figure 20: Load recentered at d_{north} = 202'

Torsion is now limited to -0.00007 rad as opposed to -0.00016 rad. One more iteration should be sufficient to obtain a direct load (i.e. no torsion) case. Again, a linear relationship is established.

$$\frac{(-0.00026-(-0.00007 rad))}{-0.00026 rad} = \frac{52'}{d_c}, \quad d_c = 71.2'$$

Another ETABS analysis is performed with the load centered at $d_{north} = 150'+71.2' = 221.2'$, as shown in Figure 21. See Appendix D.6 for node displacements and rigid diaphragm rotation.

Figure 21: Load recentered at d_{north} = 221.2'

Torsion is now limited to -0.00001 rad, which is sufficiently small to consider the load as acting through the center of rigidity in the x direction. Now that the center of rigidity is found, the reactions in Appendix D.7 can be inputted along with the displacements into a table similar to those used above to obtain k for the V columns (Table 6). Since the load is considered to be acting through the center of rigidity, the x direction rigidity calculated in Table 6 for each V column is final.

Support	Nodo	Reaction	Displacement	Δ_{unit}	Rigidity (k)
Support Node		kips	in.	in.	kips/in.
1	54	14.18	0.930	0.0656	15.25
2	51	2.26	0.927	0.4102	2.44
3	48	2.40	0.925	0.3854	2.59
4	45	8.56	0.922	0.1077	9.28
5	42	20.58	0.919	0.0447	22.39
6	39	38.18	0.916	0.0240	41.68
7	36	60.11	0.914	0.0152	65.77
8	33	83.11	0.911	0.0110	91.23
9	26	34.19	0.912	0.0267	37.49
10	23	17.92	0.915	0.0511	19.58
11	20	7.40	0.917	0.1239	8.07
12	17	6.32	0.920	0.1456	6.87
13	7	22.56	0.929	0.0412	24.28
14	2	201.07	0.934	0.0046	215.28
	Sums	518.84			562.21

Table 6: Rigidity calculations for d_{north} = 170'

STAAD Analysis

Now that the stiffnesses of the V-columns are finalized, they must be combined with the stiffnesses of the braced frames in the E-W direction. To determine the braced frame stiffnesses, each frame is modeled in STAAD, a general purpose structural analysis program. Assumptions must be made that the floor slab at ground level is sufficiently stiff to consider braced, so that both frames are modeled from Level 400 to Level 500 only with pinned supports at their bases. Member lengths and section properties were obtained from the plans, column schedule, and braced frame elevations. A 100 kip load was applied at the top of each frame to accurately estimate nodal displacements. Figures 22 and 23 are diagrams of the STAAD models.

Brian Genduso – Technical Report #3 Lateral System Analysis and Confirmation Design

Both frames were analyzed and their nodal displacements are summarized in Table 7 and Table 8.

BF1			
Node	L/C	X (in)	Y (in)
7	1:UNIT WIND	0	0
8	1:UNIT WIND	0	0
9	1:UNIT WIND	0.234	0
10	1:UNIT WIND	0.192	-0.016

Table 7: Node displacements for BF1

Average displacement in the x direction = (0.234+0.192)/2 = 0.213

The stiffness (k) of the frame is the applied load over the average displacement, or (100 kip)/(0.213 in.) = 469.48 kip/in.

BF4			
Node	L/C	X (in)	Y (in)
7	1:UNIT WIND	0	0
8	1:UNIT WIND	0	0
9	1:UNIT WIND	0.211	0
10	1:UNIT WIND	0.165	-0.015

Table 8: Node displacements for BF1

Average displacement in x direction = (0.211+0.165)/2 = 0.188

The stiffness (k) of the frame is the applied load over the average displacement, or (100 kip)/(0.188 in.) = 531.91 kip/in.

Combined Results

The stiffnesses for the braced frames are then combined with the stiffnesses of the V columns and inserted into an overall stiffness spreadsheet, similar to those used in the ETABS Analysis (Table 9). The spreadsheet is used to calculate the actual center of rigidity in the x direction for the structure with both V columns and braced frames. It assumes that displacements are equal, which is true when the load acts at the center of rigidity. Torsion will be considered later, along with total building drift. Therefore, the center of rigidity is obtained by dividing the sum of k*d values by the sum of k values in Table 9.

Center of Rigidity = $\Sigma(k^*d)/\Sigma k$ = 3587061/2033.09 = 1764 in. = 147 ft.

Adding in the braced frame stiffnesses moves the center of rigidity just north of the geometric center of the building, as shown in Figure 24. Obviously the two BF1 frames in the northern half of the building have a substantial impact on the structure's rigidity.

Support	Nodo	Reaction	Δ_{unit}	Rigidity (k)	d _{north}	k*d
Support	Noue	kips	in.	kips/in.	ft.	kips
1	54	3.89	0.0656	15.25	103	18846
2	51	0.62	0.4102	2.44	130	3803
3	48	0.66	0.3854	2.59	157	4888
4	45	2.37	0.1077	9.28	183	20388
5	42	5.71	0.0447	22.39	210	56433
6	39	10.64	0.0240	41.68	236	118041
7	36	16.78	0.0152	65.77	261	205979
8	33	23.28	0.0110	91.23	286	313099
9	26	9.57	0.0267	37.49	288	129562
10	23	5.00	0.0511	19.58	262	61574
11	20	2.06	0.1239	8.07	235	22757
12	17	1.75	0.1456	6.87	208	17146
13	7	6.20	0.0412	24.28	115	33512
14	2	54.94	0.0046	215.28	73	188584
BF1-N	N/A	119.81	0.0021	469.48	89	501408
BF1-S	N/A	119.81	0.0021	469.48	100	563380
BF4	N/A	135.74	0.0019	531.91	208	1327660
	Sums	518.84		2033.09		3587061

Table 9: Overall rigidity calculations

Figure 24: Final center of rigidity location

Now that all stiffness elements are accounted for, the calculated story drift for Level 500 in the x direction can be obtained. This drift is simply the sum of the reactions divided by the sum of the rigidities, or

Story Drift = Σ (Reactions)/ Σ k = 518.84/2033.09 = 0.255 in.

The allowable drift is once again L/350, however the story height from Level 400 to Level 500 is 18', so $\Delta_{all} = (18')^*(12 \text{ in./ft.})/350 = 0.432 \text{ in.}$ The actual story drift for Level 500 is less than the allowable story drift and therefore is acceptable.

Torsion

Torsion is a lateral loading situation where the resultant load does not act through the center of rigidity. It must be considered when analyzing the lateral stiffness elements in a building. According to the governing building code, ASCE Standard 7-98 provides the provisions for unbalanced wind loads. Essentially, one half of the building wind load must be reduced by 25 percent to create eccentric loading and therefore torsion. Since it was determined that the structure's center of rigidity does not coincide with the geometric center of the building, the wind must be loaded so that P_w max occurs in the south half of the building. This is summarized below in Figure 25.

Figure 25: Unbalanced wind loading

The unbalanced moment was found by calculating $\mathsf{P}_{\mathsf{unbalanced}}$ and e from the loading condition.

 $P_{unbalanced} = P_w^*(1/2^*0.75 + \frac{1}{2}^*1.0) = 518.84^*(0.875) = 453.99 \text{ kip}$

e = (0.25*0.75*0.5+0.75*1.0*0.5)/(0.75*0.5+1.0*0.5)*300' – Center of Rigidity = 160.7' – 147' = 13.7' = 165 in. = 4.5% of the building length

M_{unbalanced} = P_{unbalanced}*e = 435.99*165 = 74907.5 in-kip

Using d_{north} , d_i , and final k values, the sum of $k{d_i}^2$ terms were calculated in an Excel spreadsheet (Table 10) in order to find $\theta_{torsion}$. The value d_i is the absolute distance from the element to the calculated center of rigidity.

Support	Nodo	d _{north}	di	di	Rigidity (k)	k*d _i	k*d _i ²
Support	Noue	ft.	ft	in	kip/in.	kip	in-kip
1	54	103	44	528	15.25	8050.58	4250706.58
2	51	130	17	204	2.44	497.35	101458.64
3	48	157	10	120	2.59	311.35	37362.16
4	45	183	36	432	9.28	4010.76	1732647.98
5	42	210	63	756	22.39	16929.79	12798923.70
6	39	236	89	1068	41.68	44515.55	47542602.97
7	36	261	114	1368	65.77	89967.70	123075816.89
8	33	286	139	1668	91.23	152170.67	253820676.88
9	26	288	141	1692	37.49	63431.45	107326008.95
10	23	262	115	1380	19.58	27026.89	37297101.64
11	20	235	88	1056	8.07	8521.70	8998916.47
12	17	208	61	732	6.87	5028.52	3680877.91
13	7	115	32	384	24.28	9325.12	3580847.53
14	2	73	74	888	215.28	191167.19	169756469.04
BF1-N	N/A	89	58	696	469.48	326760.56	227425352.11
BF1-S	N/A	100	47	564	469.48	264788.73	149340845.07
BF4	N/A	208	61	732	531.91	389361.70	285012765.96
					•	Sum	1435779380

Table 10: kd_i² calculations

Since y-direction stiffnesses were not taken into account in the kd_i² terms, an estimate of their rigidity must be made. It can be assumed that the stiffnesses in the x-direction are approximately equal to the stiffnesses in the y-direction. Therefore, the total sum of kd_i² is twice the value calculated in Table 10. Rotation due to torsion can be calculated from the small displacement theory torsion equation $\theta_{torsion} = M_{unbalanced}/\Sigma k_i d_i^2$. This calculation is shown below.

$$tan(\theta_{torsion}) = \frac{M}{\sum (k_i * d_i^2)} , \quad tan(\theta_{torsion}) = \frac{74907.5}{2*1435779380} , \quad \theta_{torsion} = 0.000026 \text{ rad}$$

The torsional rotation for this case is much lower than what was calculated by ETABS in the original wind load case. This happens for two main reasons, both related to the absence of braced frames in the model. The first is that the center of rigidity for the V columns was much further from the resultant load in the original case. The second is that the total rigidity was much lower in the original case as well, producing more rotation under similar loads.

In any case, $\theta_{torsion}$ produced by a 4.5% eccentricity is extremely small. It will not be much of an issue. At 0.000026 rad, the maximum building drift at the north and south ends for Level 500 will be tan(0.000026 rad)*300'/2 = 0.047 in. This certainly makes sense, since the elliptical shape of the building and orientation of the V columns and braced frames in relation to the center of rigidity maximizes each element's stiffness potential. As one sees in automobile drive shafts and other related mechanical applications, a round shape naturally resists torsion better than a rectangular shape.

Total Building Drift

Stiffness element forces in the x direction as a result of torsion must be calculated to find the total building drift. $F_{torsion}$ values are calculated by dividing the individual $k_i d_i$ values by twice the sum of $k_i d_i^2$ in Table 10 and multiplying by the unbalanced moment. F_{direct} values are the reactions obtained from the direct load story drifts in Table 9. Displacement from Level 400-500 at each support is found by dividing F_{total} by the rigidity. Displacements from Levels 500-900 are found from Table 2. Finally, the total drift is simply the sum of the story drifts from Levels 400-500 and 500-900. Table 11 contains all of these values.

Support	Nodo	$\mathbf{F}_{\text{torsion}}$	F _{direct}	F _{total}	Rigidity (k)	Δ ₄₀₀₋₅₀₀	Δ ₅₀₀₋₉₀₀	$\mathbf{\Delta}_{total}$
Support	Noue	kip	kip	kip	kips/in.	in.	in.	in.
1	54	0.21	3.89	4.10	15.25	0.269	0.170	0.439
2	51	0.01	0.62	0.64	2.44	0.261	0.178	0.439
3	48	0.01	0.66	0.67	2.59	0.258	0.187	0.445
4	45	0.10	2.37	2.47	9.28	0.266	0.195	0.461
5	42	0.44	5.71	6.16	22.39	0.275	0.203	0.478
6	39	1.16	10.64	11.80	41.68	0.283	0.211	0.494
7	36	2.35	16.78	19.13	65.77	0.291	0.219	0.510
8	33	3.97	23.28	27.25	91.23	0.299	0.227	0.526
9	26	1.65	9.57	11.22	37.49	0.299	0.225	0.524
10	23	0.71	5.00	5.70	19.58	0.291	0.217	0.508
11	20	0.22	2.06	2.28	8.07	0.283	0.208	0.491
12	17	0.13	1.75	1.88	6.87	0.274	0.200	0.474
13	7	0.24	6.20	6.44	24.28	0.265	0.176	0.441
14	2	4.99	54.94	59.93	215.28	0.278	0.161	0.439
							Max	0.526

Table 11: Maximum building drift at support nodes

The allowable drift for the total building height as found in the specifications is L/500. Total building height is 18'+4*13.5' = 72', therefore $\Delta_{all} = (72')/500 = 1.728$ in. The maximum building drift from Table 11 is 0.526 in., well within the allowable drift. Maximum drift occurs near node 33, at the southern tip of the building. This result makes sense, since the wind forces acting on both the diagrid structure (refer to Figure 16) and the v-columns cause greater deflection at the southern end of the building.

Overturning

To determine overturning reactions the unfactored wind and dead loads are combined and applied in the ETABS model used for lateral drift. Two-thirds of the dead load of each level as calculated in Appendix A is modeled in order to conservatively estimate the minimum dead load. This weight is applied as a uniform area load on every floor, including Level 900, the roof. The weights used in the overturning analysis are shown below in Table 12.

	Superimposed	Superstructure	Total	Area	Uniform Load
Level	(kip)	(kip)	(kips)	ft ²	psf
900 (Roof)	1973	368	2341	23500	100
800	2084	438	2522	23500	107
700	2100	438	2538	23500	108
600	2361	438	2800	23500	119
500	2209	390	2600	23500	111
		Sums	12800	117500	

Table 12: Dead Loads used in overturning analysis

The analysis was performed and the resulting reactions are summarized in Table 13.

Support	FZ (2/3 D)	Sı
1	511	
2	323	
3	319	
4	318	
5	316	
6	316	

Support	FZ (2/3 D)
7	323
8	388
9	435
10	319
11	319
12	619

Support	FZ (2/3 D)
13	803
14	751
15	825
16	480
17	1170
Sum (1-17)	2103

Table 13: Overturning reactions

Since all the FZ values are positive, there are no net uplift forces acting at the supports. Therefore, supporting columns and piers do not experience tensile forces, which is significant in the subsequent foundation design. These results make sense because the relatively low building height does not provide enough wind force overturning moment to overcome the wide base of the diagrid frame.

Member Checks

In order to keep member checking workload reasonable, only two types of lateral force resisting members are evaluated. The braced frames are critical elements in the lateral system and will be analyzed. Also, the unique structural concept of the diagrid will be looked at.

Braced Frames

First, $F_{torsion}$ values are found using the equations in the Total Building Drift section. They are combined with the F_{direct} from Table 9 to obtain F_{total} , summarized in Table 14 below.

