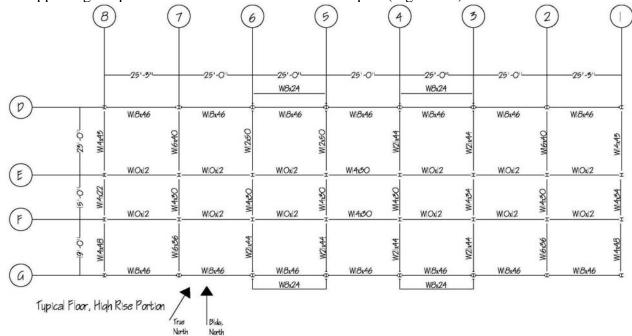


Technical Report #1: Structural Concepts/ Structural Existing Conditions Report Submittal Date: 5 October 2005

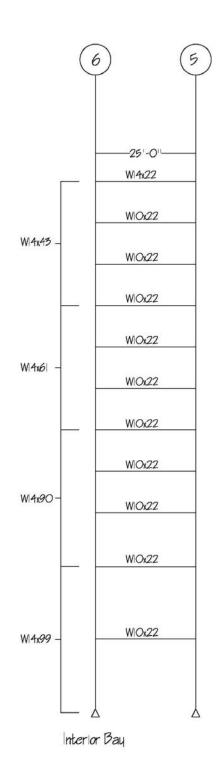
Executive Summary

The Erie Convention Center and Sheraton Hotel sits on the waterfront of the Presque Isle Bay on West Dobbins Landing, in Erie, Pennsylvania. This site provides a great opportunity to enjoy all that the bay and the surrounding area has to offer, as well as a place for conferences and receptions. The proposed hotel is an eleven story, 132,000 sq.ft., steel structure with an attached parking garage and a pedestrian walkway from the fifth floor to the Bayfront Convention Center.


This report is a full description of the structural system and calculations of all of the loads that affect the design of the structure, including gravity, wind, and seismic loads. A complete list of codes used to obtain these values is also given. In addition, spot checks for gravity and lateral members are completed and compared with the sizes provided by the engineers. Typical frames and bays are drawn with given sizes for ease in understanding the explanation of framing members.

Through my analysis and calculations, I found that the Erie Convention Center and Sheraton Hotel is a steel structure with pre-cast concrete plank floors designed using IBC 2003. Cross and knee braced frames are used in the North/South direction, and moment frames in the East/West direction, both for resistance to lateral loads. The foundation consists of caissons drilled approximately twenty feet into the ground to ensure that they are enclosed in at least three feet of bedrock. Grade beams span each of these caissons, and are poured monolithically with column piers. Through my own beam and column design, I found similar beam sizes to those designed by the engineer. Any discrepancies can possibly be accounted for by the difference in the ASD and the LRFD method of solving, as well as the fact that I took a simplified approach to design, not taking into account all of the surrounding factors.

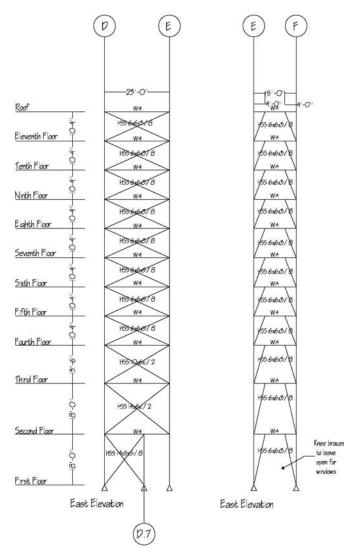
Structural System: **Framing-**


The Erie Convention Center and Sheraton Hotel is an eleven story building with a five story attached parking garage, and a pedestrian crosswalk to the Bayfront Convention Center. The hotel is comprised of a steel structure with a pre-cast concrete plank floor system.

The layout of the structural system for the hotel is comprised of interior bays 25 ft wide, with the exterior bays that are 25'-4" wide. In the North/South (N/S) direction, the bays span 19'-0", 15'-0", and 23'-0", South to North, respectively (Figure 1.1). In the main building tower, typical girders range from W14x30 to W24x55. These girders span in the N/S direction and support the floor loads from the pre-cast concrete plank floor, which spans in the East-West (E/W) direction. Smaller W10x22 shapes frame into the columns in the E/W direction, in the interior bays. Even though they are not carrying any direct floor load, they are needed for column stability. The North and South walls are moment frames, and therefore are constructed with much larger W18's. Elevator openings and mechanical spaces are supported with intermediately sized beams. The roof structural system includes sloping W14, W16, and W18 girders with beams ranging from W12x14's to W12x19's. The two story porte cochere on the North side of the hotel is comprised of beams ranging from W8x24 to W12x40, and girders that span 35'-7", sized at W30x99 and W36x135. Its roof is constructed with W33x18's and trusses. The trusses are 3'-6" deep, and have W12x30 top and bottom chords with HSS 6x4x3/8 diagonals. The columns range in sizes from W14x43 to W14x426, with smaller W8's and W10's supporting the porte cochere and other exterior canopies (Figure 1.2).

Figure 1.1

This is a typical floor of the high rise portion (floors 3-11) of the Erie Hotel and Convention Center. The beams on the interior of bays supporting mechanical loads have been removed for simplicity. The first and second stories have a porte cochere extending off of the North side of the building. There are also two elevator shafts extending nine feet North, between column lines 8 and 6 for the first through 5th floors, accessing the pedestrian walkway.

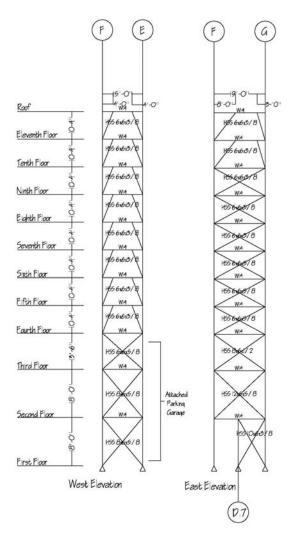



The column and beam layout between floors is as shown for a typical interior bay.

Lateral Bracing-

The lateral bracing in the E/W direction is comprised of A500 structural steel tubing, in a combination of cross and knee braces. Cross braces run the full height in the N/S direction on the outer two bays with the exception of the top two floors in the exterior bays to the rear of the building, which use knee braces to allow for windows (Figure 1.3). The middle interior bay in the East Elevation uses knee braces from the ground to roof to allow for a glass curtain wall strip. In the West Elevation, however, knee braces are present from the fourth through eleventh floors to allow for this glazing, but below, cross-braces are used because of the adjoining parking garage. This difference in the two elevations causes the member sizes in each direction to vary slightly. In the East Elevation the exterior bays' cross-bracing members range from HSS 14x6x5/8 on the first floor to HSS 6x6x3/8 on the eleventh floors, some of the members are smaller than in the East Elevation due to the cross bracing instead of knee bracing in the center bay. Moment connections are used for lateral support in the north-south direction.

The elevator shaft discussed in the commentary for Figure 1.1, is also braced by crossbraces in both the N/S and E/W directions.



