

Erie Convention Center and Sheraton Hotel

Erie, Pennsylvania

Technical Report #2: Pro-Con Structural Study of Alternate Floor Systems Submittal Date: 31 October 2005

Executive Summary

Technical Report #2 is a basic overview of the main floor system of the Erie Convention Center and Sheraton Hotel, along with a comparison of this existing system to four other alternative floor systems. The proposed floor system is a steel framing structure with 8" hollowcore precast concrete plank. Through the use of RAM Structural System Design, the CRSI Design Manual (2002), and hand calculations, I have analyzed and designed the members for the following four floor systems:

- Composite steel beams with composite steel deck
- Non-composite steel beams with form deck
- Open web steel joists with form deck
- One-way concrete pan joist

With each system, I compared the floor sandwich depth, weight, vibrations, time, and cost concerns with each other and with the existing system. From this analysis, I found that the existing system has the quickest erection time due to the use of precast concrete. The 8" plank will minimize the vibrations greatly, meeting serviceability requirements. Even though the floor sandwich is very large in comparison to the other systems, the difference in time and cost outweighs the benefits offered by this factor.

Other viable options are the composite system, the non-composite system, and the steel joist system. These structures are much lighter than the existing system, however vibrations for the non-composite and joist systems must be taken into consideration because of the thin slabs. The one-way concrete system is not a feasible option because of the on-site time for forming, pouring, finishing, and curing the concrete, as well as the greatly increased weight on the foundation and large girders needed.

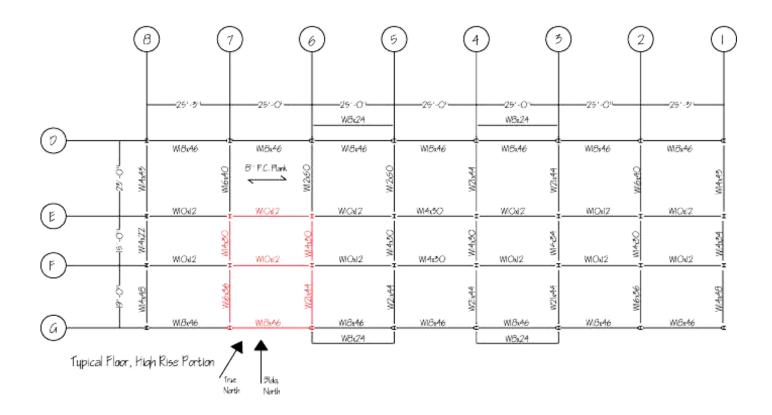
Introduction:

The proposed Erie Convention Center and Sheraton Hotel is a 132,000 sq. ft., eleven story hotel and conference center, located on the Presque Isle Bay in Erie, Pennsylvania. The framing system of the hotel is comprised of a steel structure with a hollow core precast concrete plank system to resist the gravity loads. Laterally, the structure is fully restrained in the East/West (E/W) direction, and partially restrained by cross bracing and knee braces in the North/South (N/S) direction. The foundation is comprised of caissons drilled 3 feet into the bedrock, supporting grade beams and an 8" structural concrete slab.

The loading used to design and analyze the structural system is as follows:

Dead Loads: (Assumed)

•	Framing members	= 10 psf
•	8" Hollow core precast concrete plank	= 56 psf
	(weight given by engineer)	
•]	Metal Stud Walls with 5/8" gypsum wall board	= 10 psf
•]	MEP	= 10 psf
•	Carpet	= 1 psf
•	Ceiling Finishing	<u>= 1 psf</u>


	Total	88 psf
Live Loads: (IBC 2003)		
Public Rooms and Corridors	=100) psf
Private Rooms and Corridors	= 40) psf
Mechanical Spaces	=150) psf
• Stairs	=100) psf
Ground Snow Load	= 30) psf
p _f =16.8 psf		

Live loads are reducible

Existing Structure:

The existing floor system for the Erie Convention Center and Sheraton Hotel is composed of steel framing members that support 8-inch hollow core precast concrete plank panels without a topping. The steel framing members are A992 Grade 50, and the hollow core precast plank is composed of 5000 psi concrete.

A typical floor in the high-rise portion of the building is shown in Figure 2.1, with the bays that I will be analyzing highlighted in red.

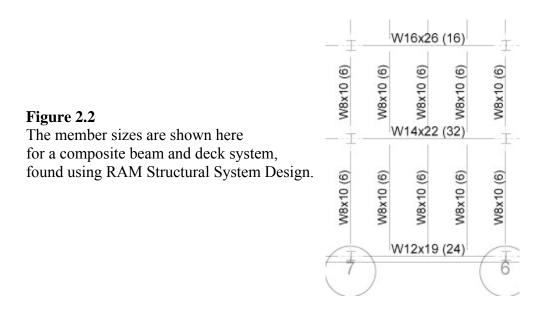
Figure 2.1

This is the simplified version of a typical floor for the high rise portion of the Erie Convention Center and Sheraton Hotel. I have chosen to analyze one interior $25' \times 15'$ bay with an adjacent exterior $25' \times 19'$ bay. W14×30s in the N/S direction support the gravity loads from the hollow core pre-cast concrete plank which runs in the E/W direction. Spanning in the E/W direction are W10×12s for column stability.

After examining the details given in the structural drawings, I found that the plank is attached directly to the top of the steel floor beams. The deepest floor beam in these two bays that I am analyzing is 21 inches, thus with the 8 inch concrete plank, a total depth of 29 inches will be reached.

A steel structure with hollow core concrete plank is a common framing system for hotels. First of all, hollow core precast concrete plank is much lighter than a solid concrete slab. The need for steel beams only between columns shortens the steel erection time, and since the majority of the system is precast, the construction time is shortened further. Hollow core concrete plank is easy to install and lighter than a full concrete slab and deck system. Also, fireproofing is only required for the steel members, and vibrations are reduced because of the thickness of the concrete. The current trend in hotel design is the use of hollow core precast concrete plank without a topping because of the savings in cost as well as weight. For example, the pre-cast in this project is estimated at \$400,000. This value would be greatly increased if

topping were added. In addition a topping would increase the weight of the plank from 56 psf to 81 psf.


Alternative Floor Systems:

Using the two interior bays highlighted above, I will analyze four different alternative floor systems. These systems include:

- 1. Composite Steel Beams with Composite Deck
- 2. Non-composite Steel Beams with Deck
- 3. Steel Joists with Non-Composite Steel Deck
- 4. One-way concrete system

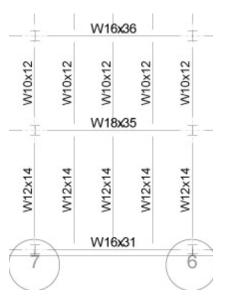
Alternative #1- Composite Steel Beams with Composite Deck:

The first option that I chose to analyze is a composite steel beam and deck system. I spaced beams at 6'-4" on center in the N/S direction with composite steel deck spanning in the E/W direction. To support the gravity loads, I used USD 22 Gage 2" Lok-Floor Composite Deck with a 4 $\frac{1}{2}$ " total slab depth. The deck has a material strength of 33 ksi, while the concrete has a strength of 3 ksi. The welded wire fabric needed was found to be 6×6-W4.0×W4.0 with a strength of 60 ksi. The member sizes, found using RAM, can be seen in Figure 2.2. Deflections are accounted for in RAM to meet L/360 (live load), and L/240 (total load).

The depth of the system is the 16 inch floor beam plus the 4.5" total slab depth totaling 20.5 inches. Because there are more members to support the loads in the composite system than the existing system, the members can be smaller, therefore making the floor sandwich smaller. This thinner slab could cause for more vibrations, however, the steel and concrete working together in a composite action allows for the larger loads to be carried with fewer vibrations. Another advantage of composite systems is that the steel deck is very strong and can span between beams, acting as a working surface during construction. The shape of the deck also

allows for conduit and pipes to be run through, without causing a major increase in thickness. Fire proofing must be sprayed on steel members and deck.

Alternatively, composite systems take a longer time to erect because of the larger amount of steel than the existing system, as well as the curing time of the concrete slab. In a project such as a hotel, it is favorable to produce the final project as quickly as possible and as inexpensive as possible, while keeping the strength and serviceability required.

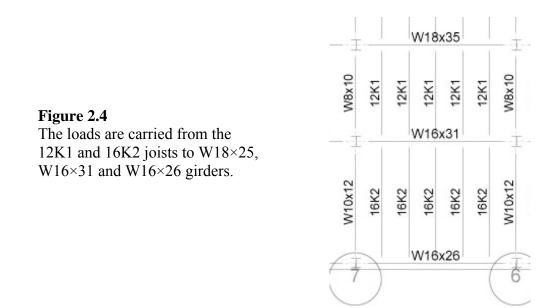

Please see Appendix 2.1 for additional calculations.