Support	Node	F _{torsion}	F _{direct}	F _{total}
		kip	kip	kip
BF1-N	N/A	8.52	119.81	128.33
BF1-S	N/A	6.91	119.81	126.72
BF4	N/A	10.16	135.74	145.90

Table 14: Total frame forces

The F_{total} forces are inputted into STAAD using the 1.6 wind factor from load case 4. BF1-N was used to model both BF1 frames because it has a higher F_{total}. Axial forces for the diagonals were taken from the STAAD output (Appendix E.1 and Appendix E.2). Unbraced lengths were determined from frame geometry. Since the members are part of a braced frame system, the k factor was assumed to be 1.0. Using Table 4-2 in the LRFD manual (3rd edition), the least weight beams for three common column sizes were found. Results are summarized below in Table 15.

					Leas	t Weight E	Beam	
Eramo Mombor	Axial force	al force Lb		KLy	W/10v	W/1 2x	\\//1 / y	
	kip	ft	n	ft	WIUX	VV I ZX	VV 14X	
BF1 Diagonal	460.80	20.1	1.0	20.1	77	65*	74	
BF4 Diagonal	482.40	20.6	1.0	20.6	77	65*	82	
*non-compact	Table	15 [.] Brace	d frame	member si	zina			

Table 15: Braced frame member sizing

The actual diagonal sizes are both W14x90. The differences between this member and the possible least weight members above can be attributed to a variety of factors. Seismic loads, which were not considered in this check, could be the controlling loads on the braced frames. Other load cases might be applicable as well. The addition of dead loads to the model would increase P-delta effects and add compressive load to the diagonal. Connections to the rest of the frame might be more feasible with a W14 as opposed to a smaller depth. Also, inaccuracy of the model and its resulting loads could contribute to the size discrepancy. However, these possible members are certainly in the ballpark of the actual W14x90 diagonals.

Diagrid Members

To accurately size the diagrid members gravity loads must be included in the ETABS analysis. A simplified procedure is used to determine the correct gravity loads acting on the diagrid. We will look only at the western office bays, since they are the most representative areas of the building. They are modeled with a 15' tributary area depth wrapping around the entire building (Figure 26). The rest of the load in the bays is considered to go to interior columns. This is certainly not true throughout the entire building, however, it is a reasonable approximation.

The width of the tributary area to each node on the diagrid is the width of a diagrid bay, or 9' o.c. The tributary area at each level is therefore 9'x15' = 135 ft². This area is attributed to Levels 500-900, with the top area being the roof, as illustrated in Figure 27.

Figure 27: Simplified loading tributary width

Dead, live, and roof snow loads are taken from Appendix A. Dead loads are summarized in Table 16. Though ETABS does have Live Load Reduction capabilities, they are not applicable to the type of simplified model we are working with. Therefore, Live Load Reductions are included with snow loads in Table 17 according to ASCE 7-98. It has been assumed that the roof snow load controls over the roof live and roof rain loads. Because of the unusual geometry of the diagrid, the actual area that directs live load toward each node is in fact higher than the simplified tributary area assumed above. This means that the numbers below are likely conservative. This is illustrated in Figure 28.

	Area	Roof Dead	Area	Office Dead	Total Dead
	ft ²	psf	ft ²	psf	kip
Level 900	135	95	0	96	12.8
Level 800	135	95	135	96	25.8
Level 700	135	95	270	96	38.7
Level 600	135	95	405	96	51.7
Level 500	135	95	540	96	64.7

	Area	Snow	Total Snow	Area	Office Live	KII	LLR	Reduced LL	Total Live
	ft ²	psf	kip	ft ²	psf			psf	kip
Level 900	135	30	4.1	0	50	4	1	50.0	0.0
Level 800	135	30	4.1	135	50	4	0.895	44.8	6.0
Level 700	135	30	4.1	270	50	4	0.706	35.3	9.5
Level 600	135	30	4.1	405	50	4	0.623	31.1	12.6
Level 500	135	30	4.1	540	50	4	0.573	28.6	15.5

Table 16: Diagrid dead loads

Table 17: Diagrid snow and live loads

The dead, live, and snow loads were then inputted into ETABS as point loads at each node. Appropriate load combination factors, in accordance with the Ohio Basic Building Code, were evaluated. Refer to the Load Cases section for those combinations.

Once the model was analyzed in ETABS, axial and moment forces were obtained for the entire diagrid structure. Graphical outputs shown in Figure 29 (axial force) and Figure 30 (moments) help locate areas of high stress. Two regions of members were selected to be further investigated, based on the sectional properties of the members and their proximity to the office bays for which the loading was modeled.

The green region, on the western side of the building, has the following properties, as found on the structural drawings:

Upper Diagrid (top two floors) – Horizontals W14x82, Diagonals W12x53 Lower Diagrid (bottom two floors) – Horizontals W14x82, Diagonals W12x87

The purple region, on the southern tip of the building, has different properties: Upper Diagrid (top two floors) – Horizontals W14x53, Diagonals W12x35 Lower Diagrid (bottom two floors) – Horizontals W14x53, Diagonals W12x50

Due to the high number of members to be analyzed, an Excel spreadsheet was developed which calculates the interaction equation utilization factor. The maximum factored forces for required strength are taken from the ETABS output, while the calculations for nominal strength are calculated per LRFD specification, shown below in Table 18. Unbraced lengths were calculated from diagrid geometry and Φ Pn (compression) was obtained using Table 4-2 in the LRFD manual (3rd edition).

Steel	Properties							
Fy	50							
Φt	0.9		Tens	ion Capacity	ty Compression Capacity			
Φb	0.9		Ag	ΦPn (tens.)	Lx = Ly	ĸ	KLx = KLy	ΦPn (comp.)
			in	kip	ft	N	ft	kip
Green	Horizontal	W14x82	24.0	1080	9.0	1.0	9.0	888
	Diagonal	W12x87	25.6	1152	14.2	1.0	14.2	870
Purple	Horizontal	W14x53	15.6	702	9.0	1.0	9.0	526
	Diagonal	W12x50	14.6	657	14.2	1.0	14.2	360

				Moment	Capacity	y							
			Zx	ΦMnx	Zy	ΦMny							
			in ³	n ³ in-kip in ³ in-kij									
Green	Horizontal	W14x82	139	6255	44.8	2016							
	Diagonal	W12x87	132	5940	60.4	2718							
Purple	Horizontal	W14x53	87.1	3920	22.0	990							
	Diagonal	W12x50	71.9	3236	21.3	959							

Table 18: Nominal strength calculations

First page samples of the spreadsheets are included in Appendix F. Full results are not included because they are unnecessary and repetitive, but are available upon request. The number of members controlled by each load case is shown below in Table 19. As you can see, Case 4, which includes wind loading, controls in more than 75% of the members in the regions analyzed.

	Gre	en	Purp	ole	
	Horizontal	Diagonal	Horizontal	Diagonal	Total
Case 1	0	0	0	0	0
Case 2	6	24	13	14	57
Case 3	0	0	0	1	1
Case 4	46	64	29	57	196

Table 19: Controlling cases summary

If a diagrid member is sufficient to carry the design loads its utilization factor must be less than 1.0. For each type of member in both regions, the maximum utilization factor was obtained from the spreadsheets. These factors are summarized below in Table 20.

			Max. Utilization Factor	Load Case
Green	Horizontal	W14x82	0.324	Case 4
	Diagonal	W12x87	0.586	Case 4
Purple	Horizontal	W14x53	0.440	Case 4
	Diagonal	W12x50	0.861	Case 4

Table 20: Maximum Utilization Factor Summary

Since the utilization factors are all less than 1.0, it can be concluded that the diagrid members for the two regions considered are adequate to carry their imposed loads. However, it must be noted that the utilization factor for the horizontals in both regions are well under 0.5, meaning less than half of their allowed strength is being used under worst case conditions. Though this may seem like severe under-design, several important factors may contribute these results.

- First and foremost, the diagrid has been designed to be as consistent as possible along its length. It is economical to use similar member sections where required strengths are similar, especially when ease of construction is considered. In order for all members to meet those strengths many of the members in low stress areas will be underutilized.
- Since only a portion of the diagrid was analyzed, it is quite possible that in the areas of higher stress around the northwest tip (refer to Figures 29 and 30) the utilization factor approaches 1.0.
- Gravity loading was made by an approximate method. More accurate tributary areas would have to be evaluated to obtain true loading conditions.
- Deflection, seismic, and redundancy issues were not taken into consideration.

- The unconventional shape of a structure such as this leaves a significant amount of uncertainty in its anticipated behavior. It is ultimately up to the experience of the engineer to increase member sizes if there is any doubt in the structure's strength and serviceability performance.

Conclusions

The University of Cincinnati Athletic Center performs quite well under lateral loading situations. Seven distinct analyses were performed, and in all cases the designed structure met or exceeded allowable values. Specific conclusions for each analysis type are explained below.

Diagrid Story Drift

The high rigidity and redundancy of the diagrid and its diaphragms provide an excellent distribution of wind load from the exterior faces down to the ground level supports. Drifts calculated using ETABS are well within the specified L/350 limits. In fact, actual story drifts are always less than 1/4 the allowable story drift.

Ground Floor Story Drift

The three braced frames account for most of the lateral resistance in the E-W direction. Excel spreadsheets show that calculated drifts are well under the specified L/350 limits. Actual story drifts are less than 1/3 the allowable story drift.

<u>Torsion</u>

Building rotation due to unbalanced wind loads is extremely small. The elliptical shape of building is well-suited to resisting torsional forces.

Total Building Drift

Even with torsion considered the maximum total drift is less than 1/3 the allowable drift.

Overturning

No uplift forces were obtained with a conservative dead load approach. The relatively low building height does not provide enough wind force overturning moment to overcome the wide base of the diagrid frame

Braced Frame Check

The actual member sizes for the braced frame diagonals are slightly larger than calculated member sizes. The members are not, however, overdesigned, but could be resisting forces which were not accounted for in the model.

Diagrid Member Check

From ETABS output and Excel charts, the maximum utilization factor of the evaluated members = 0.861. Since this is less than 1.0 the members are adequate to carry their loads. Some members are potentially overdesigned, but there are many valid reasons for doing so.

Gravity Loads

Gravity loads consist of the superstructure dead load, the superimposed dead load, and live loading.

- <u>Superstructure load</u> A computer analysis program was used by the structural structural engineer to determine the self weight of the superstructure. For this report the self weight was estimated using a simplified procedure. The theory behind the procedure is found in Appendix A.2, while the load calculations are tabulated in Appendix A.3.
- <u>Superimposed load</u> Loading diagrams on the drawings were used to compile total superimposed loads for each floor. Appendix A.4 shows the dead load for each type of occupancy in the "Total Dead" column. Appendix A.5 tabulates the total load for each floor. Dead Loads are summarized below.

Level	Superimposed	Superstructure	Total (kins)
Boof	1072	269	(KIP3)
RUUI	1973	300	2341
800	2084	438	2522
700	2100	438	2538
600	2361	438	2800
500	2209	390	2600
400 (ground)	5026	460	5486

<u>Live load</u> – Loading diagrams on the drawings were used to compile live loads for each floor. Appendix A.4 shows the live load for each type of occupancy in the "Live Load" column. Snow loads were assumed to be 30psf with 50psf drifts as indicated on the drawings.

	ARUP	Appen Job No.	ndix A.2 - Gravity Loa Sheet No.	d Calculations Rev.
		Member-Local	tion	
Job	o Title	Drg. Ref.		
\vdash		Made by	Date	Chd.
	ENCLOSURE (CONTD)			-
	Perimeter found by c	AD = 760'	MA	AN 800
	Horiz members: 82.	760' = 62.3K	/level	AN 600
	Diag. members: 53.1	$4.2' \cdot \frac{760'}{4.5'} = 127.1$	1×/level	400
	CALCE IN EXCEL			
	<u>×</u>			
		8		

hletic Center	
y of Cincinnati Ath	osnpu
Jniversit	Brian Ge

Superstructure Dead Load

l	-	;	-		-						_		-
	Totol	וטומו	367.7		438.2		438.2		438.2		390.4		460.0
	Trib. Wt.	(kips)	63.6		127.1		127.1		127.1		63.6		
Enclosure	Diag. Mem.	(kips)		127.1		127.1		127.1		127.1			
	Horiz. Mem.	(kips)	62.3		62.3		62.3		62.3		62.3		62.3
	Trib. Wt.	(kips)	6.9		13.8		13.8		13.8		29.6		22.7
	Wt./floor	(kips)		13.8		13.8		13.8		13.8		45.4	
Columns	Story Ht.	(ft)		13.5		13.5		13.5		13.5		18	
	Typ. weight	(plf)		60		60		60		09		120	
	# of cols.			17		17		17		17		21	
6	Weight/floor	(kips)	235		235		235		235		235		375
⁻ loor Framinç	Area	(ft^2)	23500		23500		23500		23500		23500		37500
-	Dist. Load	(psf)	10		10		10		10		10		10
		LGVGI	Roof		800		700		600		500		400

University of Cincinnati Athletic Center Brian Genduso

Superimposed Load Types

		Floor Finish	Floor Slab	Ceiling/Services	Partitions	Additional	Total Dead	Live Load	Total Unfactored
	Alea Occupaticy	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)	(psf)
	1 High Roof		60	10			20	30	100
	2 Office		99	10	20		96	50	146
	3 Multi-purpose club		99	10			76	100	176
	4 Stair					30	30	100	130
	5 Atrium/Corridor	25	66	10			101	100	201
	6 Mechanical room		66	10		50	126	125	251
	7 Computer lab	25	99	10			101	100	201
	8 Fixed seating		110	10		10	130	60	190
	9 Stage	25	66	10			101	100	201
7	0 Lobby/General assembly	25	66	10			101	100	201
1	1 Locker room	25		10	20		55	100	155
-	2 Work area	25	65	10	20		120	100	220
1	3 Showers/Rest room	25	99	10			101	60	161
1	4 Storage	25	99	10			101	125	226
1	5 Laundry	25		10			35	150	185
1	6 Ramp	25	99				91	100	191
1	7 Elevator machine room		99				99	250	316
1	8 Meeting room		99	10			76	60	136
1	9 Treatment area	25	99	10	20		121	100	221
2	0 Video room	25	99	10	20		121	100	221
2	1 Hydrotherapy	25	99	10			101	400	501
2	2 Loading dock	30	99	10			106	100	206
2	3 Ambulance parking	30	62	10			119	100	219
2,	4 Walkway roof	13	5				18	30	48
5	5 Theater control room	25	99	10	20		121	100	221
2	6 Trash compactor		99	10			76	350	426
2	7 Roof	25	60	10			95	60	155
2	'8 Exterior truck loading	06	79	10			179	100	279
N N	9 Exterior non-truck loading	06	99	10			166	100	266