The exterior (left) and interior (right) lateral resistance framing systems allow for window and door placement free from obstruction.

Figure 1.3 (b)

The West Elevation uses cross bracing for structural support, but is not concerned with the allowing the placement of windows because of the adjacent attached parking garage on the first, second, and third floors. The East Elevation is a continuation of the frame in Figure 1.3 (a).

Foundation-

Due to the unstable soil on site, caissons need to be drilled down into at least three feet of bedrock to prevent uplift. These caissons have a minimum required diameter of 24" but range up to as much as 60" in diameter, and are approximately 20 feet deep. By drilling three feet into the bedrock, the net allowable end bearing pressure is 40ksf as compared to the 30ksf maximum end bearing pressure, which could be used in design if the caissons were only bearing directly on the bedrock. In addition, shaft resistance can be added to the caisson capacity using 3.0ksf allowable side friction applied to the socket surface area in the bedrock. Grade beams that vary from 18 to 20 inches in width and depth span the caissons, and are cast monolithically with concrete piers, which vary between 18"x18" and 24"x24". Reinforcing bars and stirrups range from #6 to #8 for the grade beams, and between 4, 6, and 8 #9 bars are used in the piers. The structural concrete slab for the first floor is 8" thick and is reinforced with #6 bars spaced at 10" on center on the top and bottom in the N/S direction, with #4 bars spaced at 12" on center, top and bottom in the E/W direction.

Floors-

The floor system of the Erie Convention Center and Sheraton Hotel is comprised of 8" thick pre-cast concrete planks. These planks run in the E/W direction, spanning 25' for the interior bays or 25'-3" for the exterior bays. The strength of the concrete planks is 5000 psi.

Roof-

Continuous 3-span, 1 ¹/₂", 20 gage, galvanized wide rib steel roof deck with 5" insulation, and a fully adhered EPDM rubber roof membrane are the components of the roofing system.

Exterior Walls-

The exterior wall system is a combination of pre-cast concrete, copper cladding (architectural details), brick, and EIFS (Exterior Insulation and Finish System). The 6" pre-cast concrete and 4" face brick both are backed by an air space, 1" rigid insulation, 8" structural metal studs with 8" batt insulation, and 5/8" gypsum wall board. The 2" EIFS with drainage is backed with 5/8" glassmat gypsum board and 6" structural metal studs with 6" batt insulation.

Material Strengths-

Framing Members (W-shapes): A992 Grade 50 Bracing Members (HSS-shapes): A 500 Grade 50 Rebar: ASTM 615 Grade 60 Concrete: Caissons, Grade Beams, and Piers: 3000 psi Structural Slab: 4000 psi Pre-Cast Concrete Plank: 5000 psi

Building Codes:

IBC 2003 ASCE 7-98 (I will be using ASCE 7-02 for my own wind and seismic calculations) ACI 318-02 AISC ASD 9th ed. (I will be using LRFD, 3rd ed. for my own analysis.)

Loads:

Live Loads: (Given by Engineer) Public Rooms and Corridors = 100 psf (IBC 2003: Table 1607.1 Residential-Hotels and multi family dwellings-prooms and corridors serving them = 100 psf)	public
Private Rooms and Corridors = 40 psf (IBC 2003: Table 1607.1 Residential-Hotels and multi family dwellings- rooms and corridors serving them = 40 psf)	private
Mechanical Spaces = 150 psf (not given in IBC 2003-common assumption)	
Stairs = 100 psf (IBC 2003: Table 1607.1 Stairs and exits = 100 psf)	
Ground Snow Load $(p_g) = 30 \text{ psf}$ (IBC 2003: Figure 1608.2)	
$C_e=0.8$ (fully exposed, exposure category D)	
$C_{t}=1.0$ (Building cotogory III)	
$I=1.1 \qquad (Building category III)$ $n=0.7 C C Ln = 16.8 mof$	

 $p_f=0.7 C_e C_t I p_g= 16.8 psf$

Dead Loads: (Assumed)	
8" concrete plank	= 50 psf
Framing Members	= 10 psf
MEP	= 10 psf
Carpet	= 1 psf
Ceiling Finishing	= 1 psf
Partitions	<u>= 20 psf</u>
Total	92 psf

Wind Loads:

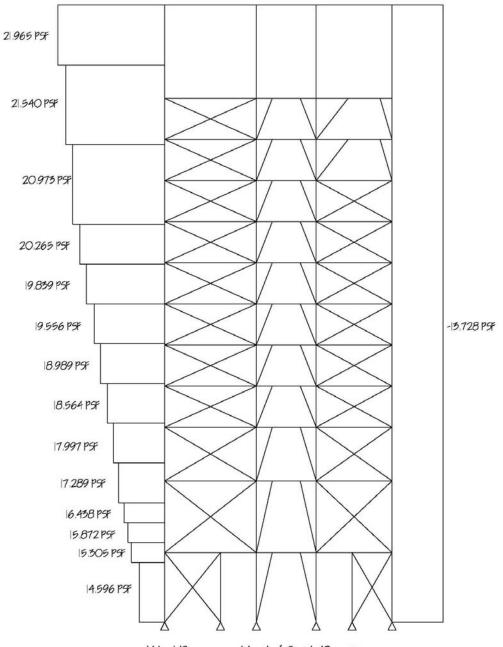
Wind loads were calculated in both the N/S, and E/W directions. Some important assumptions that were made include:

- Building is a rectangular box
 - The 2 story porte cochere was ignored, as well as the five story elevator shaft on the North side
- Building Dimensions used were 177.67ft (E/W), 66.34ft (N/S), and 155.167ft height

 The height includes the parapet that extends above the roof slab

The lateral resisting systems are braced frames when the wind is blowing in the N/S direction, and moment frames in the E/W direction. (See Appendix A.1for calculations and factors)

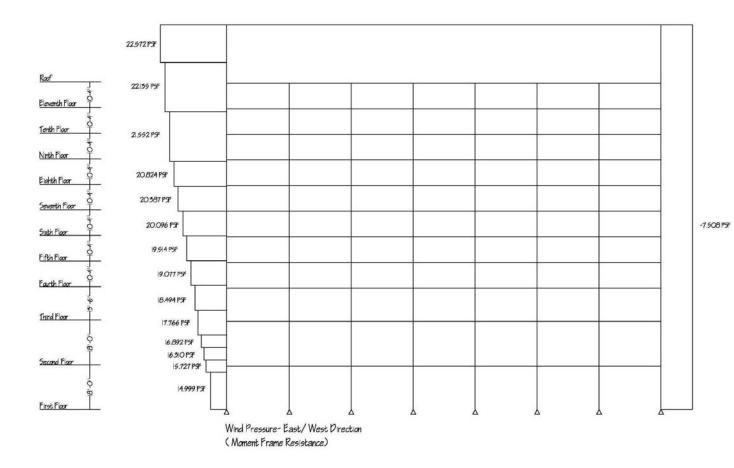
North/South Direction


Building Information		
Basic Wind Speed (mph)	V	90
Wind Importance Factor	l _w	1.0
Exposure Category	-	D
Enclosure Classification	-	Enclosed
Building Category	-	111
Importance Factor	I	1.15
Internal Pressure Coefficient	GC _{pi}	0.18
Wind Design Pressure (psf)	Pwindward	21.965
Wind Design Pressure (psf)	Pleeward	-13.728

