

North Shore at Canton

Beau Menard Structural Schneider 11/21/05 Baltimore, MD
Technical Report 3
Lateral System Analysis

Executive Summary

North Shore at Canton is a four story town home structure built on top of a concrete pier in Baltimore harbor. For the purposes of this report, the building can be considered as three different structures. The concrete pier will make up the foundation, the first floor is a rigid steel frame, which is pinned to the pier, and the second, third and fourth floors are comprised of a bearing/shear wall system, made up of steel studs and gypsum sheathing. The floor system for the first floor is made up of pre-cast hollow core planks, which are welded to the steel frame, and a 2-1/2" topping of concrete. The second, third, and fourth floor systems are made up of pre-engineered floor trusses topped with 34" OSB, which rest on the bearing/shear wall.

An analysis was made to determine the capacity of the lateral force resisting system. Both wind and seismic loads were calculated and compared based on the Allowable Stress Design equations as given in the IBC 2003. The loads were distributed to the building based on tributary area, the shear walls were analyzed and then the steel frame, the forces on the frame were to come from the lateral load at that level, as well as the resulting base shear and resulting moment that are caused from the three stories of shear walls that sit on top of it. The loads then transferred from the columns into the pier bents. The shear capacity of a typical shear wall was considered for this report, as well as story drift, overturning moment, also the steel frame was analyzed using a computer model. The pier structure was assumed to be able to carry the loads transferred from the columns.

There are two span directions for the shear walls, and it was determined that the short spanning shear walls could carry the story forces, while the long span could not. Over-turning moment was not a factor, as the dead load of the structure provided enough resisting moment against the story force moment. Also Lateral drift was not an issue as the building deflection was within limitation, however it should be noted that some calculations were based on assumptions and should be verified.

Introduction

North Shore at Canton is a four story town home structure, built over a pier in Baltimore harbor. The pier structure is supported by concrete piles, which also make up the pier bents. The bents span 60', are spaced at 25', and are tied together with a cast in place concrete slab. The top of the pier level is also the first floor of the town home structure. The first floor structure is comprised of a rigid steel frame topped with hollow core pre-cast planks and a thin layer of concrete. The steel frame consists of W 12x96 columns, 9' in height, that line up over the pier bents. The columns are to be considered pinned to the pier structure. The steel beams that make up the rigid frame range from W 24x62, to W 24x78. The second, third, and fourth floors are made up of 25'x30' bays, with a floor height of 10'. The top three floors have bearing/shear walls that are spaced 25' apart and line up directly over the steel columns and pier bents. There is also a shear wall which spans the length of the building, 250'. The walls are comprised of steel studs and use gypsum board as the diaphragm. The floor systems of the top three floors are made up of pre-engineered wood floor trusses spaced 16" on center.

This report will analyze the lateral force resisting elements of the building. The loads considered for this analysis were wind and seismic and were derived from the IBC 2003; however it should be noted that the building was designed under the BOCA 1996 code where wind loads usually controlled the design of the lateral system. The report will also consist of, but is not limited to, the load distribution to the lateral system, the load capacity of a typical shear wall, overturning moment, and lateral building deflection. It should be noted, for the purposes of this report, that the top of the pier will be considered ground level, and all lateral loading transferred into the pier structure will be resisted by diagonal piles.

Loads and Load Cases

The loads used when the building was designed were derived from the BOCA 1996 codes. The BOCA '96 code has some downfalls; one is that the wind load predominately controlled over seismic load in most places, another is that the use of lateral sheathing was not of big concern. The load used for the lateral design of the building structure, was a wind load with an approximate pressure of 14 psf.

The loads used for the purpose of this report were derived for the IBC 2003, and both wind and seismic loads were considered. Wind and seismic calculations are located in Appendix A. The resulting story forces are located on the next page.

Un-factored Story Forces:

Short Span

Long Span

Load Cases:

Since the shear walls use gypsum as the diaphragm, the load cases used will be derived from the Allowable Stress Design equations. Both types of loading were considered in each span direction, based on the ASD equation:

$$D + (W \text{ or } 0.7E) + L + (Lr \text{ or } S \text{ or } R)$$
 (IBC 2003 eq: 16-10)

Only D + (W or 0.7E) will be considered for the purposes of this report.

When both loads are put into this equation, the seismic loads still control in both span directions. Loading comparisons are located in Appendix A.

Distribution

Lateral loads will be distributed to each member based on tributary width. This assumption was based on the fact that the shear walls have an equal stiffness, and are laid out in an equal and symmetric manner. A diagram of the shear wall layout is located in Appendix A. Also the rigid steel frame which makes up the first floor has both a symmetrical layout and equal stiffness, which also backs up my assumption. It should also be noted that each floor system should be considered a rigid diaphragm, so the load would transfer entirely into the lateral elements.