Appendix A.4 - Gravity Load Calculations

Athletic Cente	
University of Cincinnati	Brian Genduso

_

S
Ë
<u>e</u> .
at
Ξ
ō
a
υ
σ
ğ
ĭ
σ
ğ
Å
Ξ
8
õ
8
Ĕ
÷
ē
<u>a</u>
_
S

	of	^r otal (kip)	727																										1246			1973
	Roc	Area (ft^2) 7	10382																										13119			23501
	0	Total (kip)		964	363	50	612								96																	2084
	80	Area (ft^2)		10038	4772	1655	6058								955																	23478
	00	Total (kip)		957	322	51	617				55				98																	2100
	20	Area (ft^2)		9973	4234	1694	6106				544				696																	23520
	0	Total (kip)		984		43	595	689							51																	2361
	90	Area (ft^2)		10249		1428	5887	5472							501																	23537
/el	00	Total (kip)		728		48	623		225	323					106												155					2209
Le	2(Area (ft^2)		7583		1615	6170		2228	2485					1053												1282					22416
	00	Total (kip)		344		31				300	81	006			204															845	2321	5026
	4(Area (ft^2)		3586		1046				2307	803	8907			2017															4723	13982	37371
	00	Total (kip)		96		20	363	1377										81		42	212			271	123			34		904		3523
	3(Area (ft^2)		266		699	3598	10932										288		548	1749			2556	1033			451		2020		28470
	00	Total (kip)		214		14	6 <i>1</i> E	196								65				647	427		<u> </u>									2037
	2(Area (ft^2)		2224		483	3750	1558								641				8510	3529		943									21638
	00	Total (kip)											949				154		24													1127
	1(Area (ft^2)											17259				4393		358													22010
		Type	1	2	з	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	Sums

ARUP Appendix B.1.	- Wind and Seismic Load Calculations No. Sheet No. Rev.
Men	mber-Location
Job Title UCAC Wind Cales. Drg.	. Ref.
ASCE 7-98 Ch. 6 Mad	de by BJG Date 0,6.03 Chd.
IS THE BUILDING RIGID?	
From ASCE 7-98, 9.5.3.3 T- C-	T'h, 7 (period)
CT = .02 (for braced w/ mom	nent frames)
hn = 72' (from level 400)	
$T_a = .02.72^{\frac{3}{4}} = .49 s$	10 ₁₀
$f = \frac{1}{12} = \frac{1}{19} = 2.02 $	Frequency
FZIH- : la ildina is aid	
1 172 Darraining is rigid	
Find pressures	
$Pw = Qz \cdot G \cdot Cp$ (rigid)	
Pe=qn·G·Cp	
$q_z = .00256 K_z K_{zt} K_d V^2 I$	
Kz = .57 0-16A (Exposure	B, Case 2 - Table 6-5)
.66 25 .70 30	
. (6 40 .81 50 .85 60	
.89 70 93 80	from Figure 6-2 using geotech
$K_{z+} = (1 + K_1 K_2 K_3)^2 = (1 + .6.1)^2$	$1.0.14)^2 = 1.18$
Kd = .85 (Table 6-6)	
V= 90 mph (Figure 6-1)	
I= 1.15 (Table 6-1, Cate	egory III)
G=,85 (assumed)	
Cp=.8 (windward)	`
2 (L/B≈ 700 = 2.5, leeward	N-5)
5 (4B = 300 = .4, leeward	E-W)

ARUP Appendix	B.1 - V Job No.	Vind and	Seismic Sheet No.	Load Calcul	ations _{Rev.}
	Member-L	ocation			
Job Title UCAC Wind Calcs	Drg. Ref.				
ASCE 7-98	Made by	BJG	Date /	0.6.03	Chd.
$q_{h} = \frac{72-70}{30-70} (.9389)(q_{z}) + (q_{z}).$.89				
qz = .00256~1.1885.90~.1.15 Qh = 21.5 psf	•K _{z+} =	= 23.4	1 Kz	,	,
$p_w = 23.9 \cdot K_z \cdot .85 \cdot .8 = 16.3 \cdot 1000$	Kz (1	(Wind	$\frac{1}{1-5}$	N-S or E	-w)
$p_{\ell} = 21.5.85(5) = -9.1 \text{ psf}$ (Leew	ard, E	E-W)		
Calculations					
Done in Excel					
9 ⁴					
				120	

Appendix B.1 - Wind and Seismic Load Calculations University of Cincinnati Athletic Center Brian Genduso

N-S Direction

Coefficients	
Windward	16.3
Leeward	-3.7

Height (ft)	Kz	Windward (psf)	Leeward (psf)	Total MWFRS (psf)
0-15	0.57	9.3	-3.7	13.0
15-20	0.62	10.1	-3.7	13.8
20-25	0.66	10.8	-3.7	14.5
25-30	0.70	11.4	-3.7	15.1
30-40	0.76	12.4	-3.7	16.1
40-50	0.81	13.2	-3.7	16.9
50-60	0.85	13.9	-3.7	17.6
60-70	0.89	14.5	-3.7	18.2
70-80	0.93	15.2	-3.7	18.9

E-W Direction

Coefficients	
Windward	16.3
Leeward	-9.1

Height (ft)	Kz	Windward (psf)	Leeward (psf)	Total MWFRS (psf)
0-15	0.57	9.3	-9.1	18.4
15-20	0.62	10.1	-9.1	19.2
20-25	0.66	10.8	-9.1	19.9
25-30	0.70	11.4	-9.1	20.5
30-40	0.76	12.4	-9.1	21.5
40-50	0.81	13.2	-9.1	22.3
50-60	0.85	13.9	-9.1	23.0
60-70	0.89	14.5	-9.1	23.6
70-80	0.93	15.2	-9.1	24.3

Athletic Center	
University of Cincinnati	Brian Genduso

N-S Direction

ding trib width (ft) 120

Cum. Shear	(kips)	14.9		43.8		71.2		96.6		122.5		122.5
Story Shear	(kips)	14.9		28.9		27.4		25.4		25.9		N/A
Cum. Dist. Load	(plf)	124		365		593		805		1021		N/A
Story Dist. Load	(plf)	124		241		228		212		216		N/A
НЗ	(ft)					1.75		8.25		4.75		
Ρ3	(psf)					17.6		16.1		14.5		
Н2	(ft)	2		5.25		10		5		5		
P 2	(psf)	18.9		18.2		16.9		15.1		13.8		
Η 1	(ft)	4.75		8.25		1.75		0.25		9		6
P 1	(psf)	18.2		17.6		16.1		14.5		13		13
Total ht.	(ft)		65.25		51.75		38.25		24.75		6	
Trib ht.	(ft)	6.75		13.5		13.5		13.5		15.75		6
Story ht.	(ft)		13.5		13.5		13.5		13.5		18	
	Level	Roof		800		700		600		500		400 (ground)

E-W Direction

72	300
Building height (ft)	Building trib width (ft)

_												
Cum. Shear	(kips)	48.2		142.3		232.6		318.0		408.3		408.3
Story Shear	(kips)	48.2		94.1		90.3		85.5		90.3		N/A
Cum. Dist. Load	(plf)	161		474		775		1060		1361		N/A
Story Dist. Load	(plf)	161		314		301		285		301		N/A
H 3	(tt)					1.75		8.25		4.75		
Б3	(psf)					23		21.5		19.9		
Н2	(tt)	2		5.25		10		5		5		
Ρ2	(psf)	24.3		23.6		22.3		20.5		19.2		
H 1	(H)	4.75		8.25		1.75		0.25		9		6
Ρ1	(psf)	23.6		23		21.5		19.9		18.4		18.4
Total ht.	(ft)		65.25		51.75		38.25		24.75		6	
Trib ht.	(ft)	6.75		13.5		13.5		13.5		15.75		б
Storv ht.	(t t)		13.5		13.5		13.5		13.5		18	
	Level	Roof		800		200		600		500		400 (ground)

10/8/2003

ARUP Appendix B.4 - Wind and Seismic Load Calculations Job No. Sheet No. Member-Location WAC Seismic Calcs Job Title Drg. Ref. ASCE 7-98 Ch. 9 Made by BJG Date 10.7.03 Chd. Determine Seismic Design Category From Wind Analysis, Table 1-1, Occupancy Category = III : Seismic Use Group = II (Table 9.1.3) Site classification From Basis of Design report, in conjunction w/ the geotech report from H.C. Nutting Co., Site class. = B (rock w/ 2500 \$ = 7, = 5000) Spectral Response Accelerations 5s = .20 (from Figure 9.4.1.1 (a)) S1 = .09 (from Figure 9.4.1.1 (b)) Fa = 1.0 (Table 9.4.1.2.4a) Fy = 1.0. (Table 9.4.1.2.46) $5ms = Fa \cdot S_s = 1.0 \cdot .2 = .20 g^{c}$ gravitational constant $5m_{11} = Fv \cdot 5_1 = 1.0 \cdot .09 = .09 g$ 505 = = 545 = = :, 2 = . 133g SDI = = SMI = = .06 g From Table 9.4.2.1a, SDC = A > :: SDC = A From Table 9.4.2.16, SDC = A Section 9.5.2.5.1 specifies that a building in SDC = A can be designed using Fx = .01 wx Excel used to calculate story shear

Appendix C - Node Numbering System

AE 431W 3D ETABS Model

Appendix D.1 - ETABS Analysis Results

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM) Kip-in Units PAGE 1 November 7, 2003 18:11

AE 431W 3D ETABS Model

POINT DISPLACEMENTS

STORY	POINT	LOAD	UX	UY	UZ	RX	RY	RZ
STORY1	1	WWIND	1.4252	0.1160	0.2513	-0.00061	0.00222	-0.00026
STORY1	2	WWIND	1.4076	0.0941	0.0247	0.00085	0.00159	-0.00026
STORYI	3	WWIND	1.3844	0.0787	-0.1685	-0.000//	0.00370	-0.00026
STORY1	4	WWIND	1.3574	0.0720	-0.1014	-0.00040	-0.00029	-0.00026
STORY1	5	WWIND	1.3295	0.0745	-0.0905	0.00022	0.00021	-0.00026
STORY1	6	WWIND	1.3021	0.0818	-0.1106	0.00022	0.00321	-0.00026
STORY1	7	WWIND	1.2747	0.0893	-0.0122	-0.00062	0.00081	-0.00026
STORY1	8	WWIND	1.2471	0.0961	0.0924	0.00021	0.00326	-0.00026
STORY1	9	WWIND	1,2194	0.1022	0.0485	0.00041	0.00042	-0.00026
STORV1	10	WWTND	1 1015	0 1075	0 0379	0 00009	0 00045	-0 00026
CTORII	11	NWIND	1 1625	0.1101	0.0375	0.00000	0.00045	0.00020
STORIL	10	WWIND	1.1055	0.1121	0.0330	0.00009	0.00045	-0.00026
STORYI	12	WWIND	1.1353	0.1161	0.0292	0.00009	0.00046	-0.00026
STORY1	13	WWIND	1.1070	0.1193	0.0241	0.00008	0.00047	-0.00026
STORY1	14	WWIND	1.0787	0.1217	0.0181	0.00008	0.00049	-0.00026
STORY1	15	WWIND	1.0504	0.1234	0.0111	0.00007	0.00050	-0.00026
STORY1	16	WWIND	1.0220	0.1245	0.0001	0.00023	0.00068	-0.00026
STORY1	17	WWIND	0.9935	0.1247	-0.0244	-0.00027	0.00434	-0.00026
STORY1	18	WWIND	0.9651	0.1243	0.0201	-0.00039	0.00402	-0.00026
STORY1	19	WWIND	0.9367	0.1231	0.0043	0.00018	0.00088	-0.00026
STORY1	20	WWIND	0 9084	0 1212	-0.0110	-0.00052	0.00504	-0.00026
STORI1	21	WWIND	0 9901	0.1105	0.00110	-0.00062	0.00505	-0.00026
STORII GEORVI	21	WWIND	0.0501	0.1100	0.0000	-0.00002	0.00505	-0.00020
STORYI	22	WWIND	0.8519	0.1151	0.0055	-0.00009	0.00090	-0.00026
STORYI	23	WWIND	0.8237	0.1110	0.0056	-0.00063	0.00457	-0.00026
STORY1	24	WWIND	0.7957	0.1062	-0.0088	-0.00072	0.00454	-0.00026
STORY1	25	WWIND	0.7678	0.1007	0.0071	-0.00034	0.00083	-0.00026
STORY1	26	WWIND	0.7401	0.0944	0.0211	-0.00068	0.00408	-0.00026
STORY1	27	WWIND	0.7126	0.0874	-0.0210	-0.00081	0.00361	-0.00026
STORY1	28	WWIND	0.6877	0.0753	0.0133	-0.00084	0.00071	-0.00026
STORY1	29	WWIND	0.6744	0.0530	0.0193	-0.00015	0.00021	-0.00030
STORY1	30	WWIND	0.6668	0.0271	0.0133	0.00003	0.00019	-0.00026
STORY1	31	WWIND	0 6764	0 0017	0 0093	0 00011	0 00021	-0 00026
STORI1	30	WATND	0 6907	-0.0075	0.00000	0.00011	0.00021	_0 00020
	22	NULIND	0.7216	0.0075	0.0245	0.00097	0.00076	0.00020
STORIT	33	WWIND	0.7216	-0.0308	0.0771	0.00084	0.00375	-0.00026
STORYI	34	WWIND	0.7470	-0.0436	-0.0697	0.00087	0.00391	-0.00026
STORY1	35	WWIND	0.7727	-0.0557	-0.0032	0.00115	0.00061	-0.00026
STORY1	36	WWIND	0.7987	-0.0672	0.0604	0.00099	0.00432	-0.00026
STORY1	37	WWIND	0.8250	-0.0779	-0.0558	0.00093	0.00441	-0.00026
STORY1	38	WWIND	0.8515	-0.0879	-0.0049	0.00085	0.00060	-0.00026
STORY1	39	WWIND	0.8784	-0.0972	0.0441	0.00101	0.00485	-0.00026
STORY1	40	WWIND	0.9055	-0.1058	-0.0395	0.00093	0.00494	-0.00026
STORY1	41	WWIND	0.9328	-0.1137	-0.0055	0.00061	0.00076	-0.00026
STORY1	42	WWIND	0.9604	-0.1208	0.0261	0.00097	0.00539	-0.00026
STORY1	43	WWIND	0 9880	-0 1271	-0.0210	0 00087	0 00546	-0.00026
STORI1	10	WWIND	1 0150	_0 1329	-0.0059	0.00007	0.000940	-0.00026
	15	NULIND	1.0430	0.1276	0.0055	0.00031	0.00503	0.00020
STORIT	45	WWIND	1.0439	-0.1376	0.0065	0.00087	0.00593	-0.00026
STORYI	46	WWIND	1.0720	-0.1418	-0.0008	0.000/5	0.00595	-0.00026
STORY1	47	WWIND	1.1002	-0.1451	-0.0061	-0.00002	0.00095	-0.00026
STORY1	48	WWIND	1.1285	-0.1477	-0.0148	0.00070	0.00643	-0.00026
STORY1	49	WWIND	1.1569	-0.1496	0.0212	0.00057	0.00641	-0.00026
STORY1	50	WWIND	1.1853	-0.1507	-0.0058	-0.00038	0.00097	-0.00026
STORY1	51	WWIND	1.2137	-0.1510	-0.0375	0.00047	0.00691	-0.00026
STORY1	52	WWIND	1.2421	-0.1505	0.0452	0.00034	0.00684	-0.00026
STORY1	53	WWIND	1.2705	-0.1493	-0.0015	-0.00070	0.00086	-0.00026
STORY1	54	WWIND	1 2989	-0.1474	-0.0509	0,00029	0.00528	-0.00026
STORII STORII	55	WWIND	1 2071	_0 1//6	0 0620	0 000025	0 00566	-0.00020
JIUNII GEODYI	55		1.34/1	-0.1440	0.0029	0.00009	0.00000	-0.00026
STURII	20		1.3553	-0.1411	0.0244	-0.00044	0.00062	-0.00026
STORY1	57	WWIND	1.3834	-0.1369	0.0117	-0.00009	0.00040	-0.00026
STORY1	58	WWIND	1.4114	-0.1319	0.0059	-0.00011	0.00037	-0.00026
STORY1	59	WWIND	1.4393	-0.1264	0.0010	-0.00010	0.00036	-0.00026
STORY1	60	WWIND	1.4668	-0.1195	-0.0023	-0.00009	0.00034	-0.00026
STORY1	61	WWIND	1.4934	-0.1100	-0.0009	0.00002	-0.00001	-0.00026