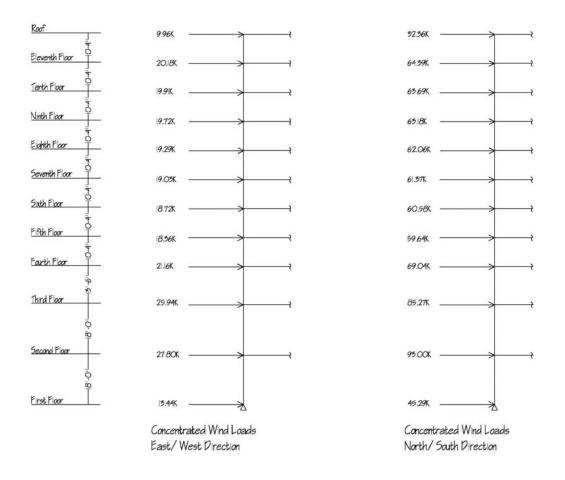
	RESULTS								
z(ft)	k _z (T6-3)	Qz	P _{sidewall} (psf)	P _{leeward} (psf)	P _{windward} (psf)	P _{total} (psf)			
0-15	1.03	20.878	-12.772	-13.728	14.596	28.324			
20	1.08	21.891	-13.392	-13.728	15.305	29.033			
25	1.12	22.702	-13.888	-13.728	15.872	29.600			
30	1.16	23.513	-14.384	-13.728	16.438	30.167			
40	1.22	24.729	-15.128	-13.728	17.289	31.017			
50	1.27	25.742	-15.748	-13.728	17.997	31.725			
60	1.31	26.553	-16.244	-13.728	18.564	32.292			
70	1.34	27.161	-16.616	-13.728	18.989	32.717			
80	1.38	27.972	-17.112	-13.728	19.556	33.284			
90	1.40	28.377	-17.360	-13.728	19.839	33.568			
100	1.43	28.985	-17.732	-13.728	20.265	33.993			
120	1.48	29.999	-18.352	-13.728	20.973	34.701			
140	1.52	30.810	-18.848	-13.728	21.540	35.268			
160	1.55	31.418	-19.220	-13.728	21.965	35.693			

East/West Direction

Building Information		
Basic Wind Speed (mph)	V	90
Wind Importance Factor	l _w	1.0
Exposure Category	-	D
Enclosure Classification	-	Enclosed
Building Category	-	111
Importance Factor	I	1.15
Internal Pressure Coefficient	GC _{pi}	0.18
Wind Design Pressure (psf)	Pwindward	22.572
Wind Design Pressure (psf)	Pleeward	-7.508


	RESULTS									
z(ft)	k _z (T6-3)	Qz	P _{sidewall} (psf)	P _{leeward} (psf)	P _{windward} (psf)	P _{total} (psf)				
0-15	1.03	20.878	-13.124	-7.508	14.999	22.507				
20	1.08	21.891	-13.761	-7.508	15.727	23.235				
25	1.12	22.702	-14.271	-7.508	16.310	23.818				
30	1.16	23.513	-14.781	-7.508	16.892	24.400				
40	1.22	24.729	-15.545	-7.508	17.766	25.274				
50	1.27	25.742	-16.182	-7.508	18.494	26.002				
60	1.31	26.553	-16.692	-7.508	19.077	26.584				
70	1.34	27.161	-17.074	-7.508	19.514	27.021				
80	1.38	27.972	-17.584	-7.508	20.096	27.604				
90	1.40	28.377	-17.839	-7.508	20.387	27.895				
100	1.43	28.985	-18.221	-7.508	20.824	28.332				
120	1.48	29.999	-18.858	-7.508	21.552	29.060				
140	1.52	30.810	-19.368	-7.508	22.135	29.643				
160	1.55	31.418	-19.750	-7.508	22.572	30.079				

Wind Pressure-North/South Direction


Figure 1.4

Wind blowing in the N/S direction is opposed by braced frames. Shown are the wind pressures acting on the exterior face of the building. The windward pressures increase from 14.596psf from zero feet to fifteen feet to 21.965psf at the top of the parapet. The leeward pressure is a constant -13.728psf.

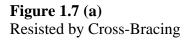
Figure 1.5

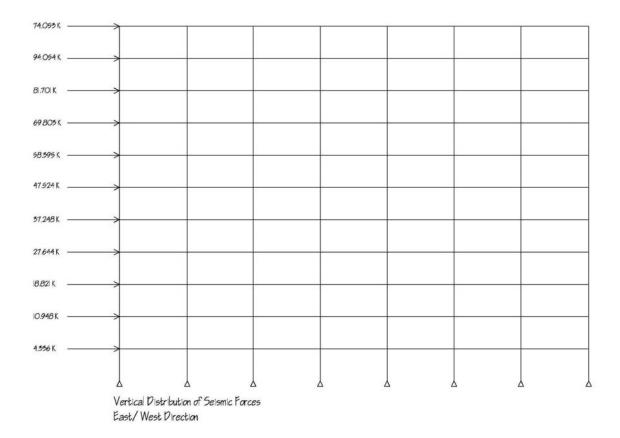
Wind blowing in the E/W direction is opposed by moment frames on both the North and South exterior walls. The windward pressures, shown in the figure above, range from 14.999psf to 22.572psf, and there is a leeward pressure of -7.508psf.

Figure 1.6

Shown above are the concentrated loads on each floor derived from the wind pressures in the E/W and N/W direction. Notice that the point loads in the N/S direction are much larger than in the E/W direction because the length of the wall that the wind pressure is acting on is over twice as long as in the E/W direction. For this calculation I only used the pressures up to the height of the roof, and did not include the parapet. Calculations can be viewed in Appendix A.3.

Seismic Loads:


For the calculation of seismic loads, I again assumed that my building acts as a box. For the ease of the calculations, I took the height to the roof and divided by the number of stories (11), to even out the differences in inner-story heights. See Appendix A.2 for additional factors and calculations.