Analysis and Member Checks

For the purposes of this report, the building will be considered as three separate structural systems; three stories of shear walls, one level of a rigid steel frame, and the concrete pier. First the top three floor of the building will be analyzed as a simple shear wall system. Since the shear wall sit on top of the concrete and hollow core planks, it will be assumed that the base shear and resulting moment will be resisted by the steel frame that supports it. The frame will have a story force acting on it as well. Since the steel columns are pinned to the pier, moments will not transfer into the concrete bents, only lateral and axial forces.

The shear wall analysis method used, was obtained from the IBC 2003. The allowable shear for the diaphragm member of the shear wall came from table 2306.4.5. For the short span, ½" gypsum board with nail spacing of 6" around the edges and 12" intermediate was the information used to obtain the table value. A value of 90 plf was noted, and since the walls are to be considered double sheathed the value was increased to 180 plf. For the long spanning shear walls there were some differences in the sheathing used. On the exterior bays a sheathing of 15/32" Plywood was used, while the interior units used the ½" gypsum board. The long spanning shear walls are to be considered double sheathed, and nail spacing is provided in Appendix A.

Allowable Shear Values (for single sided sheathing):

½" Gypsum	90 plf	IBC 2003
Board		Table 2306.4.5
15/32"	170plf	IBC 2003
Plywood	_	Table 2306.4.1

These values were adjusted and compared to the tributary story shear at each level. The shear walls spanning the short direction were adequate to carry the load\; however the shear in the long span direction, while it could be carried by the plywood, the plywood would need four times as much sheathing to carry the load correctly.

The tributary base shears and resulting moments from the top three floor, were distributed into the steel frame that they sit on. This was modeled in a computer program. Complete results are located in Appendix A. *Story Drift:*

The story drift calculations were based on the equation given in the IBC 2003, for shear wall deflection. Some assumptions need to be noted about this analysis; first the shear wall deflection equation is based on two parts, deflection of the chord member and deflection of the diaphragm member. Since the chord members are made up from cold rolled steel studs, the area of the members and the modulus of elasticity will be adjusted accordingly. Also since the diaphragm is made up of gypsum board, some material properties have to be assumed. All information used for the assumption was obtained from USG, and is available upon request.

Story	Deflection
1	0.1"
2	0.098"
3	0.151"
4	0.205"
Total	0.554"

The overall building drift was based on H / 480, with H = height (in), and is equal to 1.2" > 0.554" therefore lateral drift is ok. However these deflection calculations were based on assumptions made and can not be permitted until proper information is verified.

Drift calculations are located in Appendix A.

Over-turning Moment:

It was found that the dead load for the structure was more than adequate to resist the over turning moment caused by the story shear. A representation of this is located in Appendix A.

Conclusion

The purpose of this report was to gain a better understanding of the lateral system of the building, the transfer of the loads, and how these factors affect items such as building drift. Most values calculated were with in acceptable values, though it should be noted that these values were based on some important assumptions that should be verified before they are used for any practical purposes. Also it should be noted that the pier structure is assumed to be capable of supporting the loads that are transferred through the steel columns. Since some of the lateral elements could not support the loads given and since the building was designed from a previous code, more analysis, and possible redesign, will be required.

Appendix A

Load Calculations: Wind Loads

	18.154 10.000	19.600 10.000	21.292 10.000	22.208 10.000			q _z (lb/ft²) (lb/ft²)	Gust Fac	0	Pressure Coefficients, C _p Windward Leeward		
10.000 16.772		0 17.765	0 18.928	0 19.558			(lb/ft²)	q _z C _p G - q _h C _p G		rd 0.8	N-S	Resultant pressure
16.013	16.013	17.037	18.237	18.887			راه/ائر)	9 ₂ C _p G - 9 _h C _p G		0.8 -0.35	E-W	pressure
	50.31	53.29	56.78	58.67	•		(kips)				N-S	Story Forces
	11.53	12.27	13.13	13.60	1	1	(kips)				E-W	orces