Appendix D.1 - ETABS Analysis Results

STORY1	62	WWIND	1.5188	-0.0972	-0.0012	0.00002	-0.00002	-0.00026
STORY1	63	WWIND	1.5425	-0.0816	-0.0036	-0.00015	0.00027	-0.00026
STORY1	64	WWIND	1.5702	-0.0591	-0.0017	-0.00010	0.00020	-0.00026
STORY1	65	WWIND	1.5833	-0.0424	0.0029	-0.00012	0.00022	-0.00026
STORY1	66	WWIND	1.5999	-0.0194	0.0094	-0.00011	0.00020	-0.00026
STORY1	67	WWIND	1.6137	0.0054	0.0178	-0.00008	0.00018	-0.00026
STORY1	68	WWIND	1.6244	0.0317	0.0272	-0.00006	0.00016	-0.00026
STORY1	69	WWIND	1.6318	0.0590	0.0376	-0.00002	0.00015	-0.00026
STORY1	70	WWIND	1.6359	0.0870	0.0484	0.00001	0.00015	-0.00026
STORY1	71	WWIND	1.6370	0.1154	0.0594	0.00002	0.00015	-0.00026
STORY1	72	WWIND	1.6363	0.1438	0.0704	0.00005	0.00015	-0.00026
STORY1	73	WWIND	1.6348	0.1722	0.0813	0.00003	0.00013	-0.00026
STORY1	74	WWIND	1.6303	0.2001	0.0852	-0.00001	0.00010	-0.00026
STORY1	75	WWIND	1.6187	0.2254	0.0958	0.00009	0.00022	-0.00026
STORY1	76	WWIND	1.5997	0.2456	0.1101	0.00015	0.00040	-0.00022
STORY1	77	WWIND	1.5738	0.2575	0.1219	0.00006	0.00045	-0.00026
STORY1	78	WWIND	1.5461	0.2603	0.1200	0.00006	0.00055	-0.00026
STORY1	79	WWIND	1.5191	0.2535	0.1011	0.00007	0.00054	-0.00026
STORY1	80	WWIND	1.4961	0.2381	0.0650	0.00034	0.00003	-0.00026
STORY1	81	WWIND	1.4872	0.2265	0.0511	0.00070	-0.00038	-0.00020
STORY1	82	WWIND	1.4661	0.1908	0.0594	0.00095	-0.00053	-0.00026
STORY1	83	WWIND	1.4531	0.1655	0.0746	0.00062	-0.00043	-0.00026
STORY1	84	WWIND	1.4395	0.1406	0.1275	-0.00076	-0.00068	-0.00026

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM) Kip-in Units PAGE 2 November 7, 2003 18:11

AE 431W 3D ETABS Model

DISPLACEMENTS AT DIAPHRAGM CENTER OF MASS

STORY	DIAPHRAGM	LOAD	POINT	Х	Y	UX	UY	RZ
STORY5	D1	WWIND	238	2322.834	-143.572	1.3870	0.0153	-0.00024
STORY4	D1	WWIND	239	2319.524	-143.617	1.3619	0.0162	-0.00024
STORY3	D1	WWIND	240	2320.417	-138.569	1.3248	0.0160	-0.00024
STORY2	D1	WWIND	241	2319.524	-143.617	1.2730	0.0159	-0.00025
STORY1	D1	WWIND	242	2317.821	-139.919	1.2058	0.0167	-0.00026

Appendix D.3 - ETABS Analysis Results

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD) Kip-in Units PAGE 1 November 11, 2003 0:34

AE 431W 3D ETABS Model

POINT DISPLACEMENTS

STORY	POINT	LOAD	UX	UY	UZ	RX	RY	RZ
STORY1	1	CENWIND	1.2178	0.0546	0.2228	-0.00044	0.00181	-0.00016
STORY1	2	CENWIND	1.2072	0.0414	0.0292	0.00090	0.00118	-0.00016
STORY1	3	CENWIND	1.1932	0.0321	-0.1470	-0.00065	0.00316	-0.00016
STORY1	4	CENWIND	1.1769	0.0280	-0.0750	-0.00040	-0.00061	-0.00016
STORY1	5	CENWIND	1.1601	0.0295	-0.0655	0.00016	-0.00007	-0.00016
STORY1	6	CENWIND	1.1436	0.0340	-0.0864	0.00027	0.00279	-0.00016
STORY1	7	CENWIND	1.1270	0.0385	-0.0096	-0.00053	0.00043	-0.00016
STORY1	8	CENWIND	1.1104	0.0426	0.0718	0.00024	0.00283	-0.00016
STORY1	9	CENWIND	1.0936	0.0462	0.0349	0.00030	0.00009	-0.00016
STORY1	10	CENWIND	1.0768	0.0495	0.0251	0.00004	0.00009	-0.00016
STORY1	11	CENWIND	1.0599	0.0523	0.0208	0.00004	0.00008	-0.00016
STORY1	12	CENWIND	1.0429	0.0546	0.0170	0.00004	0.00008	-0.00016
STORY1	13	CENWIND	1.0258	0.0566	0.0131	0.00004	0.00008	-0.00016
STORY1	14	CENWIND	1.0088	0.0580	0.0092	0.00004	0.00009	-0.00016
STORY1	15	CENWIND	0.9917	0.0591	0.0050	0.00003	0.00010	-0.00016
STORY1	16	CENWIND	0.9745	0.0597	-0.0006	0.00011	0.00026	-0.00016
STORY1	17	CENWIND	0.9574	0.0599	-0.0119	-0.00013	0.00409	-0.00016
STORY1	18	CENWIND	0.9402	0.0596	0.0065	-0.00021	0.00374	-0.00016
STORY1	19	CENWIND	0.9231	0.0589	0.0031	0.00000	0.00044	-0.00016
STORY1	20	CENWIND	0.9060	0.0577	0.0038	-0.00034	0.00501	-0.00016
STORY1	21	CENWIND	0.8889	0.0561	-0.0092	-0.00043	0.00499	-0.00016
STORY1	22	CENWIND	0.8719	0.0541	0.0032	-0.00025	0.00045	-0.00016
STORY1	23	CENWIND	0.8549	0.0516	0.0202	-0.00048	0.00471	-0.00016
STORYL	24	CENWIND	0.8380	0.0487	-0.0254	-0.00055	0.00466	-0.00016
STORY1	25	CENWIND	0.8212	0.0453	0.0022	-0.00048	0.00036	-0.00016
STORYI	26	CENWIND	0.8044	0.0416	0.0350	-0.00057	0.00438	-0.00016
STORY1	27	CENWIND	0.7878	0.03/3	-0.0420	-0.00064	0.00385	-0.00016
STORY1	28	CENWIND	0.7728	0.0300	-0.0120	-0.0008/	0.00055	-0.00016
STORY1	29	CENWIND	0.7637	0.016/	0.0014	-0.00009	-0.00003	-0.00016
STORII	30	CENWIND	0.7602	0.0009	0.0101	0.00001	-0.00004	-0.00016
STORY1	31	CENWIND	0.7660	-0.0144	0.0191	0.00004	-0.00003	-0.00016
STORII	32	CENWIND	0.7724	-0.0197	0.0368	0.00097	0.00057	-0.00016
STORI1	24	CENWIND	0.7933	-0.0340	0.0863	0.00090	0.00403	-0.00016
SIORII CTODV1	24	CENWIND	0.0000	-0.0417	-0.0738	0.00093	0.00410	-0.00016
STORII STORVI	36	CENWIND	0.8398	-0.0559	0.0675	0.00107	0.00009	-0.00016
STORI1	37	CENWIND	0.8556	-0.0624	-0.0613	0.00094	0.00454	-0.00016
STORII STORVI	38	CENWIND	0.0000	-0.0685	-0.0013	0.00094	0.00434	-0.00016
STORY1	39	CENWIND	0.8879	-0.0741	0.0507	0.00094	0.00480	-0.00016
STORI1	40	CENWIND	0.0073	-0 0793	-0.0450	0.00034	0.00490	-0.00016
STORY1	41	CENWIND	0.9207	-0 0840	-0.0036	0.00062	0 00034	-0.00016
STORY1	42	CENWIND	0,9373	-0.0883	0.0330	0.00085	0.00517	-0.00016
STORY1	43	CENWIND	0.9541	-0.0921	-0.0271	0.00077	0.00524	-0.00016
STORY1	44	CENWIND	0.9709	-0.0955	-0.0039	0.00036	0.00046	-0.00016
STORY1	45	CENWIND	0.9878	-0.0985	0.0142	0.00072	0.00552	-0.00016
STORY1	46	CENWIND	1.0047	-0.1010	-0.0080	0.00062	0.00556	-0.00016
STORY1	47	CENWIND	1.0217	-0.1030	-0.0041	0.00007	0.00054	-0.00016
STORY1	48	CENWIND	1.0388	-0.1046	-0.0056	0.00055	0.00585	-0.00016
STORY1	49	CENWIND	1.0559	-0.1057	0.0123	0.00044	0.00584	-0.00016
STORY1	50	CENWIND	1.0731	-0.1063	-0.0038	-0.00024	0.00057	-0.00016
STORY1	51	CENWIND	1.0902	-0.1065	-0.0262	0.00034	0.00615	-0.00016
STORY1	52	CENWIND	1.1074	-0.1063	0.0339	0.00023	0.00610	-0.00016
STORY1	53	CENWIND	1.1245	-0.1055	-0.0001	-0.00051	0.00048	-0.00016
STORY1	54	CENWIND	1.1416	-0.1043	-0.0390	0.00020	0.00452	-0.00016
STORY1	55	CENWIND	1.1587	-0.1027	0.0509	0.00004	0.00488	-0.00016
STORY1	56	CENWIND	1.1757	-0.1006	0.0237	-0.00030	0.00028	-0.00016
STORY1	57	CENWIND	1.1926	-0.0980	0.0152	-0.00003	0.00008	-0.00016
STORY1	58	CENWIND	1.2095	-0.0950	0.0115	-0.00004	0.00007	-0.00016
STORY1	59	CENWIND	1.2263	-0.0917	0.0082	-0.00003	0.00007	-0.00016
STORY1	60	CENWIND	1.2429	-0.0875	0.0050	-0.00004	0.00006	-0.00016