Vertical Re	Vertical Redistribution of Seismic Forces North-South Direction							
Level, x	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	V _x	M _x	
	(Kips)	(ft)			(kips)	(kips)	(ft-kips)	
Roof	498.4347	132.66	342,217	0.093	54.726		7259.937	
11	1159.525	120.6	700,904	0.189	112.086	55	13517.534	
10	1159.525	108.54	608,851	0.165	97.365	167	10567.995	
9	1159.525	96.48	520,181	0.141	83.185	264	8025.704	
8	1159.525	84.42	435,169	0.118	69.590	347	5874.819	
7	1159.525	72.36	354,156	0.096	56.635	417	4098.117	
6	1159.525	60.3	277,576	0.075	44.389	474	2676.643	
5	1159.525	48.24	206,005	0.056	32.943	518	1589.191	
4	1159.525	36.18	140,255	0.038	22.429	551	811.479	
3	1159.525	24.12	81,583	0.022	13.046	573	314.680	
2	1159.525	12.06	32,309	0.009	5.167	586	62.311	
1	1159.525					592		
	Σ=		Σ=	Σ=	Σ=		Σ=	
	13253.21		3,699,204	1.000	592		54798.41	

Vertical Red	Vertical Redistribution of Seismic Forces East-West Direction							
Level, x	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	V _x	M _x	
	(Kips)	(ft)			(kips)	(kips)	(ft-kips)	
Roof	498.4347	132.66	592,818	0.150	74.503		9883.530	
11	1159.525	120.6	700,904	0.189	94.054	75	11342.889	
10	1159.525	108.54	608,851	0.165	81.701	169	8867.860	
9	1159.525	96.48	520,181	0.141	69.803	250	6734.562	
8	1159.525	84.42	435,169	0.118	58.395	320	4929.703	
7	1159.525	72.36	354,156	0.096	47.524	378	3438.829	
6	1159.525	60.3	277,576	0.075	37.248	426	2246.035	
5	1159.525	48.24	206,005	0.056	27.644	463	1333.528	
4	1159.525	36.18	140,255	0.038	18.821	491	680.932	
3	1159.525	24.12	81,583	0.022	10.948	510	264.055	
2	1159.525	12.06	32,309	0.009	4.336	521	52.286	
1	1159.525					525		
	Σ=		Σ=	Σ=	Σ=		Σ=	
	13253.21		3,949,806	1.058	525		49774.21	

North/South Direction

Figure 1.7 (b)

The story forces derived from the seismic forces on the high-rise portion, beginning at the second floor, are shown in the figures (a) and (b) above.

The E/W direction is resisted by moment frames.

Gravity Spot Checks:

To ensure that my assumptions for gravity live and dead loads were correct, I performed two spot checks, one beam, and one column. For the beam check, I analyzed a typical bay (with no additional mechanical weights) on a typical floor. The beam designed by the engineer is a W14x30. It carries the entire floor load due to the fact that the plank spans perpendicular to its spanning direction. After computing the live load reduction factor, and performing a simple beam design, I found the size needed to be a W14x22.

I also checked a column that this beam frames into. I chose to analyze the seventh floor, taking into account the axial loads from the columns above. While, I designed a W14x74 needed, the given design is a W14x61.

These beam and column sizes could differ from the designs given by the engineer, for several reasons. First, I used the LRFD method of design, while ASD was used by the engineer. Also, it is common practice for beams to be sized similarly to other beams in the area. Because of the variation in span lengths, it is possible that surrounding beams needed to be sized as a W14x30, and therefore this particular beam size was increased to a W14x30 as well. Similarly, surrounding columns have different areas of influence. Another possible difference could be in the calculations and assumptions of dead and live load.

Please see Appendix A.4 for complete calculations.

Lateral Element Check:

In the East/West direction, lateral forces are opposed by moment frames. To analyze this resistance, I performed a portal analysis on the tenth floor to find the internal forces acting on the members at a single story level. The seismic forces controlled, and therefore were used to carry out this procedure. By combining the lateral moment and axial load, I designed the column to be a W14x61. The given column design is a W14x43. This difference is a discrepancy of loads and methods used. Please see the Appendix A.5 for full calculations and results.

In addition, I will be preparing a computer model of the cross-bracing system to analyze the members for future use.

Looking Forward:

In addition to the topics previously discussed, there are several factors that I assumed temporarily negligible for simplicity. In addition to the affects and design of the porte cochere, there is a pedestrian walkway that extends out of the fifth floor of the building. Even though I ignored these factors, they will have an impact on lateral and gravity loads.

Appendix A.1

N/S Main Wind Force Resisting System per ASCE7-02

Assumptions: Rectangular Box

Ignore porte cochere and elevator shafts

***FOR ALL "h"

***Calculating Wind in Direction:

Building Name	Erie Convention Center and Sheraton Hotel						
Building Location	Erie, Pennsylvania						
Location Data	Variable Reference Chart/Fig. Value						
Оссирапсу Туре	-	1.5.1	T1-1	Ш			
Importance Factor	I	6.5.5	T6-1	1.15			
Surface Roughness	-	6.5.6.2	-	-			
Exposure Factor	-	6.5.6.3	-	D			
Enclosure Classification**	_	-		Open			
			X	Partially Enclosed			
Internal Pressure Coefficient	GC _{pi}	-	-	0.18			
Topographic	K _{zt}	6.5.7.2	F6-4*	1.00			
$*K_{zt} = (1+k_1k_2k_3)^2$							
**Place an "X" in the	**Place an "X" in the box indicating Enclosure Classification						

N/S

Building Dimensions (ft)	Variable	Reference	Source	Value		
Height Above Base	h _n	9.5.5.3	Spec	155.167		
Height Above Ground	z	6.300	Spec	155.167		
Horiz. Length II to Wind Dir.	L	6.300	Spec	66.34		
Horiz. Length Perp. to Wind	В	6.300	Spec	177.67		
Horizontal Dimension Ratio	L/B	F6-6	Spec	0.37		
Mean Roof Height	h	6.200	*	155.167		
*Average of roof eave height and height of highest point of roof						

Wind Velocity (mph)	Variable	Reference	Chart/Fig.	Value	
Basic Wind Speed	V	6.5.4	F6.1	90	
Wind Directionality	k _d	6.5.4.4	T6-4	0.85	
3-sec Gust Power Law	α	6.300	T6-2	11.5	
Mean Wind Speed Factor: α hat	а	6.5.8.2	T6-2	0.11111111	
Wind Coefficient: b hat	b	6.5.8.2	T6-2	0.8	
Min Height	Z _{min}	6.5.8.2	T6-2	7	
Equivalent Height: z hat	Z	6.5.8.2	T6-2	93.1002	
Mean Hourly Wind Speed	Vz	6.5.8.2	Eq 6-14	118.50	
Height atm Boundary	Zg	6.300	T6-2	700	
Velocity Pressure Exp.*	k _z	6.5.6.6	T6-3**	1.55	
Velocity Pressure Exp.*	k h	6.5.6.6	T6-3**	1.55	
*Calculated for $(15' < z < z_{a})$, or use Table 6-3					
**k _z and k _h : Use "Kz" S	heet to find v	alue coordina	iting to larges	st "z"	

Integral Length Scale	Variable	Reference	Chart/Fig.	Value
Integral Length Scale Factor	-	6.5.8.1	T6-2	650
Integral Length Scale Exp	3	6.5.8.1	T6-2	0.125
Integral Length Scale, Turb.	Lz	6.5.8.1	Eq 6-7	739.98
Turbulence Intensity Factor	С	6.300	T6-2	0.15
Intensity of Turbulence	l _z	6.5.8.1	Eq 6-5	0.13

Fundamental Period	Variable	Reference	Chart/Fig.	Value
Period Coefficient	Ct	9.5.3.2	T9.5.5.3.2	0.03
Period Exponent	х	9.5.3.2	T9.5.5.3.2	0.75
Approx. Fund. Period	Ta	9.5.3.2	$T_a = C_t(h_n^x)$	1.32
Natural Frequency	n ₁	6.5.8.2	n ₁ =1/T _a	0.76
Rigid or Flexible	-	6.5.8.2	n₁>1?	Flexible