Load Calculations: Seismic Loads

	PROJECT TITLE :	North Shore				Date Designed	
	CLIENT: TITLE:		T LATERAL	ng Departmen FORCE MET		Date Checked	
	Designed By : Checked By :	Beau Menaro	d			Page:	
REFERENCE	CALCULATION					OUTPUT	
	1. Introduction						
ASCE 7-02	These calculation sheets serve to determine t Equivalent Lateral Force Procedure as out	the Seismic Design lined in Section 9 of	Category and f ASCE 7-02 "	calculate Seismi	Design Storey shear using the Loads for Buildings and Other		
	Structures*. 2. Seismic Design Parameters						
	Building Location : Number of Stories :	N	Scranto	on, Pennsylvania 4			
	Inter-story Height	h,		12 ft			
Table 9.1.3 & Table 1.1	Building Height : Seismic Use Group :	h _n		48 ft	(Office)		
	Occupany Importance Factor :			1.00			
Table 9.4.1.2.1	Site Classification :			D	(Assumed stiff soil)		
Figure 9.4.1.1a Figure 9.4.1.1b	0.2s Acceleration : 1s Acceleration :	S ₈		0.18 g-s 0.06 g-s			
Table 9.4.1.2.4a	Site Class Factor :	F _a		1.20			
Table 9.4.1.2.4b	Site Class Factor :	F.		1.70			
	Adjusted Accelerations :	S _{MS} :	= F _a S _S	0.216 g-s			
			= F _v S ₁	0.102 g-s			
	Design Spectral Response Accelerations :		= (2/3)S _{MS}	0.144 g-s		S _{DS} = 0.144	0-5
		S ₀₁ :	= (2/3)S _{M1}	0.068 g-s		S _{D1} = 0.068	g-s
Table 9.4.2.1a & Table 9.4.2.1b	Seismic Design Category :			C Equivalent Laters	al Load Method can be used	Seismic Design Cateorgy is C	
	3. Equivalent Lateral Force Procedu	ure (9.5.3)					
	a, Seismic Base Shear Coefficient (9.5.3.2)						
					Assumed light framed walls		
Table 9.5.2.2	i.N-S Direction Response Modification Factor :	R _{es}		2	shear panels	R _{NS} = 2	
Equation 9.5.3.2.1-1	Seismic Response Coefficient :	C _{s, NS} :	= S ₀₆ /(R _{N-9} /I)	0.072		NNS- A	
Table 9.5.5.3.2	delatific Response Coefficient .	C _{E,NS}	-D9 (449)	0.02			
Table 9.5.5.3.2		x		0.75			
	Approximate Period of Structure :		= C _{T, N-S} h _n ^x	0.36		T _{N-S} = 0.36	8
Equation 9.5.3.2.1-2	but Seismic Response Coefficient need not b	e an C _{S max, N-S} \$	S _{D1} /T(R _{N-9} /I)	0.093			
Equation 9.5.3.2.1-2		and C _{S min} =	= 0.044IS ₀₆	0.0063			
Equation 6.5.5.2.1-5	Therefore, the Seismic Resp					C _{s.NS} = 0.093	
			- N, PH-GP		Assumed light framed walls		
	ii.E-W Direction	_		2	shear panels	0	
Table 9.5.2.2 Equation 9.5.3.2.1-1	Response Modification Factor :	R _{E-W}	= S _{co} /(R _{E-W} /I)	0.072		R _{E.W} = 2	
Table 9.5.5.3.2	Seismic Response Coefficient :	C _{E,EW}	- obsitue will	0.028			
Table 9.5.5.3.2		X		0.80			
	Approximate Period of Structure :		C _{T, E-W} h _n [×]	0.62		T _{E-W} = 0.62	s
	but Seismic Response Coefficient need not b	e .		0.055			
Equation 9.5.3.2.1-2 Equation 9.5.3.2.1-3	greater tha		S _{D1} /T(R _{E-W} /I) = 0.044IS _{DS}	0.055			
Equation 9.5.3.2.1-3	Therefore, the Seismic Resp					C _{s, E-W} = 0.055	
	Therefore, the Seistillo Resp	onse overnoem (o	I E-W/ Gaed ta	0.000		OK.EW - 6.600	
Table 2.2-1 *Basic Loading Criteria* of Design Report	b. Loading Characteristics						
Criteria di Desigli Nepoli	i. Roof :						
	<u>Dead</u> Membrar	ne 1.0 p					
	Rigid Insulation	on 2.0	psf				
	Metal Roof Dec	ck 2.0 p	psf				
	Roof Framir Drywall ceilding 0.	ng 20.0 (5" 5.0 (pst osf				
	M&E Service	5.0					
	TOTAL Q		psf of roof area			q _{roof} = 35	psf
	ii. All other Floors :	of: 35 (pst of root area	•		q _{roof} = 30	por
	Dead						
	Floorin						
	Open Web Floor Jois 3/2" OSB Sheathir	ng 4.0 p	psf				
	Structural Steel Studs w/ 1/2" Gyp.Sheathir	ng 10.0 p	psf				
	0.5" Drywall Ceilir M&E Service	ng 5.0 g					
	Live						
As required in 9.5.3.2	Moveable Partition	on 20.0 p	psf				
	TOTAL que	610	psf of floor are	9		Q _{toor} = 61.0	psf
	iii. Perimeter Wall:	01.0	por or nour are			9000 01.0	lva
	Dead						
	Brick Curtain Wall, quo	10.0	psf			q _{eqt} = 10.0	psf
	iv. Snow Load: Snow						