Appendix D.3 - ETABS Analysis Results

61	CENWIND	1.2590	-0.0818	0.0016	-0.00010	0.00019	-0.00016
62	CENWIND	1.2743	-0.0741	0.0006	-0.00010	0.00019	-0.00016
63	CENWIND	1.2886	-0.0647	0.0020	-0.00002	0.00006	-0.00016
64	CENWIND	1.3018	-0.0537	0.0029	-0.00002	0.00005	-0.00016
65	CENWIND	1.3133	-0.0410	0.0043	-0.00002	0.00004	-0.00016
66	CENWIND	1.3233	-0.0271	0.0059	-0.00001	0.00004	-0.00016
67	CENWIND	1.3316	-0.0122	0.0079	-0.00001	0.00004	-0.00016
68	CENWIND	1.3380	0.0037	0.0101	-0.00001	0.00003	-0.00016
69	CENWIND	1.3425	0.0202	0.0125	0.00000	0.00003	-0.00016
70	CENWIND	1.3450	0.0371	0.0150	0.00000	0.00003	-0.00016
71	CENWIND	1.3456	0.0542	0.0176	0.00001	0.00003	-0.00016
72	CENWIND	1.3452	0.0714	0.0202	0.00001	0.00003	-0.00016
73	CENWIND	1.3443	0.0885	0.0226	0.00000	0.0003	-0.00016
74	CENWIND	1.3416	0.1053	0.0236	-0.00001	0.00002	-0.00016
75	CENWIND	1.3346	0.1206	0.0267	0.00000	0.00005	-0.00016
76	CENWIND	1.3223	0.1329	0.0315	0.00002	0.00009	-0.00015
77	CENWIND	1.3075	0.1400	0.0367	0.00000	0.00013	-0.00016
78	CENWIND	1.2908	0.1416	0.0384	0.00000	0.00021	-0.00016
79	CENWIND	1.2745	0.1375	0.0336	0.00001	0.00020	-0.00016
80	CENWIND	1.2606	0.1282	0.0216	0.00017	-0.00010	-0.00016
81	CENWIND	1.2528	0.1180	0.0244	0.00035	-0.00031	-0.00013
82	CENWIND	1.2425	0.0997	0.0406	0.00043	-0.00036	-0.00016
83	CENWIND	1.2347	0.0845	0.0612	0.00024	-0.00031	-0.00016
84	CENWIND	1.2265	0.0694	0.1105	-0.00062	-0.00070	-0.00016
255	CENWIND	1.0217	-0.0283	0.0000	0.00000	0.00000	-0.00016
	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 255	61 CENWIND 62 CENWIND 63 CENWIND 64 CENWIND 65 CENWIND 66 CENWIND 67 CENWIND 68 CENWIND 70 CENWIND 72 CENWIND 73 CENWIND 75 CENWIND 76 CENWIND 78 CENWIND 79 CENWIND 80 CENWIND 81 CENWIND 82 CENWIND 83 CENWIND 84 CENWIND	61 CENWIND 1.2590 62 CENWIND 1.2743 63 CENWIND 1.2886 64 CENWIND 1.3018 65 CENWIND 1.3133 66 CENWIND 1.3233 67 CENWIND 1.3316 68 CENWIND 1.3425 70 CENWIND 1.3450 71 CENWIND 1.3450 72 CENWIND 1.3445 73 CENWIND 1.3446 74 CENWIND 1.3346 76 CENWIND 1.3223 77 CENWIND 1.3223 77 CENWIND 1.3223 78 CENWIND 1.2908 79 CENWIND 1.22347 80 CENWIND 1.2528 82 CENWIND 1.2425 83 CENWIND 1.2347 84 CENWIND 1.2265 255 CENWIND 1.0217	61 CENWIND 1.2590 -0.0818 62 CENWIND 1.2743 -0.0741 63 CENWIND 1.2886 -0.0647 64 CENWIND 1.3018 -0.0537 65 CENWIND 1.3133 -0.0410 66 CENWIND 1.3233 -0.0271 67 CENWIND 1.3316 -0.0122 68 CENWIND 1.3425 0.0202 70 CENWIND 1.3450 0.0371 71 CENWIND 1.3450 0.0371 71 CENWIND 1.3450 0.0371 71 CENWIND 1.3450 0.0371 72 CENWIND 1.3452 0.0714 73 CENWIND 1.3443 0.0885 74 CENWIND 1.3346 0.1206 75 CENWIND 1.3223 0.1329 77 CENWIND 1.2908 0.1416 79 CENWIND 1.22066 0.1282 <td< td=""><td>61 CENWIND 1.2590 -0.0818 0.0016 62 CENWIND 1.2743 -0.0741 0.0006 63 CENWIND 1.2886 -0.0647 0.0020 64 CENWIND 1.3018 -0.0537 0.0029 65 CENWIND 1.3133 -0.0410 0.0043 66 CENWIND 1.3233 -0.0271 0.0059 67 CENWIND 1.3316 -0.0122 0.0079 68 CENWIND 1.3425 0.0202 0.0125 70 CENWIND 1.3450 0.0371 0.0150 71 CENWIND 1.3450 0.0371 0.0150 71 CENWIND 1.3450 0.0226 0.0176 72 CENWIND 1.3450 0.0237 0.0226 73 CENWIND 1.3450 0.0226 0.0226 74 CENWIND 1.3446 0.1053 0.0226 75 CENWIND 1.3223 0.1329 0.315 <td>61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 63 CENWIND 1.2886 -0.0647 0.0029 -0.00002 64 CENWIND 1.3018 -0.0537 0.0029 -0.00002 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 66 CENWIND 1.3316 -0.0122 0.0079 -0.00001 67 CENWIND 1.3380 0.0037 0.0101 -0.00001 68 CENWIND 1.3425 0.0202 0.0125 0.00000 70 CENWIND 1.3425 0.0202 0.00001 72 CENWIND 1.3452 0.0714 0.0202 0.00001 73 CENWIND 1.3346 0.1206 0.0226 0.00001 75 CENWIND 1.3223 0.1329 0.0315 0.00002 76 CENWIND 1.3223 0.1329 0.0316<td>61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 0.00019 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 0.00019 63 CENWIND 1.2886 -0.0647 0.0020 -0.0002 0.00006 64 CENWIND 1.3133 -0.0410 0.0043 -0.00002 0.00004 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 0.00004 66 CENWIND 1.3233 -0.0271 0.0059 -0.00001 0.00004 67 CENWIND 1.3346 0.0202 0.0101 -0.00001 0.00003 69 CENWIND 1.3455 0.0202 0.0125 0.00001 0.00003 70 CENWIND 1.3456 0.0542 0.0176 0.00001 0.00003 71 CENWIND 1.3452 0.0714 0.0226 0.00001 0.00003 72 CENWIND 1.3443 0.0885 0.0226 0.00001 0.00003<!--</td--></td></td></td></td<>	61 CENWIND 1.2590 -0.0818 0.0016 62 CENWIND 1.2743 -0.0741 0.0006 63 CENWIND 1.2886 -0.0647 0.0020 64 CENWIND 1.3018 -0.0537 0.0029 65 CENWIND 1.3133 -0.0410 0.0043 66 CENWIND 1.3233 -0.0271 0.0059 67 CENWIND 1.3316 -0.0122 0.0079 68 CENWIND 1.3425 0.0202 0.0125 70 CENWIND 1.3450 0.0371 0.0150 71 CENWIND 1.3450 0.0371 0.0150 71 CENWIND 1.3450 0.0226 0.0176 72 CENWIND 1.3450 0.0237 0.0226 73 CENWIND 1.3450 0.0226 0.0226 74 CENWIND 1.3446 0.1053 0.0226 75 CENWIND 1.3223 0.1329 0.315 <td>61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 63 CENWIND 1.2886 -0.0647 0.0029 -0.00002 64 CENWIND 1.3018 -0.0537 0.0029 -0.00002 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 66 CENWIND 1.3316 -0.0122 0.0079 -0.00001 67 CENWIND 1.3380 0.0037 0.0101 -0.00001 68 CENWIND 1.3425 0.0202 0.0125 0.00000 70 CENWIND 1.3425 0.0202 0.00001 72 CENWIND 1.3452 0.0714 0.0202 0.00001 73 CENWIND 1.3346 0.1206 0.0226 0.00001 75 CENWIND 1.3223 0.1329 0.0315 0.00002 76 CENWIND 1.3223 0.1329 0.0316<td>61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 0.00019 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 0.00019 63 CENWIND 1.2886 -0.0647 0.0020 -0.0002 0.00006 64 CENWIND 1.3133 -0.0410 0.0043 -0.00002 0.00004 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 0.00004 66 CENWIND 1.3233 -0.0271 0.0059 -0.00001 0.00004 67 CENWIND 1.3346 0.0202 0.0101 -0.00001 0.00003 69 CENWIND 1.3455 0.0202 0.0125 0.00001 0.00003 70 CENWIND 1.3456 0.0542 0.0176 0.00001 0.00003 71 CENWIND 1.3452 0.0714 0.0226 0.00001 0.00003 72 CENWIND 1.3443 0.0885 0.0226 0.00001 0.00003<!--</td--></td></td>	61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 63 CENWIND 1.2886 -0.0647 0.0029 -0.00002 64 CENWIND 1.3018 -0.0537 0.0029 -0.00002 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 66 CENWIND 1.3316 -0.0122 0.0079 -0.00001 67 CENWIND 1.3380 0.0037 0.0101 -0.00001 68 CENWIND 1.3425 0.0202 0.0125 0.00000 70 CENWIND 1.3425 0.0202 0.00001 72 CENWIND 1.3452 0.0714 0.0202 0.00001 73 CENWIND 1.3346 0.1206 0.0226 0.00001 75 CENWIND 1.3223 0.1329 0.0315 0.00002 76 CENWIND 1.3223 0.1329 0.0316 <td>61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 0.00019 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 0.00019 63 CENWIND 1.2886 -0.0647 0.0020 -0.0002 0.00006 64 CENWIND 1.3133 -0.0410 0.0043 -0.00002 0.00004 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 0.00004 66 CENWIND 1.3233 -0.0271 0.0059 -0.00001 0.00004 67 CENWIND 1.3346 0.0202 0.0101 -0.00001 0.00003 69 CENWIND 1.3455 0.0202 0.0125 0.00001 0.00003 70 CENWIND 1.3456 0.0542 0.0176 0.00001 0.00003 71 CENWIND 1.3452 0.0714 0.0226 0.00001 0.00003 72 CENWIND 1.3443 0.0885 0.0226 0.00001 0.00003<!--</td--></td>	61 CENWIND 1.2590 -0.0818 0.0016 -0.00010 0.00019 62 CENWIND 1.2743 -0.0741 0.0006 -0.00010 0.00019 63 CENWIND 1.2886 -0.0647 0.0020 -0.0002 0.00006 64 CENWIND 1.3133 -0.0410 0.0043 -0.00002 0.00004 65 CENWIND 1.3133 -0.0410 0.0043 -0.00001 0.00004 66 CENWIND 1.3233 -0.0271 0.0059 -0.00001 0.00004 67 CENWIND 1.3346 0.0202 0.0101 -0.00001 0.00003 69 CENWIND 1.3455 0.0202 0.0125 0.00001 0.00003 70 CENWIND 1.3456 0.0542 0.0176 0.00001 0.00003 71 CENWIND 1.3452 0.0714 0.0226 0.00001 0.00003 72 CENWIND 1.3443 0.0885 0.0226 0.00001 0.00003 </td

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD) Kip-in Units PAGE 2 November 11, 2003 0:34

AE 431W

3D ETABS Model

DISPLACEMENTS AT DIAPHRAGM CENTER OF MASS

STORY	DIAPHRAGM	LOAD	POINT	Х	Y	UX	UY	RZ
STORY5	D1	CENWIND	261	2322.834	-143.572	1.1115	-0.0072	-0.00016
STORY4	D1	CENWIND	262	2319.524	-143.617	1.1064	-0.0066	-0.00016
STORY3	D1	CENWIND	263	2320.417	-138.569	1.1018	-0.0067	-0.00016
STORY2	D1	CENWIND	264	2319.524	-143.617	1.0964	-0.0065	-0.00016
STORY1	D1	CENWIND	265	2317.821	-139.919	1.0854	-0.0053	-0.00016

Appendix D.5 - ETABS Analysis Results

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD 202) Kip-in Units PAGE 1 November 11, 2003 1:16

AE 431W 3D ETABS Model

POINT DISPLACEMENTS

STORY	POINT	LOAD	UX	UY	UZ	RX	RY	RZ
STORY1	1	CENWIND	1.0409	-0.0009	0.1974	-0.00028	0.00153	-0.00006
STORY1	2	CENWIND	1.0366	-0.0063	0.0246	0.00083	0.00104	-0.00006
STORIL	3	CENWIND	1.0308	-0.0101	-0.1342	-0.00051	0.00273	-0.00006
STORIL	4	CENWIND	1.0242	-0.011/	-0.0667	-0.00038	-0.00058	-0.00006
STORYI	5	CENWIND	1.01/3	-0.0111	-0.0553	0.00010	-0.00003	-0.00006
STORY1	6	CENWIND	1.0105	-0.0093	-0.0677	0.00029	0.00250	-0.00006
STORY1	1	CENWIND	1.0038	-0.0075	-0.0091	-0.00039	0.00037	-0.00006
STORY1	8	CENWIND	0.9970	-0.0058	0.0541	0.00027	0.00253	-0.00006
STORY1	9	CENWIND	0.9901	-0.0043	0.0261	0.00023	0.00009	-0.00006
STORY1	10	CENWIND	0.9832	-0.0030	0.0192	0.00003	0.00008	-0.00006
STORY1	11	CENWIND	0.9763	-0.0018	0.0165	0.00003	0.00007	-0.00006
STORY1	12	CENWIND	0.9694	-0.0009	0.0141	0.00003	0.00008	-0.00006
STORY1	13	CENWIND	0.9624	-0.0001	0.0117	0.00003	0.00008	-0.00006
STORY1	14	CENWIND	0.9554	0.0005	0.0092	0.00002	0.00008	-0.00006
STORY1	15	CENWIND	0.9484	0.0010	0.0067	0.00002	0.00009	-0.00006
STORY1	16	CENWIND	0.9414	0.0012	0.0039	0.00004	0.00024	-0.00006
STORY1	17	CENWIND	0 9344	0 0013	0 0007	0.00002	0 00402	-0.00006
STORY1	1.8	CENWIND	0 9274	0.0012	-0.0053	-0.00005	0.00366	-0.00006
STORII STORV1	19	CENWIND	0 9204	0.0012	0.0039	-0.00017	0.00042	-0.00006
	20	CENWIND	0.9204	0.0003	0.0030	-0.00017	0.00509	-0.00006
STORI1	20	CENWIND	0.9134	0.0004	0.0170	-0.00017	0.00508	-0.00000
STORIL	21	CENWIND	0.9064	-0.0003	-0.0232	-0.00026	0.00504	-0.00006
STORYI	22	CENWIND	0.8995	-0.0011	0.0032	-0.00043	0.00043	-0.00006
STORIL	23	CENWIND	0.8925	-0.0021	0.0344	-0.00033	0.00493	-0.00006
STORYI	24	CENWIND	0.8856	-0.0033	-0.0400	-0.00040	0.00486	-0.00006
STORYI	25	CENWIND	0.8/8/	-0.0047	0.0016	-0.00067	0.00033	-0.00006
STORY1	26	CENWIND	0.8719	-0.0062	0.0497	-0.00047	0.00476	-0.00006
STORY1	27	CENWIND	0.8651	-0.0079	-0.0584	-0.00050	0.00411	-0.00006
STORY1	28	CENWIND	0.8589	-0.0109	-0.0198	-0.00109	0.00067	-0.00006
STORY1	29	CENWIND	0.8560	-0.0167	-0.0032	-0.00011	-0.00004	-0.00006
STORY1	30	CENWIND	0.8538	-0.0228	0.0077	0.00001	-0.00006	-0.00006
STORY1	31	CENWIND	0.8562	-0.0291	0.0188	0.00005	-0.00005	-0.00006
STORY1	32	CENWIND	0.8548	-0.0271	0.0390	0.00107	0.00061	-0.00007
STORY1	33	CENWIND	0.8673	-0.0371	0.0943	0.00097	0.00437	-0.00006
STORY1	34	CENWIND	0.8736	-0.0403	-0.0827	0.00102	0.00454	-0.00006
STORY1	35	CENWIND	0.8799	-0.0432	-0.0004	0.00116	0.00008	-0.00006
STORY1	36	CENWIND	0.8863	-0.0461	0.0741	0.00097	0.00463	-0.00006
STORY1	37	CENWIND	0.8928	-0.0487	-0.0677	0.00093	0.00475	-0.00006
STORY1	38	CENWIND	0.8994	-0.0512	-0.0029	0.00092	0.00016	-0.00006
STORY1	20	CENWIND	0,9060	-0.0535	0.0569	0 00087	0 00485	-0.00006
STORI1	40	CENWIND	0.9127	-0.0556	-0.0510	0.00081	0.00496	-0.00006
STORII STORV1	40	CENWIND	0 9194	-0.0575	-0 0035	0.00001	0.00430	-0.00006
STORII	41	CENWIND	0.9194	-0.0575	-0.0035	0.00009	0.00031	-0.00000
STORI1	42	CENWIND	0.9202	0.0593	0.0391	0.00075	0.00514	0.00000
SIURII GEODV1	43	CENWIND	0.9330	-0.0609	-0.0334	0.00087	0.00314	-0.00006
STORY1	44	CENWIND	0.9399	-0.0635	-0.0037	0.00044	0.00525	-0.00006
0101111	10		0.0100		0.0210	0.00000	0.00020	
STORY1	46	CENWIND	0.9538	-0.0645	-0.0151	0.00050	0.00529	-0.00006
STORY1	47	CENWIND	0.9607	-0.0653	-0.0038	0.00017	0.00049	-0.00006
STORY1	48	CENWIND	0.9677	-0.0659	0.0023	0.00041	0.00541	-0.00006
STORY1	49	CENWIND	0.9747	-0.0664	0.0038	0.00031	0.00542	-0.00006
STORY1	50	CENWIND	0.9817	-0.0667	-0.0035	-0.00012	0.00051	-0.00006
STORY1	51	CENWIND	0.9887	-0.0667	-0.0166	0.00021	0.00555	-0.00006
STORY1	52	CENWIND	0 9957	-0.0666	0 0234	0 00012	0 00551	-0.00006
STORV1	53	CENWIND	1 0027	-0 0663	-0 0006	-0 00038	0 00043	-0 00000
STORY1	54	CENWIND	1 0097	-0.0659	-0.0293	0.00010	0 00398	-0.00006
STORII	55	CENWIND	1 0167	-0.0652	0 0303	-0 00003	0 00/31	-0.00006
CTORIT	55	CENMIND	1 0007	_0 0642	0.0303	_0 00003	0.00431	_0_00000
STORIT STORIT	50	CENWIND	1 020C	-0.0043	0.0103	-0.00024	0.00023	-0.00006
STORIT CHODY1	J / 50	CENNIND	1 007F	-0.0033	0.011/	-0.00002	0.00007	-0.00006
SIUKII GEODV1	J0 E0	CENWIND	1.03/3	-0.0620	0.0000	-0.00003	0.00006	-0.00006
STURII	29	CENWIND	1.0444	-0.060/	0.0062	-0.00003	0.00006	-0.00006

