ANALYSIS 3

Alternate structural systems to replace the large steel I-beams in the gymnasium

Problem

Structural steel members in the Columbia Heights Community Center gymnasium are extremely large. They span a distance of 60'-0" and receive loading from the openplan office above as well as roof loads through transfer columns. The gymnasium is a two-story space and the average steel beam in this area is a W40x215x60'. These large members are very costly in terms of material and also require a larger crane to set them in place.

Goal

The goal of this analysis is to see if this system can be replaced with an alternate system that can save costs through use of less material. The current system will be modeled in RAM Steel v 10.0 to determine if it can be reduced or even changed to an open-web steel joist system.

Methodology

- 1. Determine the building loads that the current steel members support.
- 2. Design alternate systems using these loads in RAM Steel v10.0 modeling software.
- 3. Analyze the systems' impacts to cost and schedule.
- 4. Perform comparison between the proposed systems.
- 5. Select best viable solution.

Tools

- 1. RAM Steel v10.0 modeling software
- 2. R.S. Means 2006 Edition
- 3. AISC LRFD Manual of Steel Construction 3rd Edition
- 4. ASCE7 2005 Minimum Design Loads for Buildings
- 5. Canam Steel Corporation Joist Catalog
- 6. Penn State Architectural Engineering faculty

Outcome

Upon completion of the analysis and a tabulation of the results generated from the Ram Steel modeling software, it was determined that an open-web steel joist system will be less in price and save material (tonnage). In terms of erection speeds, the open-web joist system barely impacts the schedule, saving only a few minutes. Please see the following pages for the complete analysis including tables, loading diagrams, and layouts.

Building Load Determination

In order to enter the steel structure into the RAM modeling software, the buildings existing loading must be determined. Using a combination of the structural specifications for Columbia Heights Community Center and the ASCE7 2005 Minimum Design Loads for Buildings manual, the worst case scenario loadings were determined. On a few occasions, the structural specifications called for higher loads than the ASCE7 manual. When this occurred, the heavier load was used. Please see "*Table 1 – Building Loads*" on the following page for all the loads that were considered when redesigning the steel structure in the gymnasium.

Г

TABLE 1 - B	UILDIN	3 LOAD	5		
Snow	(roof slope	1/4" / 12")			
	C _e	Ct	I	p _g (psf)	p _f (psf)
0.7	0.9	1.0	1.1	25.0	17.33
	*Fully Expose	ed	*Category III		
*Quantities and calculation	**Category B	from ASCE7-05(Ch.7)		
** Use 30psf per drawing S					
Dead Loads					
		Load]		
Component		(psf)	-		
Roof			-		
PVC Roofing Membra (single ply)	ane	0.7	_		
Polyisocyanurate Boa Insulation (glass-fiber		1.1			
Skylight Metal Frame		8.0			
Steel Deck (20 gage)		2.5			
Concrete slab on dec (lightweight 3" thick)	k	50.0			
Green Roof*		50.0	_	* Per drawing S	1.00
Miscellaneous		0.7		r or aranning o	
		7			
Ceiling System (4th	Floor)		7		
Acoustical Fiberboard	1	1.0	_		
Mechanical Allowance	е	4.0	_		
Total:		118.0			
Floor System (4th Fl		1			
Carpet Tile		2.0	7		
Steel Deck (18 gage)		3.0	1		
Concrete slab on dec	k				
(lightweight 3" thick)		50.0			
Ceiling System (Gy	mnasium)]	-		
Mechanical Allo	wance	4.0		*Quantities and	
Total:	Total:]	method taken fro 05(Ch.3)	DITI ASCE7-
Live Loads					
	I	Load	7		
Component		(psf)	4	*Quantities and	coloulation
Fourth Floor		00.0	4	method taken fro	
Open Office / corridor	•	80.0	1	05(Ch.4)	

System Design

Once these building loads were identified, they were then entered into the RAM Steel v10.0 Modeling Software. Only the gymnasium ceiling (4th floor system) and the roof system were entered into the modeling software, along with their loadings, since these are the only systems that will affect the area of redesign. Initially, the existing members at their spacing of 6'-6" were looked at. Surprisingly, the RAM modeling software yielded results that show the existing large members, W40x215x60', reduced to W30x90x60'. This was unexpected considering the loadings determined in the previous section encompassed all known loads, both in the structural specifications and in the ASCE7 manual. Ultimately, the RAM software produced a system that was almost 50% lighter and would save around \$86,000.