Load Calculations: Seismic Loads

REFERENCE	CALCULATION									OUTPUT	
REFERENCE	CALCULATION			_	******					001101	
	Building Width	: W	60.0	n.							
	Building Length		250.0								
	Gross Roof or Floor Area:	A = W x L =	15,000.0	sq. ft							
	Total weight of roof, w _{reef} = A x (q _{roof} +q _{srow}) + 2(W	+ L)0.5h _s q _{eat} =	862	l kips							
	Total weight of each floor, w _{perfoor} =A x q _{toor} + 2	$(W + L)h_sq_{unit} =$	989	kips							
	W _{fox}	$_{\text{ora}} = (N-1)w_{\text{per floor}}$	2,968	kips							
	Total Building Weight, W	= W _{roof} + W _{toors} =	3,830	kips						w =	3,830
	Hence Seismic Base Shear, V	c . w -	470	túps						V _{N-S} =	276
Equation 9.5.3.2-1	Hence Seismic Base Shear, V			kips						V _{E-W} =	210
	Tame decimo dade dinas, s	EW OUTWIN		mg.							15000
	c. Vertical Distribution of Seismic Forces (9	(5,3,4)									
Equation 9.5.3.4-2	The distribution of lateral forces over the heigh	t of the building is	shown in Ta	ble 1 and 2	below.						
Equation 9.5.5.4-2	Exponent k _{N-S} = 1+ (T _{N-S} - 0.5)/(2.5 - 0.5) =	0.932									
		Table 1 : Vertic	al Distributi	on of Seis	mic Forces (f	1-8)					
			105	h _r	w,h,k	C _w	F,	V.	M,		
		Level x									
		Level, x	W _x (kips)	(n)		S. Maria	(kips)	(kips)	(ft-kips)		
		Level, x	(kips) 862	(n) 0		0.000	-		(fl-kips)		
		Level, x	(kips)	(n)		S. Maria		(kips)			
		4	(kips) 862 989 989 989	(ft) 0 0 48 36	36,551 27,952	0.000 0.000 0.390 0.298	- 108 82	- 108	(fl-kips) 5,164 2,962		
		4 3	(kips) 862 989 989 989 989	(ft) 0 0 48 36 24	36,551 27,952 19,153	0.000 0.000 0.390 0.298 0.204	108 82 56	- 108 190	(fl-kips) 5,164 2,962 1,353		
	Green	4 3 2	(kips) 862 989 989 989	(ft) 0 0 48 36	36,551 27,952	0.000 0.000 0.390 0.298 0.204	- 108 82	- - 108 190 246	(fl-kips) 5,164 2,962		
	Ground	4 3 2	(kips) 862 989 989 989 989 989	(ft) 0 0 48 36 24	36,551 27,952 19,153 10,036 Σ =	0.000 0.000 0.390 0.298 0.204 0.107	- 108 82 56 30	- 108 190	(fl-kips) 5,164 2,962 1,353 355 Σ =		
	Ground	4 3 2	(kips) 862 989 989 989 989 989	(ft) 0 0 48 36 24	36,551 27,952 19,153 10,036 Σ =	0.000 0.000 0.390 0.298 0.204 0.107	- 108 82 56 30	- - 108 190 246	(fl-kips) 5,164 2,962 1,353 355		
	Ground Exponent k ₁₄₀ = 1+ (7 ₁₆₀ - 0.5)/(2.5 - 0.5)	4 3 2 1 1	(kips) 862 989 989 989 989 989	(ft) 0 0 48 36 24	36,551 27,952 19,153 10,036 Σ =	0.000 0.000 0.390 0.298 0.204 0.107	- 108 82 56 30	- - 108 190 246	(fl-kips) 5,164 2,962 1,353 355 Σ =		
		4 3 2 1 1	(kips) 862 989 989 989 989 989 Σ = 5809	(ft) 0 0 48 36 24 12	36,551 27,952 19,153 10,036 Σ = 93691	0.000 0.000 0.390 0.298 0.204 0.107	- 108 82 56 30	- - 108 190 246	(fl-kips) 5,164 2,962 1,353 355 Σ =		
		4 3 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(kips) 862 989 989 989 989 989 989 989 5809	(ft) 0 0 48 36 24 12	36,551 27,952 19,153 10,036 $\Sigma =$ 93691	0.000 0.000 0.390 0.298 0.204 0.107 \$\sum_{\text{1.000}}\$	- 108 82 56 30 Σ = 276	- - 108 190 246 276	(fl-kips) 5,164 2,992 1,353 355 Σ = 9634		
		4 3 2 1 1	(kips) 862 989 989 989 989 989 Σ = 5809	(ft) 0 0 48 36 24 12	36,551 27,952 19,153 10,036 Σ = 93691	0.000 0.000 0.390 0.298 0.204 0.107	- 108 82 56 30	- - 108 190 246	(fl-kips) 5,164 2,962 1,353 355 Σ =		