Appendix D.5 - ETABS Analysis Results

STORY1	60	CENWIND	1.0511	-0.0590	0.0038	-0.00003	0.00006	-0.00006
STORY1	61	CENWIND	1.0577	-0.0566	0.0012	-0.00008	0.00015	-0.00006
STORY1	62	CENWIND	1.0640	-0.0535	0.0005	-0.00008	0.00015	-0.00006
STORY1	63	CENWIND	1.0698	-0.0496	0.0016	-0.00002	0.00005	-0.00006
STORY1	64	CENWIND	1.0753	-0.0453	0.0025	-0.00002	0.00004	-0.00007
STORY1	65	CENWIND	1.0799	-0.0400	0.0037	-0.00001	0.00004	-0.00006
STORY1	66	CENWIND	1.0840	-0.0343	0.0051	-0.00001	0.00003	-0.00006
STORY1	67	CENWIND	1.0874	-0.0282	0.0069	-0.00001	0.00003	-0.00006
STORY1	68	CENWIND	1.0900	-0.0217	0.0088	0.00000	0.00003	-0.00006
STORY1	69	CENWIND	1.0919	-0.0149	0.0109	0.00000	0.00003	-0.00006
STORY1	70	CENWIND	1.0929	-0.0080	0.0131	0.00001	0.00003	-0.00006
STORY1	71	CENWIND	1.0931	-0.0010	0.0153	0.00001	0.00003	-0.00006
STORY1	72	CENWIND	1.0930	0.0060	0.0175	0.00001	0.00003	-0.00006
STORY1	73	CENWIND	1.0926	0.0130	0.0197	0.00001	0.00003	-0.00006
STORY1	74	CENWIND	1.0915	0.0199	0.0205	-0.00001	0.00002	-0.00006
STORY1	75	CENWIND	1.0886	0.0261	0.0232	0.00000	0.00004	-0.00006
STORY1	76	CENWIND	1.0834	0.0312	0.0274	0.00001	0.00008	-0.00006
STORY1	77	CENWIND	1.0775	0.0340	0.0319	0.00000	0.00011	-0.00006
STORY1	78	CENWIND	1.0707	0.0347	0.0335	0.00000	0.00018	-0.00006
STORY1	79	CENWIND	1.0641	0.0330	0.0293	0.00001	0.00018	-0.00006
STORY1	80	CENWIND	1.0584	0.0292	0.0188	0.00015	-0.00009	-0.00006
STORY1	81	CENWIND	1.0563	0.0265	0.0213	0.00031	-0.00027	-0.00004
STORY1	82	CENWIND	1.0510	0.0176	0.0357	0.00038	-0.00032	-0.00006
STORY1	83	CENWIND	1.0478	0.0113	0.0540	0.00021	-0.00028	-0.00006
STORY1	84	CENWIND	1.0444	0.0052	0.0976	-0.00055	-0.00063	-0.00006
STORY1	266	CENWIND	0.9358	-0.0348	0.0000	0.00000	0.00000	-0.00006

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD 202) Kip-in Units PAGE 2 November 11, 2003 1:16

AE 431W 3D ETABS Model

DISPLACEMENTS AT DIAPHRAGM CENTER OF MASS

STORY	DIAPHRAGM	LOAD	POINT	Х	Y	UX	UY	RZ
STORY5	D1	CENWIND	282	2322.834	-143.572	1.0085	-0.0269	-0.00007
STORY4	D1	CENWIND	283	2319.524	-143.617	1.0044	-0.0267	-0.00007
STORY3	D1	CENWIND	284	2320.417	-138.569	1.0005	-0.0266	-0.00007
STORY2	D1	CENWIND	285	2319.524	-143.617	0.9968	-0.0265	-0.00006
STORY1	D1	CENWIND	286	2317.821	-139.919	0.9868	-0.0254	-0.00006

Appendix D.6 - ETABS Analysis Results

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD 221.2) Kip-in Units PAGE 1 November 11, 2003 1:32

AE 431W 3D ETABS Model

POINT DISPLACEMENTS

STORY	POINT	LOAD	UX	UY	UZ	RX	RY	RZ
STORY1	1	CENWIND	0.9349	-0.0341	0.1822	-0.00018	0.00136	-0.00001
STORY1 STORY1	2	CENWIND	0.9343	-0.0348	0.0218	0.00078	0.00095	-0.00001
STORY1	4	CENWIND	0 9327	-0.0356	-0 0617	-0 00037	-0.00056	-0 00001
STORY1	5	CENWIND	0.9327	-0.0355	-0 0492	0.00007	0.000000	-0 00001
STORII STORV1	6	CENWIND	0.9318	-0.0352	-0 0565	0.00031	0.00000	-0.00001
STORII STORVI	7	CENWIND	0.9300	-0.0350	-0.0088	-0.00031	0.000233	-0.00001
STORII STORVI	8	CENWIND	0.9299	-0.0348	0.0000	0.00031	0.00035	-0.00001
CTORII	0	CENWIND	0.0291	0.0346	0.0200	0.00025	0.00233	0.00001
SIURII CTORVI	9	CENWIND	0.9201	-0.0340	0.0209	0.00019	0.00010	-0.00001
SIURII GEODV1	10	CENWIND	0.9272	-0.0344	0.0130	0.00002	0.00008	-0.00001
SIURII CTORVI	10	CENWIND	0.9203	-0.0342	0.0139	0.00002	0.00007	-0.00001
STORII GEODV1	12	CENWIND	0.9253	-0.0341	0.0123	0.00002	0.00007	-0.00001
STORII GEODV1	1.3	CENWIND	0.9244	-0.0340	0.0108	0.00002	0.00007	-0.00001
STORIL	14	CENWIND	0.9235	-0.0339	0.0093	0.00002	0.00008	-0.00001
STORYI	15	CENWIND	0.9225	-0.0339	0.0077	0.00002	0.00009	-0.00001
STORYI	16	CENWIND	0.9216	-0.0338	0.0066	-0.00001	0.00023	-0.00001
STORYI	1/	CENWIND	0.9207	-0.0338	0.0082	0.00010	0.00398	-0.00001
STORYL	18	CENWIND	0.9197	-0.0338	-0.0123	0.00005	0.00361	-0.00001
STORY1	19	CENWIND	0.9188	-0.0339	0.0042	-0.00027	0.00041	-0.00001
STORY1	20	CENWIND	0.9178	-0.0339	0.0262	-0.00007	0.00512	-0.00001
STORY1	21	CENWIND	0.9169	-0.0340	-0.0316	-0.00015	0.00506	-0.00001
STORY1	22	CENWIND	0.9160	-0.0341	0.0032	-0.00054	0.00042	-0.00001
STORY1	23	CENWIND	0.9150	-0.0343	0.0429	-0.00024	0.00506	-0.00001
STORY1	24	CENWIND	0.9141	-0.0344	-0.0488	-0.00031	0.00498	-0.00001
STORY1	25	CENWIND	0.9132	-0.0346	0.0012	-0.00078	0.00031	-0.00001
STORY1	26	CENWIND	0.9123	-0.0348	0.0584	-0.00041	0.00498	-0.00001
STORY1	27	CENWIND	0.9114	-0.0351	-0.0682	-0.00042	0.00427	-0.00001
STORY1	28	CENWIND	0.9106	-0.0355	-0.0245	-0.00122	0.00075	-0.00001
STORY1	29	CENWIND	0.9112	-0.0367	-0.0060	-0.00012	-0.00005	-0.00001
STORY1	30	CENWIND	0.9099	-0.0370	0.0063	0.00001	-0.00007	-0.00001
STORY1	31	CENWIND	0.9102	-0.0379	0.0186	0.00005	-0.00006	-0.00001
STORY1	32	CENWIND	0.9041	-0.0316	0.0404	0.00112	0.00064	-0.00001
STORY1	33	CENWIND	0.9117	-0.0390	0.0990	0.00101	0.00458	-0.00001
STORY1	34	CENWIND	0.9125	-0.0394	-0.0870	0.00107	0.00476	-0.00001
STORY1	35	CENWIND	0.9134	-0.0398	-0.0004	0.00122	0.00007	-0.00001
STORY1	36	CENWIND	0.9142	-0.0402	0.0781	0.00097	0.00475	-0.00001
STORY1	37	CENWIND	0.9151	-0.0405	-0.0714	0.00093	0.00488	-0.00001
STORY1	38	CENWIND	0.9160	-0.0408	-0.0029	0.00097	0.00015	-0.00001
STORY1	39	CENWIND	0.9169	-0.0412	0.0605	0.00084	0.00488	-0.00001
STORY1	40	CENWIND	0.9177	-0.0414	-0.0547	0.00078	0.00499	-0.00001
STORY1	41	CENWIND	0.9186	-0.0417	-0.0035	0.00074	0.00029	-0.00001
STORY1	42	CENWIND	0.9196	-0.0419	0.0428	0.00068	0.00500	-0.00001
STORY1	43	CENWIND	0.9205	-0.0421	-0.0372	0.00061	0.00508	-0.00001
STORY1	44	CENWIND	0.9214	-0.0423	-0.0036	0.00049	0.00040	-0.00001
STORY1	45	CENWIND	0.9223	-0.0425	0.0251	0.00051	0.00509	-0.00001
STORY1	46	CENWIND	0.9232	-0.0426	-0.0193	0.00042	0.00514	-0.00001
STORY1	47	CENWIND	0.9242	-0.0427	-0.0036	0.00022	0.00046	-0.00001
STORY1	48	CENWIND	0.9251	-0.0428	0.0071	0.00033	0.00515	-0.00001
STORY1	49	CENWIND	0.9260	-0.0429	-0.0012	0.00024	0.00517	-0.00001
STORY1	50	CENWIND	0.9270	-0.0429	-0.0034	-0.00005	0.00048	-0.00001
STORY1	51	CENWIND	0.9279	-0.0429	-0.0108	0.00014	0.00519	-0.00001
STORY1	52	CENWIND	0.9289	-0.0429	0.0172	0.00005	0.00516	-0.00001
STORY1	53	CENWIND	0.9298	-0.0429	-0.0009	-0.00030	0.00040	-0.00001
STORY1	54	CENWIND	0.9307	-0.0428	-0.0234	0.00005	0.00366	-0.00001
STORY1	55	CENWIND	0.9317	-0.0427	0.0323	-0.00008	0.00396	-0.00001
STORY1	56	CENWIND	0.9326	-0.0426	0.0151	-0.00020	0.00023	-0.00001
STORY1	57	CENWIND	0.9335	-0.0425	0.0097	-0.00002	0.00007	-0.00001
STORY1	58	CENWIND	0.9345	-0.0423	0.0073	-0.00003	0.00006	-0.00001
STORY1	59	CENWIND	0.9354	-0.0421	0.0051	-0.00002	0.00005	-0.00001

Appendix D.6 - ETABS Analysis Results

STORY1	60	CENWIND	0.9363	-0.0419	0.0031	-0.00003	0.00005	-0.00001
STORY1	61	CENWIND	0.9372	-0.0416	0.0010	-0.00006	0.00013	-0.00001
STORY1	62	CENWIND	0.9380	-0.0412	0.0004	-0.00006	0.00013	-0.00001
STORY1	63	CENWIND	0.9388	-0.0406	0.0015	-0.00001	0.00004	-0.00001
STORY1	64	CENWIND	0.9397	-0.0402	0.0023	-0.00001	0.00004	-0.00001
STORY1	65	CENWIND	0.9401	-0.0393	0.0034	-0.00001	0.00003	-0.00001
STORY1	66	CENWIND	0.9407	-0.0386	0.0047	-0.00001	0.00003	-0.00001
STORY1	67	CENWIND	0.9411	-0.0378	0.0063	0.00000	0.00003	-0.00001
STORY1	68	CENWIND	0.9415	-0.0369	0.0080	0.00000	0.00003	-0.00001
STORY1	69	CENWIND	0.9417	-0.0360	0.0100	0.00000	0.00003	-0.00001
STORY1	70	CENWIND	0.9419	-0.0351	0.0119	0.00001	0.00003	-0.00001
STORY1	71	CENWIND	0.9419	-0.0341	0.0139	0.00001	0.00003	-0.00001
STORY1	72	CENWIND	0.9419	-0.0332	0.0160	0.00001	0.0003	-0.00001
STORY1	73	CENWIND	0.9418	-0.0323	0.0179	0.00001	0.00002	-0.00001
STORY1	74	CENWIND	0.9417	-0.0313	0.0186	-0.00001	0.00002	-0.00001
STORY1	75	CENWIND	0.9413	-0.0305	0.0211	0.00001	0.00004	-0.00001
STORY1	76	CENWIND	0.9403	-0.0297	0.0249	0.00001	0.00007	0.00000
STORY1	77	CENWIND	0.9398	-0.0294	0.0291	0.00000	0.00010	-0.00001
STORY1	78	CENWIND	0.9389	-0.0293	0.0305	0.00000	0.00017	-0.00001
STORY1	79	CENWIND	0.9380	-0.0296	0.0267	0.00001	0.00016	-0.00001
STORY1	80	CENWIND	0.9372	-0.0301	0.0171	0.00014	-0.00008	-0.00001
STORY1	81	CENWIND	0.9387	-0.0283	0.0195	0.00029	-0.00025	0.00001
STORY1	82	CENWIND	0.9363	-0.0316	0.0328	0.00035	-0.00030	-0.00001
STORY1	83	CENWIND	0.9358	-0.0325	0.0496	0.00020	-0.00026	-0.00001
STORY1	84	CENWIND	0.9354	-0.0333	0.0899	-0.00050	-0.00058	-0.00001
STORY1	287	CENWIND	0.9188	-0.0386	0.0000	0.00000	0.00000	-0.00001

ETABS v8.2.6 File: ETABS MODEL 2 (WITH RIGID DIAPHRAGM AND RECENTERED LOAD 221.2) Kip-in Units PAGE 2 November 11, 2003 1:32

AE 431W 3D ETABS Model

DISPLACEMENTS AT DIAPHRAGM CENTER OF MASS

STORY	DIAPHRAGM	LOAD	POINT	Х	Y	UX	UY	RZ
STORY5 STORY4 STORY3 STORY2	D1 D1 D1 D1	CENWIND CENWIND CENWIND CENWIND	293 294 295 296	2322.834 2319.524 2320.417 2319.524	-143.572 -143.617 -138.569 -143.617	0.9469 0.9434 0.9398 0.9372	-0.0388 -0.0387 -0.0386 -0.0385	-0.00001 -0.00001 -0.00001 -0.00001
STORY1	D1	CENWIND	297	2317.821	-139.919	0.9277	-0.0374	-0.00001

Appendix E.1 - STAAD Analysis Results

Appendix E.1 - STAAD Analysis Results

	Job No Technical Rep	Sheet No Rev	ev		
Software licensed to Authorizes User	Part				
Job Title AE 431W	Ref				
	^{By} BJG	Date09-Nov-03 Chd			
Client	File BF1.std	Date/Time 11-Nov-200	03 14:16		

Beam End Forces

Sign convention is as the action of the joint on the beam.