Alternative #2- Non-Composite Steel Beams with Deck

The second analysis was completed using the same beam layout as Alternative #1 but with non-composite beams and deck instead of composite beams and deck. Using the LRFD criteria found in the USD Design Manual and Product Catalog, I found that 24 Gage, UF2X form deck will hold the total factored load. A 4.5" deep slab is poured into this form deck, with 60 ksi, 6×6 -W4.0×W4.0 welded wire fabric. The concrete is assumed to have a strength of 3 ksi. The member sizes for the non-composite system, found by RAM, can be seen in Figure 2.3. Deflections in members are accounted for in RAM to meet L/360 (live load), and L/240 (total load).

Figure 2.3

The member sizes for a non-composite system are shown in the diagram to the right. Notice the larger sized members as compared to the composite system.



The members of the non-composite system are larger than in the composite system. This is due to the lack of shear studs working with the concrete and steel. These larger members make for a total floor sandwich depth of 22.5", which is also less than the existing system. The vibrations of the thinner slab need to be taken into account because the steel and concrete are not working together. Also, as with the composite system, there is more steel to erect than in the existing system, as well as the additional curing time for the concrete slab, increasing the time and money spent. Fire proofing must be sprayed on steel members and deck.

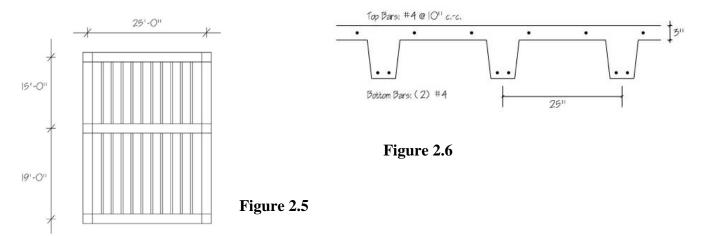
Please see Appendix 2.2 for additional calculations

Alternative #3-Steel Joists with Non-Composite Steel Deck

Steel joists were also analyzed and were spaced at 4'-2" on center, spanning in the N/S direction. The deck was chosen from the USD design manual: 26 gage UF1X form deck, with a 3 ksi, 3.5" concrete slab, reinforced with 60 ksi, 6×6 -W4.0×4.0 welded wire fabric. The joists, designed using RAM, were found to be 12K1 for the 25'×15' bay, and 16K2 for the 25'×19' bay. These joists have a material strength of 30 ksi. See Figure 2.4, for additional member sizes. RAM limits the deflection to a live load of L/360, and a total load of L/240.

Because of the large girders needed to support the weight of the larger bays, the total floor sandwich is 21.5" thick. The lighter members of the joists, and the fact that they are not solid steel, may provide for greater vibrations. In addition, the thinner slab of 3.5" will not hinder vibrations as much as the larger slabs would. Fire proofing must be sprayed on steel members and deck, which could be a difficult task because of the smaller components that the joists are made of. As with the other alternate systems, the large amount of steel needed to be erected, along with the curing time of the concrete increases the time and money spent on the floor system. The joists, however, would not obstruct the placement of ductwork or electrical wiring.

Please see Appendix 2.3 for additional calculations


Alternative #4- One-way Concrete System

Finally, I analyzed the 2 bays using a one-way concrete system, or a pan-joist system. A one-way system is one where the joists, slab, and girders are poured monolithically.

Using the CRSI 2002 Design Handbook, I considered 20 inch forms with 5 inch ribs spaced at 25" on center. These ribs, when 10 inches deep with a 3 inch top slab, totaling a depth of 13", are enough to carry my design loads. A concrete strength of 4,000 psi and a steel strength of 60,000 psi were assumed. I carried out a design for the 19 foot end span to find the worst case. The same size pans and reinforcement for all bays will be easier for construction. I assumed the clear span to be one foot less than the beam span. The reinforcement I found is as follows:

19' span: $l_n=18'-0"$ Top reinforcement- #4 at 10 in. on center Bottom reinforcement- (2) #4 Based on the chart, deflection is not a factor

Figures 2.5 and 2.6 show a plan view and section of this pan joist concrete system.

The surrounding girders needed were found to be $34^{\circ} \times 13^{\circ}$. The width of this girder is impractical and adds a large weight to the system. I originally calculated this system using a depth of 11°, however the girders were even wider and failed deflection criteria. The sandwich depth needed to be increased to increase the moment of inertia, in turn decreasing the deflection.

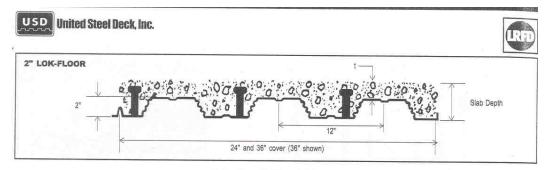
Because of the high weight of the system, vibrations will be lessened, but the seismic loads on the building will also increase. The foundation will also need to be examined more closely because of the poor soil conditions on site. Lateral loads will need to be resisted by a different system such as shear walls. It takes time to form, pour, cure, and finish the concrete. This increase in time spent also means an increase in price. No additional fireproofing is needed for a concrete structure.

See Appendix 2.4 for additional calculations and design aids

Floor System	Depth	Weight	Cost	Time	Vibration	Fireproofing	Possible System?
Existing: Precast hollow-core plank and steel structure	29"	60 psf	·Heavier members ·Less time=less labor cost	•Fewer beams to erect •Precast off site	•Thick plank= less vibration	·Spray on steel members	Least amount of time for construction is the most practical for a hotel
Composite steel beams with composite deck	20.5"	46 psf	•More steel to erect	•More steel to erect •Curing of concrete	•Composite system reduces vibration	•Spray on steel members and deck	Yes: vibration and weight are low Time is an issue
Non-composite steel beams with deck	22.5"	47 psf	•More steel to erect	•More steel to erect •Curing of concrete	•Thinner slab increases vibration	•Spray on steel members and deck	Yes: weight is low Check vibrations and time
Steel Joists with non- composite steel deck	21.5"	40 psf	•More steel to erect •Smaller concrete slab	•More steel to erect •Curing of concrete	•Thinner slab and open web joists increase vibration	•Spray on steel members and deck	Yes: weight is low Check vibrations and time
One-way concrete system	13"	118 psf	·Re-useable pans ·Very large girders	·Form, pour, cure, finish	·Heavy concrete reduces vibration	·No fireproofing needed for concrete	No: cast-in- place is not practical for this type of construction

Conclusions:

The composite, non-composite, and joist systems are all feasible, but would take a longer time to erect because of more members and the curing time of the concrete. Also, changes in the foundation design would need to be considered for each alternative because of the varying weight of the systems. The one-way concrete system can be ruled out because of the extremely heavy weight and the time spent for construction.


After completing an analysis and comparison of the five systems, I have found that the existing designed system of hollow core precast concrete plank supported by a steel structural system is the best option. This system requires the least amount of construction time because of the precast floor system, and fireproofing is minimized to the steel members only. Also, vibrations are reduced because of the thickness of the slab, which is favorable for serviceability. On the downside, however, this system is the thickest due to the deep exterior beam. The analysis that I completed in RAM in Alternatives #1, #2, and #3 only took into account the gravity loads. The 25' girder spanning in the E/W direction might need to be larger in these systems due to the moment connections for lateral resistance. If these systems had deeper exterior girders, the floor sandwich depth would increase and be closer to the depth of the precast system.

Appendix 2.1

Composite Steel Beams with Steel Deck Design:

Loads:

		5/8" gypsum wall board Deck and Concrete	= 12 psf = 10 psf = 42 psf
	Wetar Composite		= 64 psf
	Structural framing calculations.	g member weights are included in	n the RAM design and
	Line load for exte	rior wall	= 0.144 klf
	Live Loads- Private Floor and	their Corridors (Service)	= 40 psf
	Factored Loads- $1.6L = 1.6(40 \text{ psf})$)	= 64 psf
Deck:	2.5" Norm Weight (de	2" Lok-Floor al Weight Concrete Slab, $f'_c = 3$ eck and concrete slab) = 42 psf 365 psf, 6.5 ft. span	ksi (Table A2.1a) (Table A2.1b)
	Welded Wire Fabr 6×6-W1.4	ric \times W1.4, f' _c = 60 ksi	(Table A2.1a, A2.1c)
	Studs ³ /4" Diamet 4" Long	ter	

The Deck Section Properties are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_e and S_n are the section moduli for positive and negative bending (in.³); R_e and ϕ V_n, are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, ϕ M_n.