	Exponent $k_{H,0} = 1 + (T_{H,0} - 0.5)/(2.5 - 0.5)$	4 3 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(kips) 802 909 909 909 909 909 909 509 Σ = 5809 at Distributi W _κ (kips) 662	(ft) 0 0 48 36 24 12 on of Seise	36,551 27,952 19,153 10,036 Σ = 93691 mic Forces (E	0.000 0.000 0.390 0.298 0.204 0.107 Σ= 1.000	- 108 82 56 30 Σ = 276		(ff-kips) 5,164 2,992 1,385 355 \$\sum_{9834}\$ M _v (ff.kips)		
	Exponent $k_{14,0} = 1 + (T_{14,0} - 0.5)/(2.5 - 0.5) \approx$ where $C_{xy} = w_y h_x^{1/2} c_{xyl} c_{yyl} (w_y h_y^{1/2})$	4 3 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(kips) 862 989 989 989 989 989 5809 Σ = 5809 (kips) 662 989	(ft) 0 0 48 36 24 12 on of Seise h _c (ft)	36,551 27,952 19,153 10,036 \$\sum_{\text{g}} = \text{93691}\$ mic Forces (E w_kh_x*	0.000 0.000 0.390 0.298 0.204 0.107 Σ = 1.000	- 108 82 56 30 Σ = 276 F _x (kips)		(π-kips)		
	Exponent $k_{H,0} = 1 + (T_{H,0} - 0.5)/(2.5 - 0.5)$	4 3 3 2 1 1 1.060 Table 2 : Vertic	(kips) 862 869 989 989 989 989 989 \$5809 L= 5809 (kips) 662 989 989	(ft) 0 0 48 36 24 12 0n of Seiss h _x (ft) 0 0	-36,551 27,952 19,153 10,036 Σ= 93691 mic Forces (Ε w,h _x ^x - 59,809	0.000 0.390 0.298 0.204 0.107 Σ = 1.000 C _{rx} 0.000 0.000 0.409	- 108 82 56 30 \$\times = 276\$\$\$ F_x (kips) - 88	108 190 246 276	(fl-kips)		
	Exponent $k_{14,0} = 1 + (T_{14,0} - 0.5)/(2.5 - 0.5) \approx$ where $C_{xy} = w_y h_x^{1/2} c_{xyl} c_{yyl} (w_y h_y^{1/2})$	4 3 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(kips) 862 989 989 989 989 989 989 \$80 Σ = \$809 880 (kips) 602 989 989 989	(ft) 0 0 48 36 24 12 12 h _x (ft) 0 0 48 36 48 36 48 36 48 36 48 48 48 48 48 48 48 48 48 48	36,551 27,952 19,153 10,036 Σ = 93691 mic Forces (E w,h _x ^x 59,869 44,135	0.000 0.390 0.298 0.204 0.107 \$\inspec = 1.000\$ \$\inspec \text{c}_{vx}\$ \$\inspec \text{c}_{vx}\$	- 108 82 56 30 Σ = 276 F _x (kips) - 88 63	V _x (kips)	(ft-kips)		
	Exponent $k_{14,0} = 1 + (T_{14,0} - 0.5)/(2.5 - 0.5) \approx$ where $C_{xy} = w_y h_x^{1/2} c_{xyl} c_{yyl} (w_y h_y^{1/2})$	4 3 3 2 1 1	(kips) 862 869 889 889 989 989 989 989 \$580 \$\sum_{e}\$ (kips) 602 \$680 989 989 989 989	(ft) 0 0 48 36 24 12 12 0n of Seise h _e (ft) 0 0 48 36 24	38,551 27,952 19,153 10,036 Σ = 93691 mic Forces (E w,h,* 59,889 44,135 28,718	0.000 0.390 0.298 0.204 0.107 Σ = 1.000 0.000 0.000 0.409 0.301 0.196	- 108 82 56 30 Σ = 276 F _x (kips) - 88 63 41	108 190 246 276	(fl-kips)		
	Exponent $k_{14,0} = 1 + (T_{14,0} - 0.5)/(2.5 - 0.5) \approx$ where $C_{xy} = w_y h_x^{1/2} c_{xyl} c_{yyl} (w_y h_y^{1/2})$	4 3 2 3 1 1 Level, x 4 3 3 2 2	(kips) 602 939 939 939 939 55 809 939 939 809 809 809 809 809 809 809 809 809 80	(ft) 0 0 48 36 24 12 12 h _x (ft) 0 0 48 36 48 36 48 36 48 36 48 48 48 48 48 48 48 48 48 48	38,551 27,952 19,153 10,036 \$\sum_{\text{q}} = \text{q} \text{36991}\$ w,h,* 59,839 44,135 28,718 13,776	0.000 0.390 0.298 0.204 0.107 E= 1.000 C _{vx} 0.000 0.409 0.301 0.196 0.094	- 108 82 58 30 Σ = 276 F _x (kips) 86 63 41 20		(fl-kips)		
	Exponent k_{tid} = 1+ $(T_{tid} - 0.5)/(2.5 - 0.5)$ * where C_{vv} = $w_v h_v^{h/2} z_{tid brein} (w_v h_v^{h})$ $F_s = C_{vv} V$	4 3 2 3 1 1 Level, x 4 3 3 2 2	(kips) 862 869 889 889 989 989 989 989 \$580 \$\sum_{e}\$ (kips) 602 \$680 989 989 989 989	(ft) 0 0 48 36 24 12 12 0n of Seiss 0 0 0 48 36 24 24 24 24 24 24 24 24 24	- 36.551 27.952 19.153 10.036 Σ = 93691 mic Forces (ξ w,h,* - 59,899 44,135 28,718 13,776	0.000 0.390 0.298 0.204 0.107 Σ = 1.000 0.000 0.000 0.409 0.301 0.196	- 108 82 56 30 Σ = 276 F _x (kipp) - 88 63 41 20	V _c (kjps)	(fl-kips)		