Resonance	Variable	Reference	Chart/Fig.	Value	η
R ₁ Coefficient	R _h	6.5.8.2	Eq 6-13	0.195	4.567
R ₁ Coefficient	R _b	6.5.8.2	Eq 6-13	0.173	5.229
R ₁ Coefficient	Rı	6.5.8.2	Eq 6-13	0.141	6.537
Reduced Frequency	N_1	6.5.8.2	Eq 6-13	4.735	
Resonance Coefficient	R _n	6.5.8.2	Eq 6-13	0.053	
Damping Ratio	β	6.300	Section 9	0.050	
Resonant Response Factor	R	6.5.8.2	Eq 6-10	0.145	

Gust Effect Factor	Variable	Reference	Chart/Fig.	Value
Gust Coefficient	gq	6.5.8.2	Eq 6-8	3.4
Gust Coefficient	g√	6.5.8.2	Eq 6-8	3.4
Gust Coefficient	g r	6.5.8.2	Eq 6-9	4.12
Background Response	Q	6.5.8.1	Eq 6-6	0.85
Gust Factor	G _f	6.5.8.2	Eq 6-8	0.87

Wind Pressure	Variable	Reference	Chart/Fig.	Value	
Velocity Pressure	qz	6.5.10	Eq 6-15	31.418	
Velocity Pressure @ h	qh	6.5.12.2	T6-3*	31.418	
*q _h =0.00256k _h k _{zt} k _d (V ²)I					

Ext. Pressure Coefficient	Variable	Reference	Chart/Fig.	Value	
Windward Side	Cp	6.5.11.2	F6-6*	0.8	
Leeward Side	Cp	6.5.11.2	F6-6*	-0.5	
Sidewall C _p 6.5.11.2 F6-6* -0.7					
*Formulas must be checked with any new code changes					

Leeward Pressure (psf)	P ₁	6.5.12.2	$P_1 = q_h G_f C_p$	-13.728
Final Pressure (psf)	$P = q_z G_f C_p - q_h G_f C_p$			

z(ft)	**k _z (T6-3)	q _z	P _{sidewall} (psf)	P _{leeward} (psf)	P _{windward} (psf)	P _{total} (psf)
0-15	1.03	20.878	-12.772	-13.728	14.596	28.324
20	1.08	21.891	-13.392	-13.728	15.305	29.033
25	1.12	22.702	-13.888	-13.728	15.872	29.600
30	1.16	23.513	-14.384	-13.728	16.438	30.167
40	1.22	24.729	-15.128	-13.728	17.289	31.017
50	1.27	25.742	-15.748	-13.728	17.997	31.725
60	1.31	26.553	-16.244	-13.728	18.564	32.292
70	1.34	27.161	-16.616	-13.728	18.989	32.717
80	1.38	27.972	-17.112	-13.728	19.556	33.284
90	1.40	28.377	-17.360	-13.728	19.839	33.568
100	1.43	28.985	-17.732	-13.728	20.265	33.993
120	1.48	29.999	-18.352	-13.728	20.973	34.701
140	1.52	30.810	-18.848	-13.728	21.540	35.268
160	1.55	31.418	-19.220	-13.728	21.965	35.693

E/W Main Wind Force Resisting System per ASCE7-02

Assumptions: Rectangular Box

Ignore porte cochere and elevator shafts

***FOR ALL "h"

***Calculating Wind in Direction:

E/	VV	

Building Name	Erie Convention Center and Sheraton Hotel				
Building Location	Erie, Penr	nsylvania			
Location Data	Variable	Reference	Chart/Fig.	Value	
Occupancy Type	-	1.5.1	T1-1	III	
Importance Factor	I	6.5.5	T6-1	1.15	
Surface Roughness	-	6.5.6.2	-	-	
Exposure Factor	-	6.5.6.3	-	D	
		-		Open	
Enclosure Classification**	-			Partially	
			Х	Enclosed	
Internal Pressure Coefficient	GC _{pi}	-	-	0.18	
Topographic	K _{zt}	6.5.7.2	F6-4*	1.00	
$*K_{zt}=(1+k_1k_2k_3)^2$					
**Place an "X" in the box indicating Enclosure Classification					

Building Dimensions (ft)	Variable	Reference	Source	Value	
Height Above Base	h _n	9.5.5.3	Spec	155.167	
Height Above Ground	z	6.300	Spec	155.167	
Horiz. Length II to Wind Dir.	L	6.300	Spec	177.67	
Horiz. Length Perp. to Wind	В	6.300	Spec	66.34	
Horizontal Dimension Ratio	L/B	F6-6	Spec	2.68	
Mean Roof Height	h	6.200	*	155.167	
*Average of roof eave height and height of highest point of roof					

Wind Velocity (mph)	Variable	Reference	Chart/Fig.	Value	
Basic Wind Speed	V	6.5.4	F6.1	90	
Wind Directionality	k _d	6.5.4.4	T6-4	0.85	
3-sec Gust Power Law	α	6.300	T6-2	11.5	
Mean Wind Speed Factor: α hat	а	6.5.8.2	T6-2	0.11111111	
Wind Coefficient: b hat	b	6.5.8.2	T6-2	0.8	
Min Height	Z _{min}	6.5.8.2	T6-2	7	
Equivalent Height: z hat	Z	6.5.8.2	T6-2	93.1002	
Mean Hourly Wind Speed	Vz	6.5.8.2	Eq 6-14	118.50	
Height atm Boundary	Zg	6.300	T6-2	700	
Velocity Pressure Exp.*	k _z	6.5.6.6	T6-3**	1.55	
Velocity Pressure Exp.*	k _h	6.5.6.6	T6-3**	1.55	
*Calculated for $(15' < z < z_0)$, or use Table 6-3					
**k _z and k _h : Use "Kz" S	heet to find v	alue coordina	ting to larges	st "z"	

Integral Length Scale	Variable	Reference	Chart/Fig.	Value
Integral Length Scale Factor	-	6.5.8.1	T6-2	650
Integral Length Scale Exp	3	6.5.8.1	T6-2	0.125
Integral Length Scale, Turb.	Lz	6.5.8.1	Eq 6-7	739.98
Turbulence Intensity Factor	С	6.300	T6-2	0.15
Intensity of Turbulence	l _z	6.5.8.1	Eq 6-5	0.13

Fundamental Period	Variable	Reference	Chart/Fig.	Value
Period Coefficient	Ct	9.5.3.2	T9.5.5.3.2	0.028
Period Exponent	х	9.5.3.2	T9.5.5.3.2	0.8
Approx. Fund. Period	Ta	9.5.3.2	$T_a = C_t(h_n^x)$	1.58
Natural Frequency	n ₁	6.5.8.2	n ₁ =1/T _a	0.63
Rigid or Flexible?	-	6.5.8.2	n₁>1?	Flexible