	DECK PROPERTIES												
Gage	6	W	As		S _p	S _n	R	φV,	studs				
22	0.0295	1.5	0.440	0.338	0.284	0.302	714	1990	0.36				
20	0.0358	1.8	0.540	0.420	0.367	0.387	1010	2410	0.43				
19	0.0418	2.1	0.630	0.490	0.445	0.458	1330	2810	0.51				
18	0.0474	2.4	0.710	0.560	0.523	0.529	1680	3180	0.57				
16	0.0598	3.1	0.900	0.700	0.654	0.654	2470	3990	0.72				

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. $\varphi\,M_{nf}$ is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). A_c is the area of concrete available to resist shear, in.2 per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.2. S, is the section modulus of the "cracked" concrete composite slab; in.3 per foot of width. Iav is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The Iav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 10⁸ psi. ϕ M_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width), $\varphi\,V_{n}$ is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed o 4(f)/2 Ao; pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI: combined bending and shear, deflection, and interior reactions are considered in calculating these values. Aww is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

12		-		CIERCIN.				-				-	-
	-		100					OPERT					
	Slab Depth	φM _{rf} in.k	A _c in²	Vol. ft³/ft²	W psf	S _c in ³	l _{av} in ⁴	φM _{no} in.k	φV _{nt} Ibs.	Max.u 1spar	unshored: 1 2 spar	spans, ft. I 3 span	Aw
	4.50	40.27	32.6	0.292	42	1.05	5.9	29,40	5030	5.82	7.83	7.92	0.02
-	5.00	46.44	37.5	0.333	48	1.23	8.0	34.53	5480	5.54	7.47	7.56	0.02
age	5.25	49.53	40.0	0.354	51	1.32	9.2	37.16	5720	5.41	7.31	7.39	0.02
9	5.50	52.61	42.6	0.375	54	1.42	10.5	39.81	5960	5.30	7.16	7.24	0.03
<u>m</u>	6.00	58.78	48.0	0.417	60	1.61	13.5	45.21	6460	5.09	6.89	6.97	0.03
01	6.25	61.87	50.8	0.438	63	1.71	15.3	47.95	6720	5.03	6.76	6.84	0.03
	6.50	64.95	53.6	0.458	66	1.81	17.1	50.70	6980	4.97	6.65	6.72	0.04
N	7.00	71.12	59.5	0.500	73	2.01	21.2	56.26	7530	4.85	6,43	6.51	0.04
	7.25	74.21	61.9	0.521	76	2.11	23.5	59.07	7750	4.79	6.32	6.41	0.04
	7.50	77.29	64.3	0.542	79	2.21	26.0	61.88	7970	4.74	6.22	6.31	0.05
	4.50	48.60	32.6	0.292	42	1.26	6.3	35.43	5450	6.81	8.97	9,27	0.02
	5.00	56.18	37.5	0.333	48	1.48	8.6	41.65	5900	6.47	8.55	8.83	0.02
gage	5.25	59.96	40.0	0.354	51	1.60	9.8	44.84	6140	6.32	8.36	8.63	0.02
	5.50	63.75	42.6	0.375	54	1.71	11.3	48.07	6380	6.18	8.18	8.45	0.03
	6.00	71.32	48.0	0.417	60	1.95	14.5	54.63	6880	5.94	7.85	8.11	0.03
	6.25	75.11	50.8	0.438	63	2.07	16.3	57.96	7140	5.86	7.70	7.95	0.03
3	6.50	78.90	53.6	0.458	66	2.19	18.2	61.31	7400	5.79	7.56	7.80	0.04
S	7.00	86.47	59.5	0.500	73	2.43	22.6	68.09	7950	5.65	7.29	7.53	0.04
201	7.25	90.26	61.9	0.521	76	2.55	25.0	71.50	8170	5.58	7.17	7.41	0.04
	7.50	94.05	64.3	0.542	79	2.67	27.6	74.93	8390	5.52	7.05	7.28	0.04
-	4.50	55.85	32.6	0.292	42	1.45	6.7	40.69					
	5.00	64.68	37.5	0.333	48	1.71	9.0	40.69	5850 6300	7.65	9.76	10.08	0.02
gage	5.25	69.10	40.0	0.354	51					7.26	9.30	9.61	0.02
51	5.50	73.52	42.6	0.354	54	1.84	10.4	51.56	6540	7.09	9.09	9.39	0.02
6	6.00	82.35	48.0				11.9	55.30	6780	6.93	8.90	9,19	0.03
51	6.25	86.77	50.8	0.417	60 63	2.24	15.2	62.90	7280	8.65	8.54	8.83	0.03
n	6.50		53.6				17.1	66.76	7540	6.56	8.38	8.66	0.03
"	7.00	91.19 100.03	59.5	0.458	66	2.52	19.2	70.65	7800	6.48	8.23	8.50	0.04
- 1	7.00			0.500	73	2.80	23.8	78.50	8350	6.32	7,94	8.20	0.04
		104.44	61.9	0.521	76	2.94	26.3	82.46	8570	6.24	7.81	8.07	0.04
-	7.50	108.86	64.3	0.542	79	3.08	29.0	86.45	8790	6.17	7.68	7.94	0.05
	4.50	62.08	32.6	0.292	42	1.62	7.0	45.34	6080	8.42	10,48	10.83	0.02
. 1	5.00	72.04	37.5	0.333	48	1.90	9.5	53.36	6670	7.98	9.99	10.32	0.02
Short	5.25	77.02	40.0	0.354	51	2.05	10,9	57.48	6910	7.79	9.77	10.10	0.02
٢1	5,50	82.00	42.6	0.375	54	2.20	12.4	61.66	7150	7.61	9.56	9.88	0.03
ЪI	6.00	91.95	48.0	0.417	60	2.50	15.9	70.18	7650	7.30	9.18	9.49	0.03
	6.25	96.93	50.8	0.438	63	2.66	17.9	74.50	7910	7.20	9.01	9.31	0.03
2	6.50	101.91	53.6	0.458	66	2.81	20.0	78.85	8170	7.11	8.85	9.14	0.04
•	7.00	111.87	59.5	0.500	73	3.13	24.8	87.66	8720	6.93	8.54	8.82	0.04
	7.25	116.85	61.9	0.521	76	3.28	27.4	92.10	8940	6.85	8,40	8.68	0.04
_	7.50	121.83	64.3	0.542	79	3.44	30.2	96.57	9160	6.77	8.26	8.54	0.05
1	4.50	62.08	32.6	0.292	42	1.99	7.7	45.34	6080	9.58	11.63	12.02	0.02
. [5.00	72.04	37.5	0.333	48	2.35	10.4	53.36	6980	9.08	11.10	11.47	0.02
2	5.25	77.02	40.0	0.354	51	2.53	11.9	57.48	7450	8.85	10.85	11.22	0.02
PI	5.50	82.00	42.6	0.375	54	2.72	13.6	61.66	7940	8.65	10.63	10.98	0.03
2000	6.00	91.95	48.0	0.417	60	3.10	17.4	70.18	8460	8.29	10.21	10.55	0.03
. 1	6.25	96.93	50.8	0.438	63	3.29	19.5	74.50	8720	8.17	10.02	10.35	0.038
3	6,50	101.91	53.6	0.458	66	3.48	21.8	78.85	8980	8.07	9.84	10.17	0.04
	7.00	111.87	59.5	0.500	73	3.88	27.0	87.66	9530	7.86	9.50	9.82	0.045
T	7.25	116.85	61.9	0.521	76	4.08	29.8	92.10	9750	7.77	9.35	9.66	0.047
1		121.83	64.3	0.542	79	4.28	32.8	96.57	9970	7.67	9.20	9.50	0.050