orth	Shore	15	hear	wall				
	Sheathnes (Botasides)	Chords	studs	Sheature	Spa	unes edge	chord Archer	DE LOS
0	X"GYP	Z-JWILE	JW 14 @16" OC	# 6 TEX sensi	IZ	6	z - LSZZ	
2	Y2" 64P	z-Jwle	SW16 @1600	#6 TEKSONUS	12	4	2-1527	
3	12" GYP	2-5 MIR	50016 C16°00	#GTEK CKONS	12	6	Worle	
9	15/32 PLY	Z-7MIG	JW100	# WEKseruns	12	6	2-6522	
			Vz" a mtela o" @ exic					
7		(2) (2 2	3 2 2	(F)	9	†	
1-30'-1-30-	(a) (3) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	3 3	3 3			91	6	n view
-1/	X-25'-X X		- 250	,		-1		
	3							
10'		(2)						
10'		1					- 1	
10'		(2)					Elevati	on
7	X 30' X 30'	X						
4	0 0	2 (2 2	000	C)		10
10"	111					1	() (ea	tenor wall thend the level
10'	14						(3)	iteriar wal
10						1) •	ach level
	Vzs'X		750"-			1		

North Share	lateral loading	3
Story Forces	(EQ 16-10 IBC2003) D	+ (OilE on 100w) Based on ASD
$\begin{array}{c c} A \rightarrow & \downarrow \\ B \rightarrow & \downarrow \\ C \rightarrow & \downarrow \\ 10' \\ \downarrow & \downarrow \\ 10' \\$	Wind (1,0) A = 158,67. B = 156,78. C = 153,29.	Base stran & Reslitua Mo Vu=168.74K
X 60' X Vu Mo	Seismic (0.1) A = 106 × 107) = 74.2 B = 85 × 10.7) = 59.5 C = 56 × 107) = 39.2	Mo= & F h = 3428 64 Base Shear & Mo Vuz 172.9 ×
$D \rightarrow f^{-} \gamma$	wind (1.0)	M8=3808 8+K
D → 70' E → 10' F → 10' + 10'	D= 13.6 E E= 13.13 E F= 12.2 Seismic (0,7)	Base shear & Wo Vn = 3901 E mo = 79266 94
X 750' X	0 = 86 (c 1011) = 6012 K E = 63 x (017) = 44.1 K F = 41 K(617) = 78.7 K	Bad skan & Wo Vu = 133 K Mo = 2915 AK
Party last Statements	ar walls, spanning 40; have , a load distribution to	
each wall will be	loused on tributary	= Story force trib width
31.5' II.1 2 25' 1.4 3 3 4 60' 667	89 59 Seisme	oads control spons.
the wall spanning the to take the full width (60')	rengton of the building (250 load, equivalent to a fribution	's will be assumed by with of the bould

/	North	Share	Lateral	Analysis		
	$\tau_{\epsilon} \longrightarrow$	X Trib Fo	1 /	1+ P=	Trib force L 100 = 100 K 60' =	
			5A Seismic 3.9 Seismic	18	Df (19), A B C 35 148 98 13 198 LS	
	Interior	Shear walls 185 (4) = 0 5	0K 0K 704K	Gypsun B	BC 2003) tall and X" Blocked	Allowable Shear Value
	T > +(~ 180 pif
	×	wall 0 50,2 0	Force (12) E F D 1431 28371 240 SMIC)	170 115	(IBC 200	3) Table 2306.4.1
	an estim	Tmo = 475 weed from the wate, it is in roming w/ No	IBC 15 supt tended for	extent	Pract to France factorer space	170 lb/f4
	sciews.	. Assure Stury	shear is distrib negangthe wall	(250') Natero	sceme (Double w	