Resonance	Variable	Reference	Chart/Fig.	Value	η
R ₁ Coefficient	R _h	6.5.8.2	Eq 6-13	0.228	3.802
R ₁ Coefficient	Rb	6.5.8.2	Eq 6-13	0.433	1.626
R ₁ Coefficient	R	6.5.8.2	Eq 6-13	0.066	14.576
Reduced Frequency	N_1	6.5.8.2	Eq 6-13	3.942	
Resonance Coefficient	R _n	6.5.8.2	Eq 6-13	0.059	
Damping Ratio	β	6.300	Section 9	0.050	
Resonant Response Factor	R	6.5.8.2	Eq 6-10	0.256	

Gust Effect Factor	Variable	Reference	Chart/Fig.	Value
Gust Coefficient	g q	6.5.8.2	Eq 6-8	3.4
Gust Coefficient	g√	6.5.8.2	Eq 6-8	3.4
Gust Coefficient	g r	6.5.8.2	Eq 6-9	4.08
Background Response	Q	6.5.8.1	Eq 6-6	0.88
Gust Factor	G _f	6.5.8.2	Eq 6-8	0.90

Wind Pressure	Variable	Reference	Chart/Fig.	Value	
Velocity Pressure	qz	6.5.10	Eq 6-15	31.418	
Velocity Pressure @ h	qh	6.5.12.2	T6-3*	31.418	
*q _h =0.00256k _h k _{zt} k _d (V ²)I					

Ext. Pressure Coefficient	Variable	Reference	Chart/Fig.	Value		
Windward Side	Cp	6.5.11.2	F6-6*	0.8		
Leeward Side	Cp	6.5.11.2	F6-6*	-0.266		
Sidewall C _p 6.5.11.2 F6-6* -0.7						
*Formulas must be checked with any new code changes						

Leeward Pressure (psf)	P ₁	6.5.12.2	$P_1 = q_h G_f C_p$	-7.508	
Final Pressure (psf)	P=q _z G _f C _p -q _h G _f C _p				

z(ft)	**k _z (T6-3)	q _z	P _{sidewall} (psf)	P _{leeward} (psf)	P _{windward} (psf)	P _{total} (psf)
0-15	1.03	20.878	-13.124	-7.508	14.999	22.507
20	1.08	21.891	-13.761	-7.508	15.727	23.235
25	1.12	22.702	-14.271	-7.508	16.310	23.818
30	1.16	23.513	-14.781	-7.508	16.892	24.400
40	1.22	24.729	-15.545	-7.508	17.766	25.274
50	1.27	25.742	-16.182	-7.508	18.494	26.002
60	1.31	26.553	-16.692	-7.508	19.077	26.584
70	1.34	27.161	-17.074	-7.508	19.514	27.021
80	1.38	27.972	-17.584	-7.508	20.096	27.604
90	1.40	28.377	-17.839	-7.508	20.387	27.895
100	1.43	28.985	-18.221	-7.508	20.824	28.332
120	1.48	29.999	-18.858	-7.508	21.552	29.060
140	1.52	30.810	-19.368	-7.508	22.135	29.643
160	1.55	31.418	-19.750	-7.508	22.572	30.079

Appendix A.2

Seismic Loads per ASCE-02						
Assumptions: Total height to roof slab divided by the number of stories= Inter-story height						
Structure not specifically	detaile	d for seismic resistance				
Building Name	Erie (Convention Center and Shera	ton Hotel			
Building Location	Erie,	Pennsylvania				
Seismic Design Parameters						
Number of stories	N		11			
Inter-story Height	h _s		12.06	ft		
Building Height	h _n		132.66	ft		
Seismic Use Group	I	Table 9.1.3	II			
Occupancy Importance Factor		Table 9.1.4	1.25			
Site Classification		(Soil)	E			
0.2 s Acceleration	Ss	Figure 9.4.1.1a	0.13			
1 s Acceleration	S ₁	Figure 9.4.1.1b	0.059			
Site Class Factor	Fa	Table 9.4.1.2.4a	2.5			
Site Class Factor	Fv	Table 9.4.1.2.4b	3.5			
Adjusted Accelerations	S _{ms}	Ss*Fa	0.325	g-s		
	S _{m1}	S ₁ *F _v	0.2065	g-s		
Design Spectral Response Accelerations	S _{DS}	2/3*S _{ms}	0.217	g-s		
	S _{D1}	2/3*S _{m1}	0.138	g-s		
Seismic Design Category (Short- Period)		Table 9.4.2.1a	В			
Seismic Design Category (1-Second)		Table 9.4.2.1b	С			

Equivalent Lateral Force Procedure					
Seismic Base Shear Coefficient					
N-S Direction					
Response Modification Factor	R _{N-S}	T-9.5.2.2	3		
Seismic Response Coefficient	C _{s, N-S}	S _{DS} /(R/I)	0.090		
	C _{T, N-S}	T-9.5.5.3.3	0.03		
	x		0.75		
Approximate Period	T _{aN-S}	C _{T, N-S} h ^x	1.173		
Seismic Response Coefficient					
Need not be greater than	C _{S max, N-S}	S _{D1} /(T*(R _{N-S} /I))	0.049		
Minimum of	C _{S min}	0.044*S _{ds} *I	0.012		
Therefore	C _{s, N-S}		0.049		
E-W Direction					
Response Modification Factor	R _{E-W}	T-9.5.2.2	3		
Seismic Response Coefficient	C _{s, E-W}	S _{DS} /(R/I)	0.090		
	C _{T, E-W}	T-9.5.5.3.2	0.028		
	x		0.8		
Approximate Period	T _{aE-W}	C _{T, N-S} h ^x	1.397		
Seismic Response Coefficient					
Need not be greater than	C _{S max, E-W}	S _{D1} /(T*(R _{N-S} /I))	0.041		
Minimum of	C _{S min}	0.044*S _{ds} *I	0.012		
Therefore	C _{s, E-W}		0.041		

Loading Characteristics						
Roof						
Dead	(Assumed in Conjunction with ASCE	(Assumed in Conjunction with ASCE 7-02, Table C3-1)				
	Metal Roof Deck	2.1	psf			
	5" Polystyrene Insulation	1	psf			
	EPDM Rubber Roof	1	psf			
	Roof Framing	20	psf			
	MEP	10	psf			
	Finishing	5	psf			
	Total q _{roof}	39.1	psf of roof area			

All Other Floors					
Dead	(Assume	d in Conjunction w	ith ASCE	E 7-02, Tal	ble C3-1)
	8" Concrete Plank			50	psf
	Framing Members			10	psf
	MEP			10	psf
	Carpet			1	psf
	Ceiling Finishing			1	psf
	Partitions	6		20	psf
	Total	q _{floor}		92	psf of floor area