			Axial	Shear		Torsion	Ben	ding
Beam	Node	L/C	Fx	Fy	Fz	Мх	Му	Mz
			(kip)	(kip)	(kip)	(kip⁻ft)	(kip⁻ft)	(kip⁻ft)
13	7	3:1.6 WIND	-0.000	0.000	0.000	0.000	0.000	-0.000
	9	3:1.6 WIND	0.000	-0.000	0.000	0.000	0.000	-0.000
14	7	3:1.6 WIND	-460.830	-0.000	0.000	0.000	0.000	0.000
	10	3:1.6 WIND	460.830	0.000	0.000	0.000	0.000	0.000
15	8	3:1.6 WIND	412.559	0.000	0.000	0.000	0.000	0.000
	10	3:1.6 WIND	-412.559	-0.000	0.000	0.000	0.000	0.000
16	9	3:1.6 WIND	205.328	-0.000	0.000	0.000	0.000	0.000
	10	3:1.6 WIND	-205.328	0.000	0.000	0.000	0.000	0.000

Appendix E.2 - STAAD Analysis Results

Appendix E.2 - STAAD Analysis Results

	Job No Technical Rep	Sheet No 2	Rev
Software licensed to Authorizes User	Part		
Job Title AE 431W	Ref		
	^{By} BJG	Date09-Nov-03 Chd	
Client	File BF4.std	Date/Time 11-Nov-2	2003 14:30

Beam End Forces

Sign convention is as the action of the joint on the beam.

			Axial	Shear		Torsion	Bending	
Beam	Node	L/C	Fx	Fy	Fz	Мх	Му	Mz
			(kip)	(kip)	(kip)	(kip⁻ft)	(kip⁻ft)	(kip⁻ft)
13	7	3:1.6 Wind	-0.000	0.000	0.000	0.000	0.000	-0.000
	9	3:1.6 Wind	0.000	-0.000	0.000	0.000	0.000	-0.000
14	7	3:1.6 Wind	-482.385	0.000	0.000	0.000	0.000	0.000
	10	3:1.6 Wind	482.385	-0.000	0.000	0.000	0.000	0.000
15	8	3:1.6 Wind	422.139	0.000	0.000	0.000	0.000	-0.000
	10	3:1.6 Wind	-422.139	-0.000	0.000	0.000	0.000	0.000
16	9	3:1.6 Wind	233.440	-0.000	0.000	0.000	0.000	0.000
	10	3:1.6 Wind	-233.440	0.000	0.000	0.000	0.000	0.000

Appendix F.1 - Diagrid Member Checking Spreadsheets

Counts

CASE1

CASE2

CASE3 CASE4 0

6

0 46

Member Properties - W14x82

ΦPn (tens.)	1080
ΦPn (comp.)	888
ΦMnx	6255
ΦMny	2016

Story	Beam	Load	Location	Pu	Mux	Muy	Pu/ΦPn	H1-1a	H1-1b	Strength	Controlling
			in	kip	in-kip	in-kip				Utilization	Case
STORY5	B8	CASE1	0.0	0.00	129.90	0.00	0.000		Х	0.021	
STORY5	B8	CASE1	21.6	0.00	74.30	0.00	0.000		Х	0.012	
STORY5	B8	CASE1	43.2	0.00	18.69	0.00	0.000		Х	0.003	
STORY5	B8	CASE1	64.8	0.00	-36.92	0.00	0.000		Х	0.006	
STORY5	B8	CASE1	86.4	0.00	-92.53	0.00	0.000		Х	0.015	
STORY5	B8	CASE1	108.0	0.00	-148.14	0.00	0.000		Х	0.024	
STORY5	B8	CASE2	0.0	0.00	149.82	0.00	0.000		Х	0.024	
STORY5	B8	CASE2	21.6	0.00	85.69	0.00	0.000		Х	0.014	
STORY5	B8	CASE2	43.2	0.00	21.56	0.00	0.000		Х	0.003	
STORY5	B8	CASE2	64.8	0.00	-42.58	0.00	0.000		Х	0.007	
STORY5	B8	CASE2	86.4	0.00	-106.71	0.00	0.000		Х	0.017	
STORY5	B8	CASE2	108.0	0.00	-170.84	0.00	0.000		Х	0.027	CASE4
STORY5	B8	CASE3	0.0	0.00	131.71	0.00	0.000		Х	0.021	
STORY5	B8	CASE3	21.6	0.00	75.33	0.00	0.000		Х	0.012	
STORY5	B8	CASE3	43.2	0.00	18.94	0.00	0.000		Х	0.003	
STORY5	B8	CASE3	64.8	0.00	-37.45	0.00	0.000		Х	0.006	
STORY5	B8	CASE3	86.4	0.00	-93.83	0.00	0.000		Х	0.015	
STORY5	B8	CASE3	108.0	0.00	-150.22	0.00	0.000		Х	0.024	
STORY5	B8	CASE4	0.0	0.15	42.15	12.53	0.000		Х	0.013	
STORY5	B8	CASE4	21.6	0.09	6.00	0.50	0.000		Х	0.001	
STORY5	B8	CASE4	43.2	0.03	-30.15	-5.51	0.000		Х	0.008	
STORY5	B8	CASE4	64.8	-0.03	-66.29	-5.51	0.000		Х	0.013	
STORY5	B8	CASE4	86.4	-0.09	-102.44	0.50	0.000		Х	0.017	
STORY5	B8	CASE4	108.0	-0.15	-138.59	12.53	0.000		Х	0.028	
STORY3	B8	CASE1	0.0	0.00	243.58	0.00	0.000		Х	0.039	
STORY3	B8	CASE1	21.6	0.00	140.65	0.00	0.000		Х	0.022	
STORY3	B8	CASE1	43.2	0.00	37.72	0.00	0.000		Х	0.006	
STORY3	B8	CASE1	64.8	0.00	-65.21	0.00	0.000		Х	0.010	
STORY3	B8	CASE1	86.4	0.00	-168.14	0.00	0.000		Х	0.027	
STORY3	B8	CASE1	108.0	0.00	-271.07	0.00	0.000		Х	0.043	
STORY3	B8	CASE2	0.0	0.00	280.83	0.00	0.000		Х	0.045	
STORY3	B8	CASE2	21.6	0.00	162.16	0.00	0.000		X	0.026	
STORY3	B8	CASE2	43.2	0.00	43.49	0.00	0.000		Х	0.007	
STORY3	B8	CASE2	64.8	0.00	-75.19	0.00	0.000		X	0.012	
STORY3	B8	CASE2	86.4	0.00	-193.86	0.00	0.000		X	0.031	
STORY3	B8	CASE2	108.0	0.00	-312.53	0.00	0.000		X	0.050	CASE4
STORY3	B8	CASE3	0.0	0.00	247 17	0.00	0.000		X	0.040	
STORY3	B8	CASE3	21.6	0.00	142 72	0.00	0.000		X	0.023	
STORY3	B8	CASE3	43.2	0.00	38.27	0.00	0.000		x	0.006	
STORY3	B8	CASE3	64.8	0.00	-66 18	0.00	0.000		X	0.000	
STORY3	B8	CASE3	86.4	0.00	-170.63	0.00	0.000		X	0.027	
STORY3	B8	CASE3	108.0	0.00	-275.08	0.00	0.000		x	0.044	
STORY3	B8	CASE4	0.0	0.00	163 78	22 53	0.000		x	0.037	
STORY3	B8	CASE4	21.6	0.16	73 40	0.90	0.000		X	0.007	
STORY3	B8		43.2	0.10	-16 99	_9.00	0.000		X	0.012	
STORY3	B8		64.8	-0.05	-107 37	-0.01	0.000		X	0.000	
STORV3	B8		86.4	-0.05	-107.57	0.00	0.000		Ŷ	0.022	
STORYS	B8		108.0	-0.10	-288 14	22 53	0.000		Ŷ	0.052	
STORTS			100.0	-0.27	-200.14 596.75	22.00	0.000		× ×	0.007	
STORT		CASEI	0.0	0.00	303.16	0.00	0.000		×	0.094	
STORTI STORV1	B0 B8	CASEI	∠1.0 /2.0	0.00	10 56	0.00	0.000		Ŷ	0.040	
STORT		CASEI	43.2	0.00	19.00	0.00	0.000		×	0.003	
STORT I		CASEI	04.0 96 4	0.00	-204.03 517 60	0.00	0.000		Ŷ	0.042	
STORT I		CASEI	00.4 100 0	0.00	-04/.00	0.00	0.000			0.000	
STORT		CASEI	100.0	0.00	-031.22	0.00	0.000			0.100	
STORT I		CASE2	0.0	0.00	010.01 340 FF	0.00	0.000			0.106	
STURIT		CASE2	∠1.0 40.0	0.00	349.50	0.00	0.000		A V	0.004	
STURI	БQ	CASE2	43.2	0.00	22.50	0.00	0.000		X	0.004	

Appendix F.2 - Diagrid Member Checking Spreadsheets

Counts

CASE1

CASE2 CASE3 CASE4 0

24 0 64

Member	Properties	-	W12x87
--------	------------	---	--------

ΦPn (tens.)	1152
ΦPn (comp.)	870
ΦMnx	5940
ΦMny	2718

Story	Beam	Load	Location	Pu	Mux	Muy	Pu/ΦPn	H1-1a	H1-1b	Strength	Controlling
0.019	Boam	Loud	in	kip	in-kip	in-kip	1 4/ 41 11			Utilization	Case
STORY5	D41	CASE1	0.0	-77.17	94.27	-0.01	0.089		Х	0.060	
STORY5	D41	CASE1	84.9	-77.17	-8.20	-0.14	0.089		Х	0.046	
STORY5	D41	CASE1	169.8	-77.17	-110.67	-0.26	0.089		Х	0.063	
STORY5	D41	CASE2	0.0	-87.28	109.23	-0.02	0.100		Х	0.069	
STORY5	D41	CASE2	84.9	-87.28	-9.45	-0.16	0.100		Х	0.052	
STORY5	D41	CASE2	169.8	-87.28	-128.13	-0.30	0.100		Х	0.072	CASE2
STORY5	D41	CASE3	0.0	-80.22	94.97	-0.01	0.092		Х	0.062	
STORY5	D41	CASE3	84.9	-80.22	-8.32	-0.14	0.092		Х	0.048	
STORY5	D41	CASE3	169.8	-80.22	-111.62	-0.26	0.092		Х	0.065	
STORY5	D41	CASE4	0.0	-31.68	3.69	1.04	0.036		Х	0.019	
STORY5	D41	CASE4	84.9	-31.68	-9.70	-0.02	0.036		Х	0.020	
STORY5	D41	CASE4	169.8	-31.68	-23.09	-1.08	0.036		Х	0.022	
STORY3	D41	CASE1	0.0	-119.35	67.30	0.91	0.137		Х	0.080	
STORY3	D41	CASE1	84.9	-119.35	-5.95	0.26	0.137		Х	0.070	
STORY3	D41	CASE1	169.8	-119.35	-79.20	-0.39	0.137		Х	0.082	
STORY3	D41	CASE2	0.0	-138.23	77.40	1.05	0.159		Х	0.093	
STORY3	D41	CASE2	84.9	-138.23	-6.86	0.30	0.159		Х	0.081	
STORY3	D41	CASE2	169.8	-138.23	-91.12	-0.45	0.159		Х	0.095	CASE2
STORY3	D41	CASE3	0.0	-122.54	67.82	0.92	0.141		Х	0.082	
STORY3	D41	CASE3	84.9	-122.54	-6.04	0.26	0.141		Х	0.072	
STORY3	D41	CASE3	169.8	-122.54	-79.90	-0.39	0.141		Х	0.084	
STORY3	D41	CASE4	0.0	-115.01	-73.60	-27.71	0.132		Х	0.089	
STORY3	D41	CASE4	84.9	-115.01	-23.11	-9.59	0.132		Х	0.074	
STORY3	D41	CASE4	169.8	-115.01	27.38	8.53	0.132		Х	0.074	
STORY5	D42	CASE1	0.0	57.72	-116.74	-0.33	0.050		Х	0.045	
STORY5	D42	CASE1	84.9	57.72	3.66	0.12	0.050		Х	0.026	
STORY5	D42	CASE1	169.8	57.72	124.06	0.58	0.050		Х	0.046	
STORY5	D42	CASE2	0.0	68.28	-134.14	-0.38	0.059		Х	0.052	
STORY5	D42	CASE2	84.9	68.28	4.22	0.14	0.059		Х	0.030	
STORY5	D42	CASE2	169.8	68.28	142.58	0.66	0.059		Х	0.054	CASE2
STORY5	D42	CASE3	0.0	56.55	-118.93	-0.33	0.049		Х	0.045	
STORY5	D42	CASE3	84.9	56.55	3.71	0.13	0.049		Х	0.025	
STORY5	D42	CASE3	169.8	56.55	126.35	0.58	0.049		Х	0.046	
STORY5	D42	CASE4	0.0	11.42	-64.43	-1.98	0.010		Х	0.017	
STORY5	D42	CASE4	84.9	11.42	-5.12	-0.17	0.010		Х	0.006	
STORY5	D42	CASE4	169.8	11.42	54.20	1.63	0.010		Х	0.015	
STORY3	D42	CASE1	0.0	25.18	-145.82	-1.09	0.022		Х	0.036	
STORY3	D42	CASE1	84.9	25.18	-7.86	-0.24	0.022		Х	0.012	
STORY3	D42	CASE1	169.8	25.18	130.11	0.61	0.022		Х	0.033	
STORY3	D42	CASE2	0.0	28.40	-168.29	-1.25	0.025		Х	0.041	
STORY3	D42	CASE2	84.9	28.40	-9.06	-0.27	0.025		Х	0.014	
STORY3	D42	CASE2	169.8	28.40	150.18	0.71	0.025		Х	0.038	CASE4
STORY3	D42	CASE3	0.0	24.08	-148.35	-1.10	0.021		Х	0.036	
STORY3	D42	CASE3	84.9	24.08	-7.97	-0.24	0.021		Х	0.012	
STORY3	D42	CASE3	169.8	24.08	132.40	0.62	0.021		Х	0.033	
STORY3	D42	CASE4	0.0	-66.11	-152.49	25.49	0.076		Х	0.073	
STORY3	D42	CASE4	84.9	-66.11	-23.72	8.90	0.076		Х	0.045	
STORY3	D42	CASE4	169.8	-66.11	105.05	-7.68	0.076		Х	0.059	
STORY5	D43	CASE1	0.0	-85.17	113.57	-0.28	0.098		Х	0.068	
STORY5	D43	CASE1	84.9	-85.17	-6.47	-0.06	0.098		Х	0.050	
STORY5	D43	CASE1	169.8	-85.17	-126.50	0.17	0.098		Х	0.070	
STORY5	D43	CASE2	0.0	-96.50	131.48	-0.33	0.111		Х	0.078	
STORY5	D43	CASE2	84.9	-96.50	-7.45	-0.07	0.111		Х	0.057	
STORY5	D43	CASE2	169.8	-96.50	-146.39	0.19	0.111		Х	0.080	CASE2
STORY5	D43	CASE3	0.0	-88.34	114.56	-0.29	0.102		Х	0.070	
STORY5	D43	CASE3	84.9	-88.34	-6.56	-0.06	0.102		Х	0.052	
STORY5	D43	CASE3	169.8	-88.34	-127.69	0.17	0.102		Х	0.072	