North Shore

VisualAnalysis 4.00.EDU Report

Company: Penn State University Engineer: Menard Billing: For Educational Purposes Only File: C:\Documents and Settings\bam301\Desktop\thesis\steel frame analysis.vap

Nodes

Node	X ft	Y ft	Fix	DX Fix	DY Fix R2
N1	0.00	0.00	Yes	Yes	No
N2	18.33	0.00	"	"	"
N3	39.66	0.00		"	"
N4	58.00	0.00	"	"	"
N5	58.00	9.00	No	No	"
N6	39.66	9.00	"	"	"
N7	18.33	9.00	"	"	"
N8	0.00	9.00	"	"	"

Spring Elements

This item is empty. Check the selection state, or report properties.

Member Elements

Member	Section	Material	Length ft	Weight 1b	Theta deg
M1	W12x96	Steel	9.00	863.63	0.00
M2	"	"	9.00	863.63	0.00
мз	"	"	9.00	863.63	0.00
M4	"	"	9.00	863.63	0.00
M5	W24x62	"	18.34	1135.81	0.00
M6	W24x76	"	21.33	1625.82	0.00
M7	W24x62	"	18.33	1135.19	0.00

Section Properties

Category	Section	Ax in^2	Iz in^4	Sy+ in^3	Sy- in^3
AISC Sha	W12x96	28.20	833.00	131.00	131.16
"	W24x62	18.20	1550.00	131.00	130.17
"	W24x76	22.40	2100.00	176.00	175.17

Material Properties

Material	Strength Ksi	Elasticity Ksi	Poisson	Density 1b/ft^3	
Steel	-NA-	29000.00	0.30	490.00	0.00

Plate Elements

This item is empty. Check the selection state, or report properties.

Member	Fx(lc) K	Fy(lc) K	Mz (lc) K-ft	fc max(lc) Ksi	fc min(lc) Ksi	Dx(lc) in	Dy(lc) in
M1	-780.83(3)	-12.93(6)	-116.38(6)	-27.69(3)	-34.53(6)	-0.10(3)	-0.11(8)
"	-3.28(2)	2.89(8)	25.98(8)	4.44(2)	-0.12(2)	0.00(2)	0.43(6)
M2	-37.79(6)	-25.09(6)	-225.82(6)	-1.34(6)	-22.00(6)	-0.00(6)	-0.12(8)
"	2.06(8)	10.72(8)	96.50(8)	19.35(6)	0.07(8)	0.00(8)	0.44(6)
МЗ	-21.19(3)	-17.66(8)	-158.96(8)	-0.75(3)	-14.96(8)	-0.00(3)	-0.12(8)
"	-1.44(2)	8.72(2)	78.47(2)	14.14(8)	-0.05(2)	0.00(2)	0.46(6)
M4	18.08(2)	-19.80(6)	-178.21(6)	0.64(2)	-9.38(2)	0.00(2)	-0.13(8)
"	764.94(3)	12.84(8)	115.57(8)	40.41(6)	27.13(3)	0.10(3)	0.48(6)
M5	-47.70(6)	18.08(2)	-245.11(8)	-2.20(6)	-34.38(6)	-0.12(8)	-0.15(6)
"	-2.04(8)	784.20(3)	346.75(6)	29.35(6)	-0.12(8)	0.48(6)	0.14(8)
M6	-50.60(6)	16.64(2)	-340.86(6)	-2.17(6)	-25.61(6)	-0.12(8)	-0.15(8)
"	15.62(8)	785.40(3)	309.63(8)	21.91(8)	0.69(8)	0.46(6)	0.19(6)
M7	-25.51(6)	3.28(2)	-35.56(8)	-1.38(6)	-12.06(6)	-0.11(8)	-0.03(2)
"	4.90(8)	780.83(3)	116.38(6)	9.33(6)	0.16(8)	0.44(6)	0.10(3)