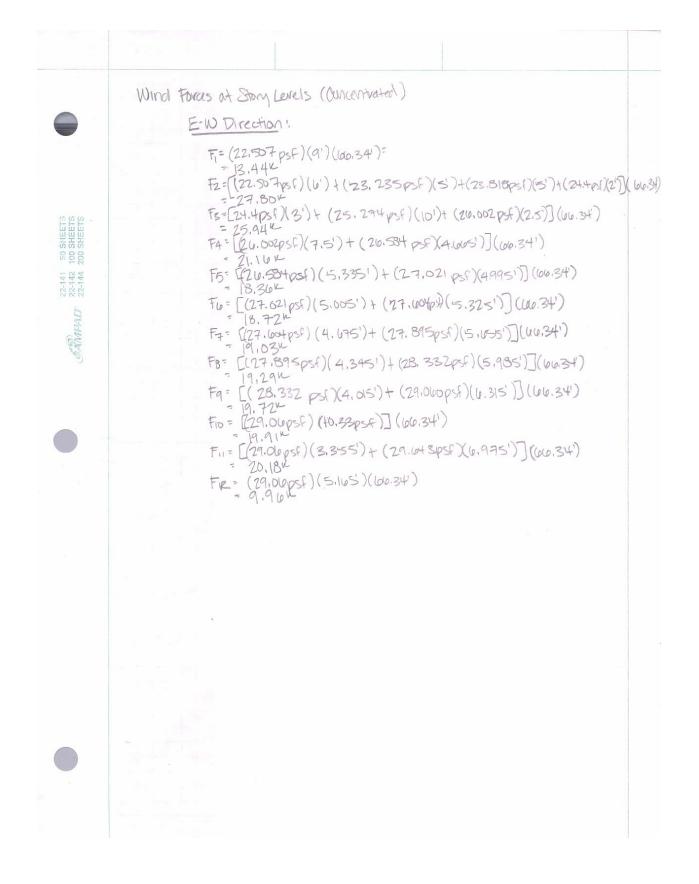
Perimeter Wall			
Dead	(Assuming 10% brick veneer (48psf),	
40% glazing (8psf),	, 50% stud walls with EIFS (12psf))		
	q _{wall}	154	psf
Snow Load not incl	uded because p _f < 30psf		

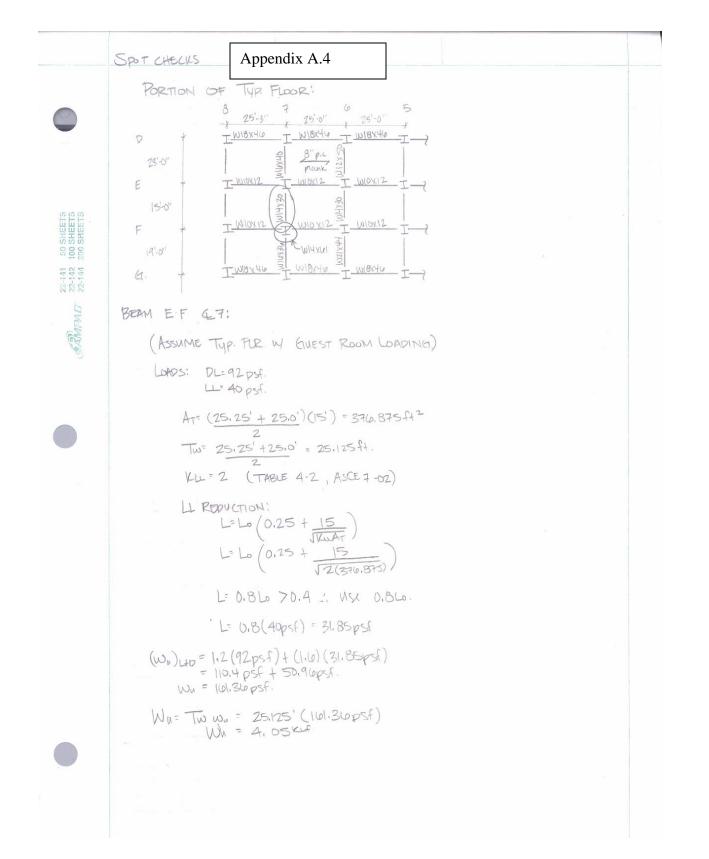
Building Width	177.67	ft	
Building Length	66.34	ft	
Gross Roof/Floor Area	11786.63	ft ²	
Total Weight of Roof	498	kips	Area*q _{roof} +2(L+W)*0.5*q _{wall}
Total Weight per Floor	1160	kips	Area*q _{floor} +2(L+W)q _{wall}
Total Weight of Floors	11595	kips	(N-1)*Total Weight per floor
Total Building			
Weight W	12094	kips	Weight of roof + weight of floors

Seismic Base Shear V							
	V _{N-S}	591.5615	kips	V=C _s *W			
	V _{E-W}	496.3935	kips	V=C _s *W			