2" LOK-FLOOR

2 x 12" DECK F_y = 33ksi f'_c = 3 ksi 145 pcf concrete

	Slab	φMn	C 00				orm Li					10.00	14.00		-
	Depth	in.k	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.0
a l	4.50	40.27	400	365	310	265	230	200	175	155	135	120	105	95	85
gage	5.00	46.44	400	400	360	305	265	230	200	175	155	140	125	110	95
N'I	5.50	52.61	400	400	400	350	300	260	230	200	175	155	140	125	110
5	6.00 6.50	58.78 64.95	400	400	400	390 400	335	295 325	255	225	200	175	155	140	125
N	7.00	71.12	400	400	400	400	400	355	285 310	250 275	240	195 215	175	155	135
<u>ន</u>	7.25	74.21	400	400	400	400	400	370	325	285	250	225	200	175	155
· · ŀ	7.50	77.29	400	400	400	400	400	385	340	295	260	230	200	185	165
	4.50	48.60	400	400	380	325	285	245	215	190	170	150	135	120	110
01	5.00	56.18	400	400	400	380	330	285	250	220	195	175	155	140	125
gage	5.50	63,75	400	400	400	400	375	325	285	250	225	200	175	160	140
120	6.00	71.32	400	400	400	400	400	365	320	285	250	225	200	180	160
97	6.50	78.90	400	400	400	400	400	400	355	315	280	245	220	195	175
0	7.00	86.47	400	400	400	400	400	400	390	345	305	270	240	215	195
Ñ	7,25	90.26	400	400	400	400	400	400	400	360	320	285	255	225	205
	7.50	94.05	400	400	400	400	400	400	400	375	330	295	265	235	210
	4.50	55.85	400	400	400	380	330	290	255	225	200	180	160	145	130
21	5.00	64,68	400	400	400	400	385	335	295	260	230	205	185	165	150
gage	5,50	73.52	400	400	400	400	400	380	335	295	265	235	210	190	170
出	6.00	82.35	400	400	400	400	400	400	375	335	295	265	235	215	190
L	6.50	91.19	400	400	400	400	400	400	400	370	330	295	265	235	210
30	7.00	100.03	400	400	400	400	400	400	400	400	360	320	290	260	235
- L	7.25	104.44	400	400	400	400	400	400	400	400	375	335	300	270	245
-	7,50	108,86	400	400	400	400	400	400	400	400	395	350	315	280	255
٥ŀ	4.50	62.08	400	400	400	400	370	325	285	255	225	200	180	160	145
SI-	5.00	72.04	400	400	400	400	400	375	335	295	260	235	210	190	170
B	5.50	82.00	400	400	400	400	400	400	380	335	300	265	240	215	195
3	6.00	91.95 101.91	400	400	400	400	400	400	400	375	335	300	270	245	220
s L	6.50 7.00	111.87	400	400	400	400	400	400	400	400 400	375 400	335 365	300 330	270 295	245 270
ĩ t	7.25	116.85	400	400	400	400	400	400	400	400	400	385	345	310	280
5 H	7.50	121.83	400	400	400	400	400	400	400	400	400	400	360	325	280
-	4.50	62.08	400	400	400	400	370	325	285	255	225	200	180	160	145
a F	5.00	72.04	400	400	400	400	400	375	335	295	260	235	210	190	170
ð٢	5.50	82.00	400	400	400	400	400	400	380	335	300	265	240	215	195
gage	6.00	91.95	400	400	400	400	400	400	400	375	335	300	270	245	220
တင္	6,50	101.91	400	400	400	400	400	400	400	400	375	335	300	270	245
٥ľ	7.00	111.87	400	400	400	400	400	400	400	400	400	365	330	295	270
ē lī	7.25	116.85	400	400	400	400	400	400	400	400	400	385	345	310	280
	7,50	121.83	400	400	400	400	400	400	400	400	400	400	360	325	290
	4.50	29.40	305	255	215	185	160	135	120	105	90	80	70	60	50
	5,00	34.53	360	305	255	220	185	160	140	120	105	95	80	70	65
	5.50	39,81	400	350	295	255	215	190	165	140	125	110	95	85	75
	6,00	45,21	400	400	340	290	250	215	185	160	140	125	110	95	85
1.1	6,50	50,70	400	400	380	325	280	240	210	185	160	140	125	110	95
1	7.00	56.28	400	400	400	360	310	270	235	205	180	155	140	120	105
1	7.25	59.07	400	400	400	380	325	285	245	215	190	165	145	130	115
-	7.50	61.88	400	400	400	400	345	295	260	225	200	175	155	135	120
1	4.50	35.43	375	315	270	230	200	170	150	130	115	100	90	80	70
1.0	5.00	41.65	400	375	315	270	235	205	175	155	135	120	105	95	85
1	5,50	48.07	400	400	365	315	270	235	205	180	160	140	125	110	95
-	6,00	54.63	400	400	400	360	310	270	235	205	180	160	140	125	110
-	6,50	61.31	400	400	400	400	350	300	265	230	205	180	160	140	125
	7.00	68.09 71.50	400	400	400	400	390 400	335 355	295 310	260 270	230 240	200 210	180	160 165	140
-	7.50	74.93	400	400	400	400	400	355	325	285	240	225	200	175	155
	4.50	40,69	400	370	315	270	230	200	175	155	135	120	105	95	85
100	5.00	47.87	400	400	370	315	275	240	210	185	160	145	125	115	100
	5.50	55.30	400	400	400	365	320	275	240	215	190	165	150	130	120
	6.00	62.90	400	400	400	400	365	315	275	245	215	190	170	150	135
	6.50	70.65	400	400	400	400	400	355	310	275	245	215	190	170	155
	7.00	78.50	400	400	400	400	400	395	350	305	270	240	215	190	170
	7.25	82,45	400	400	400	400	400	400	365	320	285	255	225	200	180
	7.50	86.45	400	400	400	400	400	400	385	340	300	265	235	210	190
	4.50	45,34	400	400	350	300	280	230	200	175	155	140	125	110	100
	5.00	53.36	400	400	400	355	310	270	235	210	185	165	145	130	115
3	5.50	61,66	400	400	400	400	360	315	275	240	215	190	170	150	135
1	6.00	70,18	400	400	400	400	400	360	315	275	245	220	195	175	155
1	6.50	78.85	400	400	400	400	400	400	355	310	275	245	220	195	175
1.50	7.00	87.66	400	400	400	400	400	400	395	350	310	275	245	220	195
1	7.25	92,10	400	400	400	400	400	400	400	365	325	290	260	230	210
	7.50	96.57	400	400	400	400	400	400	400	385-	340	305/-	270	245	220
	4.50	45,34	400	400	350	300	260	230	200	175	155	140	125	110	100
1	5,00	53,36	400	400	400	355	310	270	235	210	185	165	145	130	115
	5.50	61.66	400	400	400	400	360	315	275	240	215	190	170	150	135
G ALL	6.00	70.18	400	400	400	400	400	360	315	275	245	220	195	175	155
	6.50	78,85	400	400	400	400	400	400	355	310	275	245	220	195	175
	7.00	87.66	400	400	400	400	400	400	395	350	310	275	245	220	195

	LRFD
1 STUD/FT.	
NO STUDS	

* The Uniform Live Loads are based on the LRFD equation $\phi M_n = (1.6L + 1.2D)/^2/8$. Although there are other load combinations that may require investigation, this will control most of the time. The equation assumes there is no negative bending reinforcement over the beams and therefore each composite slab is a single span. Two sets of values are shown; ϕM_{nr} is used to calculate the uniform load when the full required number of studs is present; ϕ M_{na} is used to calculate the load when no studs are present. A straight line interpolation can be done if the average number of studs is between zero and the required number needed to develop the "full" factored moment. The tabulated loads are checked for shear controlling (it seldom does), and also limited to a live load deflection of 1/360 of the span.

An upper limit of 400 psf has been applied to the tabulated loads. This has been done to guard against equating large concentrated to uniform loads. Concentrated loads may require special analysis and design to take care of servicibility requirements not covered by simply using a uniform load value. On the other hand, for any load combination the values provided by the calculations.

Welded wire fabric in the required amount is assumed for the table values. If welded wire fabric is not present, deduct 10% from the listed loads.

Refer to the example problems for the use of the tables.

Table A2.1b

The Welded Wire Fabric is found using the required area of steel (A_{wwf}), found in Table A2.1a.

reinforcement properties

	Welded Wire Fabric	used in this ma	anual	IN CASE OF CASE OF		
Conventional	Metric**	Wire	Area	Wire Diameter		
(USA)	(INTERNATIONAL)	in7/ft	mm²/m	inches	mm	
6 x 6 W 1.4 x 1.4	152 x 152 MW 9.1 x 9.1	0.028	59.3	0.135	3.43	
6 x 6 W 2.0 x 2.0	152 x 152 MW 12.9 x 12.9	0.040	84.6	0.162	4.11	
6 x 6 W 2 9 x 2 9	152 x 152 MW 18.7 x 18.7	0.058	122.7	0.192	4.88	
6 x 6 W 4.0 x 4.0	152 x 152 MW 25.8 x 25.8	0.080	169.2	0.225	5.72	
4 x 4 W 1.4 x 1.4	102 x 102 MW 9.1 x 9.1	0.042	88.9	0.135	3.43	
4 x 4 W 2.0 x 2.0	102 x 102 MW 12.9 x 12.9	0.060	126.9	0.162	4.11	
4 x 4 W 2.9 x 2.9	102 x 102 MW 18.7 x 18.7	0.087	184.1	0.192	4.88	
4 x 4 W 4.0 x 4.0	102 x 102 MW 25.8 x 25.8	0.120	253.8	0.225	5.72	

Table A2.1c

Appendix 2.2

Non-Composite Steel Beams with Form Deck and Slab:

