

Caitlin Ferrell Structural Option Senior Thesis Presentation Spring 2006

The Pennsylvania State University

Presentation Overview

- Project Background
- Depth Study:
 - Two alternative floor systems
 - Staggered truss system design
- Breadth Study
 - Mechanical
 - Acoustics

Project Background Building Statistics

- Size-
 - 11 stories
 - 132,000 sq.ft.
 - 200 guestrooms
- Part of the Bayfront Convention Center Complex

- \$62 million + local business contributions
- Expected completion date: Summer 2007

Project Background The Site

Project Background Existing Structure

Presentation Overview

Project Background

- Depth Study
 - Two alternative floor systems
 - Staggered truss system design
- Breadth Study
 - Mechanical
 - Acoustics

Depth Study Proposal

- Need for open floor plans on lower levels
- Quick and inexpensive construction
- Lateral resistance to wind in N/S direction
- Hotel provides a regular pattern with a single corridor on the upper floors

Staggered Truss System

Depth Study Alternate Floor Systems

Precast Plank 8" hollow-core precast plank with 2" topping VS.

Steel Joist with Deck and Slab 22K7 (lower floors), 18K4 (upper floors) 22 Ga. 1.5" Composite Deck w/ 4" NW slab

Controlling Load Combinations

- N/S: 1.2D+1.6W+1.0L+0.5R
- E/W: 1.2D+1.0E+1.0L+0.2S

Building Drift (N/S Direction)

•Precast Plank System- 2.8"

• Joist System – 1.68"

Allowable Drift

- H/400
- 3.96"

Depth Study Alternate Floor Systems

Precast Plank Slightly Larger Members VS.

Steel Joist with Deck and Slab Adds 1' to each floor→11' total

- Additional Factors:
- •Erection and Coordination of Trades
- •Foundations
- •Fire Resistance
- •Architecture

Depth Study Structural Costs

Existing System Installed Cost per Ton of Steel						
	weight (lbs)	tons	pricing	total cost		
Columns	511765.29	255.8826	\$2,000.00	\$511,765.29		
Beams	481446.34	240.7232	\$2,000.00	\$481,446.34		
Cross-Bracing	101888.98	50.94449	\$2,200.00	\$112,077.88		
	\$1,105,289.51					

Depth Study Structural Costs

Staggered Truss w/ Plank Installed Cost per Ton of Steel					
	weight (lbs)	tons	pricing	total cost	
Transverse Beams	242967.54	121.48	\$2,500.00	\$303,709.43	
Col. Line 1	142171.76	71.09	\$2,000.00	\$142,171.76	
Col. Line 2	142171.76	71.09	\$2,000.00	\$142,171.76	
Truss Elevation A	47839.93	23.92	\$2,200.00	\$52,623.93	
Truss Elevation B	50478.00	25.24	\$2,200.00	\$55,525.80	
Truss Elevation C	48181.93	24.09	\$2,200.00	\$53,000.13	
Truss Elevation D	49425.36	24.71	\$2,200.00	\$54,367.89	
Truss Elevation E	47839.93	23.92	\$2,200.00	\$52,623.93	
Truss Elevation F	49059.16	24.53	\$2,200.00	\$53,965.07	
Truss Elevation G	48181.93	24.09	\$2,200.00	\$53,000.13	
Truss Elevation H	47421.16	23.71	\$2,200.00	\$52,163.27	
	\$1,015,323.08				

Depth Study Structural Conclusions

Presentation Overview

- Project Background
- Depth Study
 - Two alternative floor systems
 - Staggered truss system design
- Breadth Study
 - Mechanical
 - Acoustics

Breadth Study-Mechanical Open-Loop Geothermal Heat Pump

Existing System: air to air through the wall units

Proposed System: air to water system

- Higher COP (Coefficient of Performance)
- Saves 6.58 x 10⁵ kWh in heating per year
- Saves 7.52 x 10⁵ kWh in cooling per year
- Cost of electricity in PA at \$0.0873/kWh
- Additional energy needed to pump water from lake

\$119,752.85 saved per year

Breadth Study Open-Loop Geothermal Heat Pump

Initial Costs:

- Drilling, pipe, pumps, strainer, labor
- \$27,608.82

3 month payback period

Breadth Study-Acoustics Sound Transmission Through Guestroom Walls

Breadth Study-Acoustics Sound Transmission Through Guestroom Walls

Breadth Study-Acoustics Sound Transmission Through Guestroom Walls

Lp (Receiving Room)						
	125	250	500	1000	2000	4000
Normal Voice	17	9	4	-3	-7	-16
Raised Voice	14	5	-1	-12	-11	-22

Window AC Unit Sound Pressure - 5dB					
125	250	500	1000	2000	4000
59	60	51	48	53	39