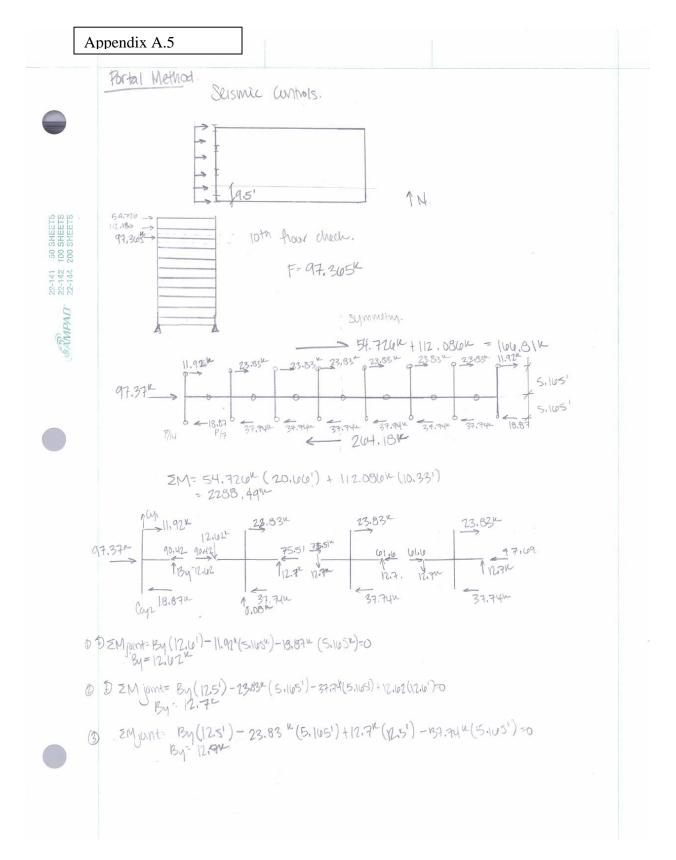
Vertical Distribution of Seismic Forces

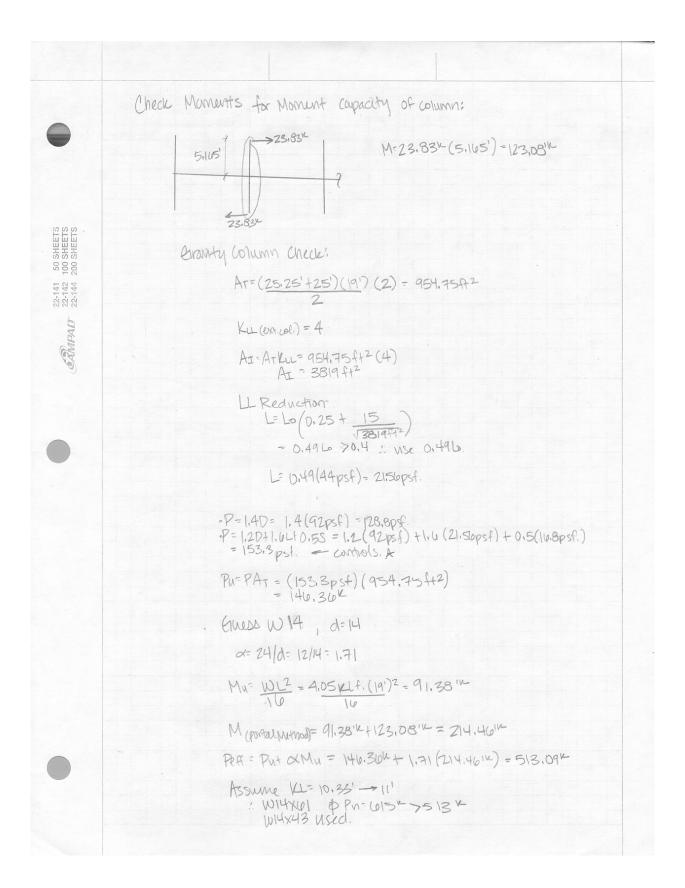
Exponent $k_{N-S} = 1 + (T_{N-S} - 0.5)/(2.5 - 0.5) = 1.336$ T<0.5, k=1 ; T>2.5, k=2 ; 0.5<T<2.5, linear interpolation between 1 and 2


Vertical Redistribution of Seismic Forces North-South Direction							
Level, x	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	V _x	M _×
	(Kips)	(ft)			(kips)	(kips)	(ft-kips)
Roof	498.4347	132.66	342,217	0.093	54.726		7259.937
11	1159.525	120.6	700,904	0.189	112.086	55	13517.534
10	1159.525	108.54	608,851	0.165	97.365	167	10567.995
9	1159.525	96.48	520,181	0.141	83.185	264	8025.704
8	1159.525	84.42	435,169	0.118	69.590	347	5874.819
7	1159.525	72.36	354,156	0.096	56.635	417	4098.117
6	1159.525	60.3	277,576	0.075	44.389	474	2676.643
5	1159.525	48.24	206,005	0.056	32.943	518	1589.191
4	1159.525	36.18	140,255	0.038	22.429	551	811.479
3	1159.525	24.12	81,583	0.022	13.046	573	314.680
2	1159.525	12.06	32,309	0.009	5.167	586	62.311
1	1159.525					592	
	Σ=		Σ=	Σ=	Σ=		Σ=
	13253.21		3,699,204	1.000	592		54798.41


Exponent $k_{E-W} = 1 + (T_{E-W} - 0.5)/(2.5 - 0.5) = 1.449$

Vertical Redistribution of Seismic Forces East-West Direction							
Level, x	W _x	h _x	w _x h _x ^k	C _{vx}	F _x	V _x	M _x
	(Kips)	(ft)			(kips)	(kips)	(ft-kips)
Roof	498.4347	132.66	592,818	0.150	74.503		9883.530
11	1159.525	120.6	700,904	0.189	94.054	75	11342.889
10	1159.525	108.54	608,851	0.165	81.701	169	8867.860
9	1159.525	96.48	520,181	0.141	69.803	250	6734.562
8	1159.525	84.42	435,169	0.118	58.395	320	4929.703
7	1159.525	72.36	354,156	0.096	47.524	378	3438.829
6	1159.525	60.3	277,576	0.075	37.248	426	2246.035
5	1159.525	48.24	206,005	0.056	27.644	463	1333.528
4	1159.525	36.18	140,255	0.038	18.821	491	680.932
3	1159.525	24.12	81,583	0.022	10.948	510	264.055
2	1159.525	12.06	32,309	0.009	4.336	521	52.286
1	1159.525					525	
	Σ=		Σ=	Σ=	Σ=		Σ=
	13253.21		3,949,806	1.058	525		49774.21


where C_{vx} = $w_x h_x{}^k / \Sigma_{all \ levels}$ $(w_x h_x{}^k)$ F_x = $C_{vx} V$


Appendix A.3 Wind Forces of Story Levels (Concentrated) M-S Direction: $F_{1} = (28, 324 \text{ psf})(9')(177, 67') = 45, 29''$ $F_{2} = [(28, 324 \text{ psf})(6') + (29, 038 \text{ psf})(5') + (29, 695f)(5') + (30, 164 \text{ psf})(2')](179, 67')$ = 93,00'F3= [(30,167psf)(3)+ (31,017psf)(10')+ (31,725psf)(2,5')](177,07') = 85,27' SHEETS SHEETS SHEETS SHEETS F4= [31,725psf(7.5')+ (32,292psf)(4,005')](17707')= = 69.04K F5 = [(32.292psf)(5,335') + (32.717psf)(4.995')](177.07')100 200 = 59.044 22-141 22-142 22-144 $F_{b} = \frac{[(32.717 \text{ psf})(5.005') + (3.3.284 \text{ psf})(5.325')](177.67')}{= (00.583''}$ ERWPAD' F7= [(33, 284 psf)(4,675')+ (33,568 psf)(5,655')](177,67') $F_8 = \begin{bmatrix} (01,37)^{L} \\ (33,508) \\ psf \end{bmatrix} (4.345') + (33,993) \\ psf \end{bmatrix} (6,985') \end{bmatrix} (177,47')$ = 62.064 Fq = [(33,93,93, psf)(4,015')+(34,701, psf)(6,315')](177,67') = 63.18K $F_{10} = [34, 701 \mu sF)(10.33')](177.07')$ = 63.69' F_{11} = [(34.701 \mu sF)(3.355') + (35.268 \mu sF)(6.975')](177.67') = 64.39' FR= [(35.208psf)(5.105')](177.07') = 32.36K

1_R 1_R R= 4.05KLF (15')= 30.375K × 15' × $M_{Max} = \frac{WL^2}{8} = (4.05 \text{ KL}^2)(15')^2 = 113.90 \text{ U/K}.$ TRY W14X22 PMp=1231K 7113.90614 W14 x 30 Used. EAMPAD COLUMN F.7, 7th floor (5 floors above) $A_{T} = (25.25' + 25')(15' + 19')(5) - 4271.25f^{2}$ Ku=4 (INTERIOR COLUMN) AI=KUAT = 4(4271,256+2) AI= 17085,06+2 LL REDUCTION. L=Lo (0.25+ 15) = 0.36 Lo <0.46 ... Use 0.46. L=0.4 (44pst) - 17.0psf. • P = 1.4D = 1.4(92psf) = 128.8psf• P = 1.2D + 1.6L + 0.5R = 1.2(92psf) + 1.6(17.6psf) + 0.5(16.8psf) = 146.96psf = *600.4Piu= PiAr = (146,96psf) (4271.25ft2) = 627,7× GUESS W14 Shape. a= 24/d= 24/14=1.71 $M_{W} = \frac{WL^{2}}{16} = \frac{4.05(15)^{2}}{16} = 56.95^{1/2}$ Peff=Pu + ~ Mu= 627.7"+ 1.71 (56,95")=725.08" ASSMME KL= 10.33' -> 11' VISE WILLX74 PPn=753K