Loads	•
Louus	•

Louds	Dead Loads- MEP, Finishing Metal Studs with 5/8" gypsum wall board Metal Form Deck with 4.5" Slab	= 12 psf = 10 psf = 42 psf
	Τα	otal = 64 psf
	Structural framing member weights are included calculations.	d in the RAM design and
	Line load for exterior wall	= 0.144 klf
	Live Loads- Private Floor and their Corridors	= 40 psf
	Factored Loads- 1.4 D + 1.7 L = 1.4(64psf) + 1.7(40psf)	= 157.6 psf
Deck:	USD (United Steel Deck) Non-Composite Form Deck 24 Gage, UF2X 4.5" Normal Weight Concrete Slab, f [°] c= Weight (deck and concrete slab) = 42 ps Capacity (for a 6'-6" span): 162 psf (total load) 6×6-W4.0×W4.0 @ 6'-6", f [°] c= 60 ksi 185 psf capacity	

		Spans, feet															
Slab	Mesh	+d	-d	+M	-M	4'6"	5'0"	5'6"	6'0"	6'6"	7'0"	7"6"	8'0"	8'6"	9'0'		
4.0"	66 - W2.0 x 2.0* 66 - W2.9 x 2.9	1.919 1.904	3.007 2.962	4.060 5.785	6.326 8.921	157 224	127 181	105 150	88 126	75 107	65 93	57 81	50 71	44 63	56		
4.5"	66 - W4.0 × 4.0 44 - W2.9 × 2.9 44 - W4.0 × 4.0	2.387 2.404 2.387	3.412 3.462 3.412	9,975 10,893 14,708	14.062 15.463 20.585	386 ### ###	313 342 ###	259 282 381	217 237 320	185 202 273	160 174 235	139 152 205	122 133 180	108 118 160	97 105 142		
5.0"	66 - W4.0 x 4.0* 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.887 2.904 2.887	3.912 3.962 3.912	12.135 13.242 17.948	16.222 17.812 23.825	### ### ###	381 ### ###	315 343 ###	264 289 389	225 246 332	194 212 286	169 185 249	149 162 219	132 144 194	117 128 173		
5.5"	44 - W2.9 x 2.9* 44 - W4.0 x 4.0	3.404 3.387	4.462 4.412	15.591 21.188	20.161 27.065	### ###	### ###	392 ###	329 ###	281 377	242 325	211 283	185 249	164 220	146 197		
6.0**	44 - W4.0 x 4.0	3.887	4.912	24.428	30.305	###	###	###	###	###	364	317	279	247	220		
6.5"	· 44 - W4.0 x 4.0	4.387	5.412	27.668	33.545	###	###	###	###	###	###	351	308	273	244		
7.0"	44 - W4.0 x 4.0	4.887	5.912	30.908	36.785	###	###	###	###	###	###	385	338	299	267		
1.1						- 24 gage -				- 220	jage ——	20 gage —					

CONCRETE SIADS ON UF2X form deck - UNIFORM LOADS, PSF

Table A2.2a

Tot		UFS	UF1X	UFX	INV. B	UF2X
Slab D		C, = .0234	C _v = .0417	C _v = .0547	C, = .0781	C _v = .0833
2.5"	Wt Vol.	27 0.185				
3.0"	Wt Vol.	33 0.226	30 0.208	28 0.195		
3.5"	Wt Vol.	39 0.268	36 0.250	34 0.237	36 0.245	
4.0"	Wt	45	42	40	41	36
	Vol.	0.310	0.292	0.279	0.286	0.250
4.5"	Wt	51	48	46	48	42
	Vol.	0.352	0.333	0.320	0.328	0.292
5.0"	Wt	57	54	52	54	48
	Vol.	0.393	0.375	0.362	0.370	0.333
5.5"	Wt	63	60	59	60	54
	Vol.	0.435	0.417	0.404	0.411	0.375
6.0"	Wt	69	66	65	66	60
	Vol.	0,476	0.458	0.445	0.453	0.417
6.5"	Wt	75	73	71	72	67
	Vol.	0.518	0.500	0.487	0.495	0.459
7.0"	Wt	81	79	77	78	73
	Vol.	0.560	0.542	0.528	0.536	0.500