Appendix F.3 - Diagrid Member Checking Spreadsheets

Counts CASE1

CASE2

CASE3 CASE4 0

13

0 29

Member Properties - W14x53

ΦPn (tens.)	702
ΦPn (comp.)	526
ΦMnx	3920
ΦMny	990

Story	Beam	Load	Location	Pu	Mux	Muy	Pu/ΦPn	H1-1a	H1-1b	Strength	Controlling
0101 y	Beam	Loud	in	kip	in-kip	in-kip	T u/ TT	mina	111-10	Utilization	Case
STORY5	B26	CASE1	0.0	0.00	-103.78	0.00	0.000		Х	0.026	
STORY5	B26	CASE1	21.6	0.00	-65.35	0.00	0.000		Х	0.017	
STORY5	B26	CASE1	43.2	0.00	-26.93	0.00	0.000		Х	0.007	
STORY5	B26	CASE1	64.8	0.00	11.50	0.00	0.000		Х	0.003	
STORY5	B26	CASE1	86.4	0.00	49.92	0.00	0.000		Х	0.013	
STORY5	B26	CASE1	108.0	0.00	88.35	0.00	0.000		Х	0.023	
STORY5	B26	CASE2	0.0	0.00	-119.69	0.00	0.000		Х	0.031	
STORY5	B26	CASE2	21.6	0.00	-75.37	0.00	0.000		Х	0.019	
STORY5	B26	CASE2	43.2	0.00	-31.04	0.00	0.000		Х	0.008	
STORY5	B26	CASE2	64.8	0.00	13.29	0.00	0.000		Х	0.003	
STORY5	B26	CASE2	86.4	0.00	57.61	0.00	0.000		Х	0.015	
STORY5	B26	CASE2	108.0	0.00	101.94	0.00	0.000		Х	0.026	CASE4
STORY5	B26	CASE3	0.0	0.00	-105.26	0.00	0.000		Х	0.027	
STORY5	B26	CASE3	21.6	0.00	-66.30	0.00	0.000		Х	0.017	
STORY5	B26	CASE3	43.2	0.00	-27.35	0.00	0.000		Х	0.007	
STORY5	B26	CASE3	64.8	0.00	11.61	0.00	0.000		Х	0.003	
STORY5	B26	CASE3	86.4	0.00	50.56	0.00	0.000		Х	0.013	
STORY5	B26	CASE3	108.0	0.00	89.52	0.00	0.000		Х	0.023	
STORY5	B26	CASE4	0.0	0.18	-73.89	-12.44	0.000		Х	0.032	
STORY5	B26	CASE4	21.6	0.11	-46.08	-0.50	0.000		Х	0.012	
STORY5	B26	CASE4	43.2	0.04	-18.27	5.47	0.000		Х	0.010	
STORY5	B26	CASE4	64.8	-0.04	9.55	5.47	0.000		Х	0.008	
STORY5	B26	CASE4	86.4	-0.11	37.36	-0.50	0.000		Х	0.010	
STORY5	B26	CASE4	108.0	-0.18	65.17	-12.44	0.000		Х	0.029	
STORY3	B26	CASE1	0.0	0.00	-162.75	0.00	0.000		Х	0.042	
STORY3	B26	CASE1	21.6	0.00	-103.76	0.00	0.000		Х	0.026	
STORY3	B26	CASE1	43.2	0.00	-44.76	0.00	0.000		Х	0.011	
STORY3	B26	CASE1	64.8	0.00	14.23	0.00	0.000		Х	0.004	
STORY3	B26	CASE1	86.4	0.00	73.23	0.00	0.000		Х	0.019	
STORY3	B26	CASE1	108.0	0.00	132.22	0.00	0.000		X	0.034	
STORY3	B26	CASE2	0.0	0.00	-187.65	0.00	0.000		X	0.048	
STORY3	B26	CASE2	21.6	0.00	-119.63	0.00	0.000		Х	0.031	
STORY3	B26	CASE2	43.2	0.00	-51.61	0.00	0.000		Х	0.013	
STORY3	B26	CASE2	64.8	0.00	16.40	0.00	0.000		Х	0.004	
STORY3	B26	CASE2	86.4	0.00	84.42	0.00	0.000		Х	0.022	
STORY3	B26	CASE2	108.0	0.00	152.44	0.00	0.000		X	0.039	CASE4
STORY3	B26	CASE3	0.0	0.00	-165.18	0.00	0.000		Х	0.042	
STORY3	B26	CASE3	21.6	0.00	-105.31	0.00	0.000		Х	0.027	
STORY3	B26	CASE3	43.2	0.00	-45.43	0.00	0.000		X	0.012	
STORY3	B26	CASE3	64.8	0.00	14.45	0.00	0.000		X	0.004	
STORY3	B26	CASE3	86.4	0.00	74.33	0.00	0.000		Х	0.019	
STORY3	B26	CASE3	108.0	0.00	134.20	0.00	0.000		Х	0.034	
STORY3	B26	CASE4	0.0	0.32	-110.18	-22.36	0.000		X	0.051	
STORY3	B26	CASE4	21.6	0.19	-68 26	-0.89	0.000		X	0.018	
STORY3	B26	CASE4	43.2	0.06	-26.35	9.84	0.000		X	0.017	
STORY3	B26	CASE4	64.8	-0.06	15 58	9.84	0.000		X	0.014	
STORY3	B26	CASE4	86.4	-0.19	57.49	-0.89	0.000		X	0.016	
STORY3	B26	CASE4	108.0	-0.32	99 41	-22 36	0.001		X	0.048	
STORY1	B26	CASE1	0.0	0.00	-109 59	0.00	0.000		X	0.028	
STORY1	B26	CASE1	21.6	0.00	-96.02	0.00	0.000		X	0.024	
STORY1	B26	CASE1	43.2	0.00	-82 44	0.00	0,000		X	0.021	
STORY1	B26	CASE1	64.8	0.00	-68 86	0.00	0,000		x	0.018	
STORY1	B26	CASE1	86.4	0.00	-55 28	0.00	0,000		x	0.014	
STORY1	B26	CASE1	108.0	0.00	-41 71	0.00	0.000		X	0.011	
STORY1	B26	CASE2	0.0	0.00	-126 40	0.00	0.000		X	0.032	
STORY1	B26	CASE2	21.6	0.00	-110 73	0.00	0.000		x	0.028	
STORY1	B26	CASE2	43.2	0.00	-95.06	0.00	0.000		X	0.024	

Appendix F.4 - Diagrid Member Checking Spreadsheets

Member Properties - W12x50

ΦPn (tens.)	657	
ΦPn (comp.)	360	
ΦMnx	3236	
ΦMny	959	

Counts	
CASE1	0
CASE2	14
CASE3	1
CASE4	57

Story	Boam	beol	Location	Pu	Mux	Muy	Pu/@Pn	H1-1a	H1_1h	Strength	Controlling
Story	Deam	Load	in	kip	in-kip	in-kip	Fu/¥FII	111-1a	111-15	Utilization	Case
STORY5	D77	CASE1	0.0	-50.50	58.18	0.33	0.140		Х	0.088	
STORY5	D77	CASE1	84.9	-50.50	-6.10	-0.35	0.140		Х	0.072	
STORY5	D77	CASE1	169.8	-50.50	-70.38	-1.02	0.140		Х	0.093	
STORY5	D77	CASE2	0.0	-56.53	67.63	0.37	0.157		Х	0.100	
STORY5	D77	CASE2	84.9	-56.53	-7.03	-0.40	0.157		Х	0.081	
STORY5	D77	CASE2	169.8	-56.53	-81.70	-1.18	0.157		Х	0.105	CASE2
STORY5	D77	CASE3	0.0	-53.18	58.37	0.33	0.148		Х	0.092	
STORY5	D77	CASE3	84.9	-53.18	-6.19	-0.35	0.148		Х	0.076	
STORY5	D77	CASE3	169.8	-53.18	-70.76	-1.03	0.148		Х	0.097	
STORY5	D77	CASE4	0.0	-38.84	41.91	0.27	0.108		Х	0.067	
STORY5	D77	CASE4	84.9	-38.84	-3.84	-0.17	0.108		Х	0.055	
STORY5	D77	CASE4	169.8	-38.84	-49.60	-0.61	0.108		Х	0.070	
STORY3	D77	CASE1	0.0	-66.31	23.80	0.53	0.184		Х	0.100	
STORY3	D77	CASE1	84.9	-66.31	-6.21	-0.17	0.184		Х	0.094	
STORY3	D77	CASE1	169.8	-66.31	-36.22	-0.88	0.184		Х	0.104	
STORY3	D77	CASE2	0.0	-77.08	27.23	0.61	0.214	Х		0.222	
STORY3	D77	CASE2	84.9	-77.08	-7.16	-0.20	0.214	Х		0.216	
STORY3	D77	CASE2	169.8	-77.08	-41.56	-1.01	0.214	Х		0.226	CASE2
STORY3	D77	CASE3	0.0	-68.73	23.66	0.54	0.191		Х	0.103	
STORY3	D77	CASE3	84.9	-68.73	-6.31	-0.18	0.191		X	0.098	
STORY3	D77	CASE3	169.8	-68 73	-36 27	-0.89	0 191		X	0 108	
STORY3	D77	CASE4	0.0	-54 90	-4.93	-8.97	0 153		x	0.087	
STORY3	D77	CASE4	84.9	-54 90	-5.46	-3.67	0.153		X	0.082	
STORY3	D77	CASE4	169.8	-54 90	-6.00	1.63	0.153		X	0.080	
STORY5	D78		0.0	30 98	-78.81	1.00	0.100		X	0.000	
STORV5	D78	CASE1	84.0	30.08	2 20	0.80	0.047		Ŷ	0.000	
STORY5	D78		160.8	30.98	83.21	0.00	0.047		X	0.025	
STORY5	D78	CASE2	0.0	37.45	-90.37	2.03	0.057		X	0.040	
STORY5	D78	CASE2	84 Q	37.45	2 54	1.03	0.057		X	0.000	
STORVS	D70		160.8	37.45	2.34 05 <i>11</i>	0.02	0.057		× ×	0.050	CASEA
STORV5	D78	CASES	0.0	20 11	-80.50	1 70	0.007		Ŷ	0.030	UNDL4
STORTS		CASES	84.0	20.44	-00.00	0.00	0.045		× ×	0.043	
STORVS	D70	CASES	160.8	29.44	8/ 07	0.90	0.045		× ×	0.024	
STORTS			109.0	20.03	59.35	0.02	0.040		× ×	0.043	
STORTS			0.0 84.0	20.03	-50.55	0.79	0.030		×	0.034	
STORTS			160.9	20.03	60.34	0.45	0.030		×	0.010	
STORVS	D70		109.0	20.00	-82.61	0.11	0.057		× ×	0.054	
STORTS	070		84.0	20.34	-02.01	0.05	0.057		× ×	0.030	
STORTS STORV3		CASE1	160.9	-20.34	-2.42 77 77	0.00	0.057		×	0.050	
STORIS		CASET	109.0	-20.34	05.43	0.23	0.057		Ŷ	0.055	
STORTS STORV3		CASE2	0.0 84.0	-24.00	-90.40	0.95	0.007		×	0.004	
STORTS		CASE2	160.9	-24.00	-2.19	0.01	0.007		×	0.035	CASEA
STORTS		CASE2	109.0	-24.00	Q4 Q4	0.27	0.007		×	0.001	CASE4
STORTS		CASES	0.0 84.0	-22.11	-04.24	0.04	0.001		×	0.030	
STORTS		CASES	160.9	-22.11	-2.40	0.34	0.001		×	0.052	
STORTS		CASE	109.0	-22.11	60.01	19 72	0.001		×	0.055	
STORTS			0.0 84.0	-25.50	-00.91	6.09	0.071		×	0.074	
STORTS			160.9	-25.50	-0.00	6.55	0.071		×	0.044	
STORTS	D70		109.0	-20.00	49.00	-0.55	0.071			0.058	
STORIS	D79	CASEI	0.0	-03.04	73.44 E 40	2.10	0.177			0.114	
STORIS	D70	CASEI	04.9 160 0	-03.04 63.04	-0.40 01 20	-2.93 2 02	0.177			0.093	
STORIS	D70	CASET	0.001	-03.04 71.00	-04.39 95.20	-0.03	0.177		× v	0.123	
STORIS	D70	CASEZ	0.0	-71.90	00.2U	2.49	0.200			0.129	
STORYS	D79	CASE2	04.9	-/ 1.90	-0.31	-3.39	0.200		A V	0.105	04050
STORY5	D79	CASE2	0.601	-/1.90	-91.03	-9.26	0.200		X	0.140	CASE2
STURY5	D79	CASE3	0.0	-00.73	13.88	2.20	0.185		X	0.118	
STURY5	D79	CASE3	84.9	-00.73	-5.57	-2.98	0.185		X	0.098	
STURY5	D79	CASE3	169.8	-00.73	-85.03	-8.16	0.185		X	0.127	