Node	Load Case	FX K	FY K	MZ K-ft
N1	Dead loads	4.7829	557.733	-NA-
"	LRFD A4-1	6.6961	780.827	-NA-
"	LRFD A4-2a	5.7395	669.280	-NA-
"	LRFD A4-3b	10.1652	671.904	-NA-
"	LRFD A4-4a	12.9312	673.543	-NA-
"	LRFD A4-6a	11.4963	506.223	-NA-
"	LRFD A4-6b	-2.8871	497.697	-NA-
"	LRFD A4-6c	4.3046	501.960	-NA-
"	Wind loads	5.5321	3.2794	-NA-
N2	Dead loads	6.8424	17.0166	-NA-
"	LRFD A4-1	9.5794	23.8232	-NA-
"	LRFD A4-2a	8.2109	20.4199	-NA-
"	LRFD A4-3b	18.5990	31.1116	NA-
"	LRFD A4-4a	25.0915	37.7939	-NA-
"	LRFD A4-6a	23.0387	32.6889	-NA-
"	LRFD A4-6b	-10.722	-2.0591	-NA-
"	LRFD A4-6c	6.1582	15.3149	-NA-
"	Wind loads	12.9850	13.3646	-NA-
N3	Dead loads	7.0304	15.1376	-NA-
"	LRFD A4-1	9.8425	21.1926	-NA-
"	LRFD A4-2a	8.4365	18.1651	-NA-
"	LRFD A4-3b	1.4612	19.3147	-NA-
"	LRFD A4-4a	-2.8984	20.0331	-NA-
"	LRFD A4-6a	-5.0075	15.4919	-NA-
"	LRFD A4-6b	17.6622	11.7558	-NA-
"	LRFD A4-6c	6.3273	13.6238	-NA-
"	Wind loads	-8.7191	1.4369	-NA-
N4	Dead loads	3.3143	-546.38	-NA-
"	LRFD A4-1	4.6400	-764.94	-NA-
"	LRFD A4-2a	3.9771	-655.66	-NA-
"	LRFD A4-3b	13.7147	-670.13	-NA-
"	LRFD A4-4a	19.8007	-679.17	-NA-
"	LRFD A4-6a	18.8064	-515.25	-NA-
"	LRFD A4-6b		-468.24	-NA-
"	LRFD A4-6c		-491.74	-NA-
"	Wind loads		-18.080	-NA-

Member Moments:

Local Member Displacement:

Deflected Shape:

Load Analysis: Story Drift

North Share Story drift
Shear wall deflector (IBC 2003-2305.3.2) $\Delta = \frac{8 \text{ V h}^3}{E \text{ Ab}} + \frac{\text{V h}}{G \text{ t}} + 0.75 \text{ her} + \text{da}$
A = Area of cross section of chord newless (in2) b = wall width (ft)
da = deflection due to ancher defail (in)
E = Mod of Elasticity of the chord element (Psi) En = Deformation of necleonically fastened correctors (in)
G = Mod of Rigidity of the sheathing element (psi) h = height of wall (f+)
t = thickness of sheathing (in) V = Deolgon shear @ top of wall (15%)
$\Delta = \text{deflection (in)}$
chard the tenant to the tenant

Load Analysis: Story Drift

Worth Shord Drift Calc
chord member - (Z) SW-16 (3/2 x 1/2) metal studs
E=30,000,000 psi (assured cold roled section) A=2(0.262)=0.524 in (Maxino/WARE Light weight Framing)
h, wall = 10' = 170"
Sheathing - (Z) 2" gypsum Board
$G = \frac{E}{Z(1+Y)} = 1^{"}$ $G = \frac{E}{Z(1+Y)} = \frac{E}{I + I} = \frac{I}{I + I} = \frac{I}{I} = \frac{I}{I} = \frac{I}$
assume $V = 0.72$ assume $V =$
A = 0.524 m² b = 60° deflection will be primally based on chord & diaphraym deflection So the variables da & en E = 30 000 000 PSi will be assured 0 en = 0 G = 6955 psi t = 1" V = varies based on height an infacted wind load will be assort in this analyss.

Load Analysis: Story Drift

Joith Share Drit	4 Calc
F	Lateral loads
wall Force	(a) V (1860)
level Inheros (25'+100	www. V (500) unfactored (oads
(1) 5.00 =	195
3 Ce 3 4	097-24
0 4.1 E	Le 8 1 1/40
- 1 1 de et	
Individual droft	
ievel	
10vel A 8(97)(10) ³	+ (M3)(10) = 0.00082 + 0,205 m
(300max)(0.524)(60)	(6998)(1)
(30 000 000) (0,524) (60) +	(105)(10) = 0.00081"+ 0.151"
(30 000 000)(0,524)(60)	(6755)(1)
(2) 8(89)(10 ³)	(88)(10) = 0,00075 \$ 0.098 in
(30 000 000)(0,524)(40) +	(6755 (1)
ob I I to I	
Chard deflection	disphrym deflection . I A . I . I . I . I . I . I . I . I .
	different level De calculation and modeled using a composition
Lalanda de	
totalantt "	building height
level 1 - 0, 1"	48' 576
level 2 - 0.198"	
level 3 - 0.349"	Bose total building drift in h
level 4 - 0,554"	
total building drift	480 = 1.2"
total building	780
D = 0.5544	0.554 < 1.7
It should be noted that &	these calculation are based on assumtunds you material properties. Since no
made about the diaphra	and about the accenter of capsus
bound these results	cannot be used properly. The equation
to calculate the drift	given about the properties of gypsun connot be used properly. The equation is correct, and, if the proper internation
is our. can be used	to calculate the story drift.

Load Analysis: Over-turning Moment