Table A2.2b

- Caller

		ECTION	PROPER	RTIES			ASD			LRFD	
Meta	al Thicknes	is Wt.	١,	S,	S,	v	R,	R ₂	¢۷	¢R,	¢R2
Gage	Inches	(psf)	(in.4)	(in.³)	(in.3)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
24	0.0239	1.50	0.232		0.200	2360	360	836	3223	532	1156
22	0.0295	2.00	0.300		0.263	4205	528	1484	5477	736	1992
20	0.0358	2.00	0.379		0.339	6062	728	2224	8067	1004	3064
18	0.0474	3.00	0.523	0.468	0.485	8796	1204	3948	11182	1648	5388
UF	F2X										
			×			30" cover	_			e bottom	
				2"	\leftrightarrow		F	7		nge can cept a ¾"	
			2" 1 1	_	\sim	\square			244268	ept a 94 ear stud.	
	+		<u> </u>					\Box \land			
				\iff	<	>					
				2"		6" pitch					
									approx. s	scale: 1½" = 1	1'0"
1. 21 2		U	NIFORM TO	TAL LOAD	/ Load tha	t Produces	1/180 Defi	ection. psf		- FILAE	-
							Span				
G	^{iage} C	Span Condition	6'0"	6'6"	7'0"	7'6"	8'0"	8'6"	9'0"	9'6"	10'0'
		Single	128 / 94	109/74	94 / 59	82/48	72/40	64/33	57 / 28	51/24	46/2
	24	Double	130 / 226	111 / 178	96 / 143	84 / 116	74 / 96	66 / 80	59 / 67	53 / 57	48/4
E	Para tat	Triple	162 / 177	138 / 139	120 / 112	105/91	92/75	82/62	73 / 52	66 / 45	59/3
6	-	Single	168 / 122	143/96	123 / 77	108 / 62	94 / 51	84/43	75/36	67/31	60/2
	22	Double	173 / 293 215 / 229	148/230	128 / 184	111 / 150 139 / 117	98/123	87/103 108/81	78 / 87 97 / 68	70 / 74 87 / 58	63/6
	1	Triple	and the second	184 / 180	159 / 144	139/11/	122/97	108/81	97768	86/39	78/4
	and the second se										70 / 2
4 5	X A VE	Single	217 / 154	GARLEY AND		1.1257.00		1.			102.012
2	20	Double	224 / 370	191/291	165 / 233	144 / 189	126 / 156	112/130	100 / 110	90/93	81/8
			224 / 370 279 / 289	GARLEY AND		1.1257.00		1.			81/8 101/6
		Double Triple	224 / 370	191 / 291 238 / 228	165 / 233 205 / 182	144 / 189 179 / 148	126 / 156 158 / 122	112 / 130 140 / 102	100 / 110 125 / 86	90 / 93 112 / 73	81/8 101/6 112/4
	20 8	Double Triple Single	224 / 370 279 / 289 312 / 212	191 / 291 238 / 228 266 / 167	165 / 233 205 / 182 229 / 133	144 / 189 179 / 148 200 / 109	126 / 156 158 / 122 176 / 89	112 / 130 140 / 102 155 / 75	100 / 110 125 / 86 139 / 63	90 / 93 112 / 73 124 / 53	81 / 8 101 / 6 112 / 4 116 / 1
1	8	Double Triple Single Double Triple Single	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94	191 / 291 238 / 228 266 / 167 273 / 401 340 / 314 164 / 74	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28	90 / 93 112 / 73 124 / 53 128 / 129 160 / 101 81 / 24	81 / 8 101 / 6 112 / 4 116 / 1 145 / 8 73 / 2
1		Double Triple Single Double Triple Single Double	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226	191 / 291 238 / 228 266 / 167 273 / 401 340 / 314 164 / 74 142 / 178	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67	90 / 93 112 / 73 124 / 53 128 / 129 160 / 101 81 / 24 83 / 57	81 / 8 101 / 6 112 / 4 116 / 1 145 / 8 73 / 2 75 / 4
1	8	Double Triple Single Double Triple Single Double Triple	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52	90 / 93 112 / 73 124 / 53 128 / 129 160 / 101 81 / 24 83 / 57 103 / 45	81 / 8 101 / 6 112 / 4 116 / 1 145 / 8 73 / 2 75 / 4 94 / 3
2	8 24	Double Triple Single Double Triple Single Double Triple Single	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139 226/96	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36	90 / 93 112 / 73 124 / 53 128 / 129 160 / 101 81 / 24 83 / 57 103 / 45 106 / 31	81/8 101/6 112/4 116/1 145/8 73/2 75/4 94/3 96/2
2	8	Double Triple Single Double Triple Single Double Triple Single Double	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293	191 / 291 238 / 228 266 / 167 273 / 401 340 / 314 164 / 74 142 / 178 162 / 139 226 / 96 233 / 230	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51 155 / 123	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87	90 / 93 112 / 73 124 / 53 128 / 129 160 / 101 81 / 24 83 / 57 103 / 45 106 / 31 110 / 74	81 / 80 101 / 6 112 / 4 116 / 1 145 / 8 73 / 20 75 / 4 94 / 30 96 / 20 99 / 6
2	8 24	Double Triple Single Double Triple Single Double Triple Single Double Triple	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293 302 / 229	191 / 291 238 / 228 266 / 167 273 / 401 340 / 314 164 / 74 142 / 178 162 / 139 226 / 96 233 / 230 279 / 180	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184 250 / 144	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150 218 / 117	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51 155 / 123 192 / 97	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103 171 / 81	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87 152 / 68	90/93 112/73 124/53 128/129 160/101 81/24 83/57 103/45 106/31 110/74 137/58	81/80 101/6 112/4 116/1 145/8 73/20 75/49 94/3 96/20 99/6 124/4
2 1 2 2	8 4 22	Double Triple Single Double Triple Single Double Triple Single Single Single	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293 302 / 229 335 / 154	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139 226/96 233/230 279/180 292/121	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184 250 / 144	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150 218 / 117 220 / 79	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 131 / 75 150 / 51 155 / 123 192 / 97 193 / 65	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103 171 / 81 171 / 54	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87 152 / 68 152 / 46	90/93 112/73 124/53 128/129 160/101 81/24 83/57 103/45 106/31 110/74 137/58 137/39	81/8 101/6 112/4 116/1 145/8 73/2 75/4 94/3 96/2 99/6 124/4 124/3
2 1 2 2	8 24	Double Triple Single Double Triple Single Double Triple Single Double Triple	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293 302 / 229 335 / 154 353 / 370	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139 226/96 233/230 279/180 292/121 301/291	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184 250 / 144 252 / 97 260 / 233	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150 218 / 117 220 / 79 227 / 189	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51 155 / 123 192 / 97 193 / 65 200 / 156	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103 171 / 81 171 / 54 177 / 130	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87 152 / 68 152 / 46 158 / 110	90/93 112/73 124/53 128/129 160/101 81/24 83/57 103/45 106/31 110/74 137/58 137/39 142/93	81/81 101/6 112/4 116/1 145/8 73/21 75/44 94/31 96/21 99/6 124/4 124/2 128/8
2 1 2 2	8 4 22	Double Triple Single Double Triple Single Double Triple Single Double Triple Single Double Triple	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293 302 / 229 335 / 154 353 / 370 418 / 289	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139 226/96 233/230 279/180 292/121 301/291 375/228	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184 250 / 144 252 / 97 260 / 233 324 / 182	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150 218 / 117 220 / 79 227 / 189 283 / 148	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51 155 / 123 192 / 97 193 / 65 200 / 156 249 / 122	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103 171 / 81 171 / 54 177 / 130 221 / 102	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87 152 / 68 152 / 46 158 / 110 197 / 86	90/93 112/73 124/53 128/129 160/101 81/24 83/57 103/45 106/31 110/74 137/58 137/39 142/93 177/73	81 / 81 101 / 6 112 / 4 116 / 1 145 / 8 73 / 2 75 / 4 94 / 3 96 / 2 99 / 6 124 / 4 124 / 3 128 / 8 160 / 6
2 1 2 2 2 2 2	8 4 22	Double Triple Single Double Triple Single Double Triple Single Double Triple	224 / 370 279 / 289 312 / 212 320 / 510 399 / 399 177 / 94 154 / 226 175 / 177 245 / 122 266 / 293 302 / 229 335 / 154 353 / 370	191/291 238/228 266/167 273/401 340/314 164/74 142/178 162/139 226/96 233/230 279/180 292/121 301/291	165 / 233 205 / 182 229 / 133 236 / 321 294 / 252 149 / 59 132 / 143 150 / 112 195 / 77 201 / 184 250 / 144 252 / 97 260 / 233	144 / 189 179 / 148 200 / 109 206 / 261 256 / 204 130 / 48 123 / 116 140 / 91 170 / 62 176 / 150 218 / 117 220 / 79 227 / 189	126 / 156 158 / 122 176 / 89 181 / 215 226 / 168 114 / 40 116 / 96 131 / 75 150 / 51 155 / 123 192 / 97 193 / 65 200 / 156	112 / 130 140 / 102 155 / 75 160 / 179 200 / 140 101 / 33 104 / 80 124 / 62 133 / 43 137 / 103 171 / 81 171 / 54 177 / 130	100 / 110 125 / 86 139 / 63 143 / 151 179 / 118 90 / 28 93 / 67 115 / 52 118 / 36 122 / 87 152 / 68 152 / 46 158 / 110	90/93 112/73 124/53 128/129 160/101 81/24 83/57 103/45 106/31 110/74 137/58 137/39 142/93	78/33 81/80 101/6 112/4 116/11 145/8 73/20 75/43 94/30 96/20 99/63 124/4 124/3 128/8 160/6 178/4 178/4

Appendix 2.3

Steel Joists with Non-Composite Steel Deck:

Loads:

	Dead Loads-	
	MEP, Finishing	= 12 psf
	Metal Studs with 5/8" gypsum wall board	= 10 psf
	Metal Deck and Slab	= 36 psf
	Joist Weight (5.5 plf / 4.167 ft.)= 1.33 psf→	= 2 psf
	(used weight of 16K2 for more conservative estimation	ite)
	Total	= 60 psf
	Girder weights are included in the RAM design and	d calculations.
	Line load for exterior wall	= 0.144 klf
	Live Loads-	
	Private Floor and their Corridors	= 40 psf
	Factored Loads-	
	1.2D + 1.6 L = 1.2(60psf) + 1.6(40psf)	= 136 psf
Deck:		
	USD (United Steel Deck)	
	Non-Composite Form Deck	
	24 Gage, UF1X	
	3.5" Normal Weight Concrete Slab	
	Weight (deck and concrete slab) = 36 psf	(Table A2.3b)
	Capacity (for a 4'-6" span):	(Table A2.3c)
	177 psf (total load)	(m) 1 1
	6×6-W4.0×W4.0 @ 4'-6" span	(Table A2.3a)
	230 psf capacity	

										Spar	ns, feet					
Slab	Mesh	+d	-d	+M	-M	2'0"	2'6"	3'0"	3'6"	4'0"	4'6"	5'0"	5'6"	6'0"	6"6"	
3.0"	66 - W2.0 x 2.0* 66 - W2.9 x 2.9	1.000 1.000	1.500 1.500	2.075 2.954	3.155 4.520	### ###	260 371	181 257	133 189	102 145	80 114	65 93	54 77	45 64		
3.5"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.387 2.404 2.387	1.912 1.962 1.912	9.975 10.893 14.708	7.921 8.817 11.628	### ### ###	### ### ###	### ### ###	380 ### ###	291 324 ###	230 256 338	186 207 274	154 171 226	129 144 190	110 123 162	
4.0"	66 - W4.0 x 4.0 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.887 2.904 2.887	2.412 2.462 2.412	12.135 13.242 17.948	10.081 11.166 14.868	### ### ###	### ### ###	### ### ###	### ### ###	371 ### ###	293 324 ###	237 263 350	196 217 289	165 182 243	140 155 207	
4.5"	44 - W2.9 x 2.9 44 - W4.0 x 4.0	3.404 3.387	2.962 2.912	15.591 21,188	13.515 18.108	### ###	### ###	### ###	### ###	### ###	393 ###	318 ###	263 352	221 296	188 252	
5.0"	44 - W4.0 x 4.0	3.887	3.412	24.428	21.348	###	###	###	###	###	###	###	###	349	297	
5.5"	44 - W4.0 x 4.0	4.387	3.912	27.688	24.588	###	###	###	###	###	###	###	###	###	342	
6,0"	44 - W4.0 x 4.0	4.887	4.412	30.908	27.828	###	###	###	###	###	###	###	###	###		
				0 6			26	gage	1	- 24	gage	- 22	gage —	-20 gage	1	

CONCRETE SIGDS ON UF1X form deck - UNIFORM LOADS, PSF

Table A2.3a

To		UFS	UF1X	UFX	INV. B	UF2X
Slab I		C _v = .0234	C _v = .0417	C _v = .0547	C _v = .0781	C, = .0833
2.5"	Wt Vol.	27 0.185				
3.0"	Wt Vol.	33 0.226	30 0.208	28 0.195		
3.5"	Wt Vol.	39 0.268	36 0.250	34 0.237	36 0.245	
4.0"	Wt	45	42	40	41	36
	Vol.	0.310	0.292	0.279	0.286	0.250
4.5"	Wt Vol.	51 0.352	48 0.333	46 0.320	48 0.328	42 0.292
5.0"	Wt	57	54	52	54	48
	Vol.	0.393	0.375	0.362	0.370	0.333
5.5"	Wt	63	60	59	60	54
	Vol.	0.435	0.417	0.404	0.411	0.375
6.0"	Wt	69	66	65	66	60
	Vol.	0.476	0.458	0.445	0.453	0.417
6.5"	Wt	75	- 73	71	72	67
	Vol.	0.518	0.500	0.487	0.495	0.459
7.0"	Wt	81	79	77	78	73
	Vol.	0.560	0.542	0.528	0.536	0.500

Table A2.3b

	SE	CTION	PROPER	RTIES			ASD				
Meta	l Thickness	Wt.	١,	S,	S,	v	R,	R ₂	٥V	¢R.	¢R,
Gage	Inches	(psf)	(in.4)		(in.3)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
26	0.0179	1.00	0.039	0.066	0.066	2009	309	396	2387	485	715
24	0.0239	1.50	0.056	0.096	0.096	2906	491	629	3310	731	875
22	0.0295	1.50	0.072	0.127	0.127	3625	715	1349	4073	992	1808
20	0.0358	2.00	0.088	0.163	0.163	4338	971	2181	4927	1339	3013
UF	1X										
			<i></i>		27	" cover			The bottom		
			4			$\rightarrow \leftarrow$	11/3"		flange can accept a ¾"		
		1"	-		\square	$ \frown $		\frown	shear stud.		
				1	41/3" Pitch	\rightarrow	←1%"				
									approx.	scale: 1½" =	1'0"
			NIFORM T	OTAL LOA	D / Load th	at Produces	i i/180 Defic	ection, psf			
Ga	age S Con	pan dition	3'0"	3'6"	4'0"	4'6"	Span 5'0"	5'6"	6'0"	6'6"	7'0"
	Si	ingle	176 / 126	129/80	99/53	78/37	63 / 27	52/21	44/16	37 / 12	32/10
1			174/304	128 / 192	98 / 128	78/90	63/66	52/49	44/38	37/30	32/24
THE REAL	Т	riple	216/238	159 / 150	122/101	97 / 71	79/51	65/39	55/30	47/23	40/19
	Si	ingle	256 / 182	188 / 114	144 / 77	114 / 54	92/39	76/29	64/23	55/18	47/14
		ouble	253 / 437	186/275	143 / 184	113 / 130	92/94	76/71	64 / 55	54/43	47/34
	T	riple	314/342	232/215	178 / 144	141/101	114/74	95 / 56	80/43	68/34	59/27
	Si	ingle	339 / 233	249/147	191/98	151/69	122/50	101/38	85/29	72/23	62/18
72	2		334 / 562	246 / 354	189/237	150 / 167	121/121	100/91	84 / 70	72/55	62/44
IL SERE	T	riple	414/440	306 / 277	235 / 186	186 / 130	151/95	125/71	105 / 55	90/43	77/35
-	Si	ngle	435 / 285	319/180	245 / 120	193 / 85	156 / 62	129/46	109/36	93/28	80/22
17-			427 / 687	315/433	242/290	192/204	155 / 148	129 / 111	108/86	92/68	80 / 54
100 10 10	Ti	riple	530 / 538	392 / 339	301/227	239 / 159	194 / 116	160/87	135/67	115/53	99/42
	Si	ngle	279/126	205/80	157 / 53	124/37	100/27	83/21	70/16	59/12	51/10
			191/304	163 / 192	143/128	123/90	99/66	82/49	69/38	59/30	51/24
E Bull	Ti		217/238	186 / 150	163/101	144 / 71	124 / 51	103/39	86/30	74/23	64/19
1 Salar	Si	ngle	405 / 182	298 / 114	228/77	180 / 54	146/39	121/29	101/23	86/18	74/14
			233 / 437	200/275	175 / 184	156 / 130	140/94	120/71	101 / 55	86/43	74/34
5	TI TI		265/342	227 / 215	199/144	177 / 101	159/74	145/56	125/43	107/34	92/27
	Si		536 / 233	394 / 147	302 / 98	238 / 69	193 / 50	160/38	134/29	114/23	98/18
157			482 / 562	385 / 354	297 / 237	235 / 167	191/121	158/91	133 / 70	113 / 55	98/44
	TI	riple	548 / 440	470 / 277	368 / 186	292 / 130	238/95	197 / 71	166 / 55	141/43	122/35
The second	Si	nale	688 / 285	506 / 180	387/120	306/85	2/8/62	205/46	170/06	147/00	100/00

NOTES:

20

Single

Double

Triple

688 / 285

666 / 687

821 / 538

506 / 180

493 / 433 610 / 339 387 / 120

380 / 290 471 / 227 306 / 85

301/204 374/159 248/62

245 / 148 304 / 116 205/46

203 / 111

252/87

172/36

171/86

212/67

147/28

146 / 68

181/53

126/22

126/54

157 / 42

Table A2.3c

Appendix 2.4

One-way Concrete System:

Loads: Dead Loads (Superimposed)- MEP, Finishing Metal Studs with 5/8" gypsum wall board Tota	= 12 psf = 10 psf l = 22 psf
Live Loads- Private Floor and their Corridors	= 40 psf
Total Load- $w_u=1.4D + 1.7 (L) = 1.4(22)+1.7(40)$	= 98.8 psf
Assumed- $f_c = 4,000 \text{ psi}$ $f_y = 60,000 \text{ psi}$	
From Table A2.4a- 20" forms + 5" rib @ 25" cc. 10" deep rib + 3" top slab = 13" depth (total)	
$l_n=18$ ' (End Span) Capacity = 246 psf Top Bars: #4 spaced at 10" o.c. Bottom Bars: (2) #4	
$l_n=18$ ' (Interior Span) Capacity = 291 psf Top Bars: #3 spaced at 10" o.c. Bottom Bars: 1- #3, 1- #4	
Welded Wire Fabric Reinforcement 4×12 -W2.1×W1.4 (Tab	le 2.4b)

Table A2.4a

STANE ONE-WAY MULTIPLE	JOIST	1222	FACT			2 L. 201	RIБ @ : PERIMF		All and a state) (PSF.	2.60	4,000 psi 60,000 psi
				1.0	10" Dec	ep Rib +	3.0" Top S	Slab = 1	3.0" Tota	Depth		
TOP BARS	Size @	# 4 10	# 4 8	# 5 10	# 6	# 6 9.5	End	# 3 10	# 4	# 4 9	# 5 10	Int.
BOTTOM BARS	# #	# 4 # 4	#4 #5	#5 #5	# 5 # 6	#6 #6	Span Defl. Coeff.	# 3 # 4	# 4 # 4	# 4 # 5	# 5 # 5	Span Defl.
Steel (psf)		.80	1.01	1.25	1.52	1.83	(3)	.82	1.08	1.39	1.78	Coeff. (3)
CLEAR SP	AN			EN	ID SPAI	NI					OR SPAN	1.3352336
18'-0"		246	336	365*	375*	390*	.878	291	401	419*	428*	.540
19'-0"		0 211	0 292	427 334*	531 343*	569* 356*	1.090	0 251	0 350	532 386*	639* 394*	_671
20'-0"	- 15	0 182 0	0 254 0	374 307* 328	466 315* 412	521* 326* 479*	1.338	217	0 307 0	468 358* 413	586 364* 520	.823
21'-0"		156 0	222 0	284* 289	290* 365	300* 442	1.626	188 0	270 0	332* 366	338* 463	1.001
22'-0"		134 0 114	194 0 169	255 0 225	268* 324 249*	277* 394 257*	1.959 2.340	163 0	237 0 209	309* 325 289*	314* 413 293*	1.205
24'-0"		0 97	0 148	0 199	288 232*	353 239*	2.774	0 122	0 184	0 258	370 274*	1.707
25'-0"	2	0 82 0	0 129 0	0 176 0	257 216* 230	316 222* 284	3.266	0 105 0	0 162 0	0 230 0	332 257* 299	2.010
26'-0"		69 0	112 0	156 0	202* 205	208* 256	3.821	90 0	143 0	206 0	241* 269	2.351
27'-0"		57 0 46	97 0 84	137 0 121	183 0 164	194* 230 182*	4.443	77 0 65	126 0 110	184 0 164	227* 243 213*	2.734
29'-0"		0	0 72	0 107	0 146	207 171*	5.914	0 54	0 97	0 147	219 198	3.639
30'-0"			0 61 0	0 93 0	0 131 0	187 160* 169	6.772	0 44 0	0 84 0	0 131 0	0 179 0	4.168
31'-0"			51 0	82 0	116 0	141+ 152	7.722		73 0	117 0	161 0	4.752
(2) First lc (3) Compt (n/21	bad is four station for into ive of t	or stan of defle arior sp pridging ear cap	dard sq ection is ans), joists a pacity,	uare joi s not re and tap	quired a ered en	; second above h ds. +Ca	apacity at	ine (thio elastic	skness : deflect	$\geq \ell_{\rm n}/10$	8.5 for en 	d spans,
NEGATIVE MO	MENT	PRC	PERI.	ES FC	DR DES	sign (T	CONCF	RETE .	44 CF/ I	(SF) (4 [
STEEL AREA (S STEEL % (UNIF	SQ. IN.)	.50 .71 .43	.63 .89 .53	.77 1.11 .66	.96 1.38 .83	1.16 1.67 1.00		.50 .71 .43	.65 7.92 .55	.86 1.23	1.10 1.59 .95	
EFF, DEPTH – ICR/IG POSITIVE MC	R	11.8 .189	11.8 .224	11.7 .259	11.6 .298	11.6 .340		11.8 .189	11.7 .227	11.7 .280	11.6 .328	
STEEL AREA (S STEEL ? EFF, DEPTH	SQ. IN.) 6 I, IN.	.40 .14 11.8	.51 .17 11.7	.62 .21 11.7	.75 .26 11.6	.88 .30 11.6		.31 .11 11.8	.40 .14 11.8	.51 .17 11.7	.62 .21 11.7	
+ICR/IG	В	.198	.244	.290	.339	.389		.157	.198	.244	.290	

Top Slab Thickness	Bars	Welded Wire Fabric***							
(In.)	Grade 60	One Way**	Square						
21/2	#3@12*	4 X 12-W2.1 X W1.4	6 X 6-W2.9 X W2.9						
3	#3@15*	4 X 12-W2.1 X W1.4	6 X 6-W4 X W4						
31/2	#3@17	4 X 12-W2.5 X W1.4	6 X 6-W4 X W4						
4	#3@15	4 X 12-W3 X W2	4 X 4.W2.9 X W2.9						
41/2	#3@12	4 X 12-W3.5 X W2	4 X 4-W3.5 X W3.5						

Maximum spacing permitted by ACI 7.12.2.2 (5 times slab thickness ≤ 18 in.)
 Larger diameter wires are to be placed *normal* to span of the losser.

1.1 joists. *** Commonly available wire sizes.

Table 2.4b

Girder Design: (worst case, assume same for all beams in bay)

Live Load Reduction-

$$A_{t} = \frac{(15^{\circ} + 19^{\circ})}{2} (25^{\circ}) = 425 \text{ sq. ft.}$$

$$T_{w} = \frac{(15^{\circ} + 19^{\circ})}{2} = 17^{\circ}$$

$$K_{LL} = 2 \quad (ASCE 7-02, Table 4.2)$$

$$L = L_{0} (0.25 + 15/(\sqrt{K_{11}A_{1}}))$$

$$L = 0.76 L_{0} > 0.4 \quad Use 0.76 L_{0}$$

$$L = 0.76(40 \text{ psf}) = 30.4 \text{ psf}$$
Assume column is $1^{\circ} \times 1^{\circ} \Rightarrow l_{a} = 24^{\circ}$

$$w_{u} = 1.2 (67\text{psf} + 22 \text{ psf}) + 1.6(30.4 \text{ psf})$$

$$w_{u} = 153.04 \text{ psf}$$

$$W_{u} = 153.04 \text{ psf} (17^{\circ}) = 2.6 \text{ klf}$$

$$M_{u} = \frac{W_{u}L^{2}}{8} = \frac{(2.6 \text{ klf})(24^{\circ})^{2}}{8} = 187.2^{\circ}\text{k}$$

$$f_{v}^{\circ} = 4 \text{ ksi}$$

$$f_{y}^{\circ} = 60 \text{ ksi}$$

$$p = 0.6 \text{ pnax} = 0.6(0.0206) = 0.0124 \quad (\text{for a tension controlled section)}$$

$$d = 13^{\circ} - 2.5^{\circ} = 10.5^{\circ}$$

$$M_{u} \le \Phi M_{n} = \Phi pbd^{2} f_{y} (1 - 0.59p(f_{y}/f_{c}))$$

$$187.2^{\circ}\text{k} = 0.9(0.0124)(bd^{2})(60\text{ksi})(1 - 0.59(0.0124)(60\text{ksi}/4\text{ksi}))(1^{\circ}/12^{\circ})$$

$$bd^{2} = 3768.38 \text{ in}^{3}$$

$$b = 34^{\circ}$$

$$h = 13^{\circ}$$

$$W_{u} \text{ beam} = 187.2^{\circ}\text{k} + \frac{(0.553 \text{ klf}(24^{\circ})^{2}}{8}$$

$$= 227^{\circ}\text{k}$$

Steel Design-

$$M_{u} \leq \Phi A_{s} d f_{y} (1 - 0.59\rho(f_{y}/f_{c}))$$

$$227'k = 0.9 A_{s} (10.5")(60 \text{ ksi})(1 - 0.59(0.0124)(60\text{ ksi}/4\text{ ksi})) (1'/12")$$

$$A_{s} = 5.4 \text{ in}^{2}, \text{ Use } 4\#11 (A_{s} = 6.24\text{ in}^{2})$$
Deflection Check-

$$I = (1/12)(bh^{3}) = (1/12)(34")(13")^{3}$$

$$I = 6225 \text{ in}^{4}$$

$$W_{u} = 2.6 \text{ klf} + 0.553 \text{ klf} = 3.15 \text{ klf} (1'/12") = 0.26 \text{ k/in} = 260 \text{ lb/in}$$

$$E = 3.6 \times 10^{6} \text{ psi}$$

$$\Delta \leq L/240$$

$$\leq (24')(12"/1')/240 = 1.2"$$

$$\Delta = \frac{5W_{u}L^{4}}{384\text{EI}}$$

$$= \frac{5(260 \text{ lb/in})(288 \text{ in})^{4}}{(384)(3.6 \times 10^{6} \text{ psi})(6225 \text{ in}^{4})}$$

$$\Delta = 1.04" \leq 1.2" \text{ OK}$$

Floor System Weights Area= 34' ×25' 1) Existing System: 1.0 - W18×46 (25') 1.5 - W10×12 (25') 0.5 - W21×44 (19') 0.5 - W16×36 (19') 1.0 - W14×30 (15')

$$\frac{(46plf)(25') + (1.5)(12plf)(25') + (0.5)(44plf)(19') + (0.5)(36plf)(19') + (30plf)(15')}{(34')(25')} =$$

3.3 psf56 psf (concrete plank weight)Total = 60 psf

- 2) Composite System:
 - 0.5 W16×26 (25') 1.0 - W14×22 (25') 1.0 - W12×19 (25') 4.0 - W8×10 (19') 4.0 - W8×10 (15')

 $\frac{(0.5)(26\text{plf})(25^{\circ}) + (22\text{plf})(25^{\circ}) + (19\text{plf})(25^{\circ}) + (4)(10\text{plf})(19^{\circ}) + (4)(10\text{plf})(15^{\circ})}{(34^{\circ})(25^{\circ})} =$

3.19 psf 42 psf (deck and concrete slab) **Total = 46 psf**

- 3) Non-Composite System:
 - $0.5 W16 \times 36$ (25') $1.0 - W18 \times 35$ (25') $1.0 - W16 \times 31$ (25') $4.0 - W10 \times 12$ (15') $4.0 - W12 \times 14$ (19')

 $\frac{(0.5)(36\text{plf})(25^{\circ}) + (35\text{plf})(25^{\circ}) + (31\text{plf})(25^{\circ}) + (4)(12\text{plf})(15^{\circ}) + (4)(14\text{plf})(19^{\circ})}{(34^{\circ})(25^{\circ})} =$

4.57 psf42 psf (deck and concrete slabTotal = 47 psf

 $\begin{array}{lll} 5.0-12K1 & (15') \\ 5.0-16K2 & (19') \\ 0.5-W18\times 35 & (25') \\ 1.0-W16\times 31 & (25') \\ 1.0-W16\times 26 & (25') \\ 1.0-W8\times 10 & (15') \\ 1.0-W10\times 12 & (19') \end{array}$

(5)(5plf)(15') + (5)(5.5plf)(19') + (0.5)(35plf)(25') + (31plf)(25') + (26plf)(25') + (10plf)(15') + (12plf)(19')

(35')(25')

3.69 psf 36 psf (deck and concrete slab) **Total = 40 psf**

5) One-Way

From Table 8-1, CRSI 67 psf

Girders (34" × 13") 2.5 - 25' 1.0 - 15' 1.0 - 19'

150 pcf (34"/12)(13"/12) = 460.4 plf

 $\frac{(2.5)(460.4 \text{ plf})(25') + (460.4 \text{ plf})(15') + (460.4 \text{ plf})(19')}{(35')(25')} =$

50.78psf **Total = 118 psf** =