After this analysis, a test was then run to determine if open-web steel joists could be used. In order for this type of system to work, the typical spacing had to be adjusted from the original 6'-6" to 4'-0" on center. Having done this, the RAM software was able to design a system with a standard joist of 44LH09 and a special joist of 44LH15 to handle the transfer columns. All joists are to have diagonal bridging, with a minimum angle size of 1-1/4, r=.25" (per *Table 2.5.2 Maximum Joist Spacing for Diagonal Bridging* in the *Canam Steel Corporation Joist Catalog*). This resulting open-web joist system was found to weigh approximately 10% less than the original system and cost about \$35,000 less.

On the following page, you will see "*Table 2 – System Comparison Sheet*", which gives a complete breakdown of each system and a summary comparison. On the pages following this table, you will find a floor plan for the original system, reduced steel system, and the open-web joist system. Also, you will find all calculations and loading models used to design the open-web joist system.

TABLE 2 - SYSTEM COMPARISON SHEET Original Steel System

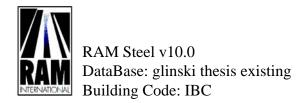
ltem	Number	Total Length (ft.)	Tons	Material \$ / Ton	Total Material \$	Labor \$ / Ton	Total Labor \$	Equipment \$ / Ton	Total Equipment \$	Total Cost	Daily Output (L.F. / day)	Total Work Days
Beams			Tons									
W 12x30	5	60.00	0.90	2550.00	\$2,295	360.00	\$324	169.00	\$152	\$2,771	810	0.074
W 14x22	20	144.00	1.58	2550.00	\$4,039	360.00	\$570	169.00	\$268	\$4,877	990	0.145
W 24x55	3	30.00	0.83	2550.00	\$2,104	360.00	\$297	169.00	\$139	\$2,540	1100	0.027
W 24x62	19	760.00	23.56	2550.00	\$60,078	360.00	\$8,482	169.00	\$3,982	\$72,541	1100	0.691
W 36x182	1	60.00	5.46	2550.00	\$13,923	360.00	\$1,966	169.00	\$923	\$16,811	1125	0.053
W 40x183	1	60.00	5.49	2550.00	\$14,000	360.00	\$1,976	169.00	\$928	\$16,904	1025	0.059
W 40x199	2	120.00	11.94	2550.00	\$30,447	360.00	\$4,298	169.00	\$2,018	\$36,763	1025	0.117
W 40x215	2	120.00	12.90	2550.00	\$32,895	360.00	\$4,644	169.00	\$2,180	\$39,719	1025	0.117
Total	53	1354.00	62.66		\$159,780		\$22,557		\$10,589	\$192,927		1.284

Reduced Steel System

Item	Number	Total Length (ft.)	Tons	Material \$ / Ton	Total Material \$	Labor \$ / Ton	Total Labor \$	Equipment \$ / Ton	Total Equipment \$	Total Cost	Daily Output (L.F. / day)	Total Work Days
Beams			Tons									
W 8x10	25	184.00	0.92	2550.00	\$2,346	360.00	\$331	169.00	\$155	\$2,833	810	0.227
W 10x12	2	20.00	0.12	2550.00	\$306	360.00	\$43	169.00	\$20	\$369	810	0.025
W 12x16	1	10.00	0.08	2550.00	\$204	360.00	\$29	169.00	\$14	\$246	810	0.012
W 16x26	4	80.00	1.04	2550.00	\$2,652	360.00	\$374	169.00	\$176	\$3,202	810	0.099
W 16x31	1	20.00	0.31	2550.00	\$791	360.00	\$112	169.00	\$52	\$954	810	0.025
W 18x35	3	60.00	1.05	2550.00	\$2,678	360.00	\$378	169.00	\$177	\$3,233	990	0.061
W 21x44	2	80.00	1.76	2550.00	\$4,488	360.00	\$634	169.00	\$297	\$5,419	990	0.081
W 21x50	1	60.00	1.50	2550.00	\$3,825	360.00	\$540	169.00	\$254	\$4,619	990	0.061
W 24x55	8	480.00	13.20	2550.00	\$33,660	360.00	\$4,752	169.00	\$2,231	\$40,643	1100	0.436
W 27x84	4	240.00	10.08	2550.00	\$25,704	360.00	\$3,629	169.00	\$1,704	\$31,036	1125	0.213
W 30x90	2	120.00	5.40	2550.00	\$13,770	360.00	\$1,944	169.00	\$913	\$16,627	1025	0.117
Total	53	1354.00	34.54		\$88,077		\$12,434		\$5,837	\$106,349		1.129

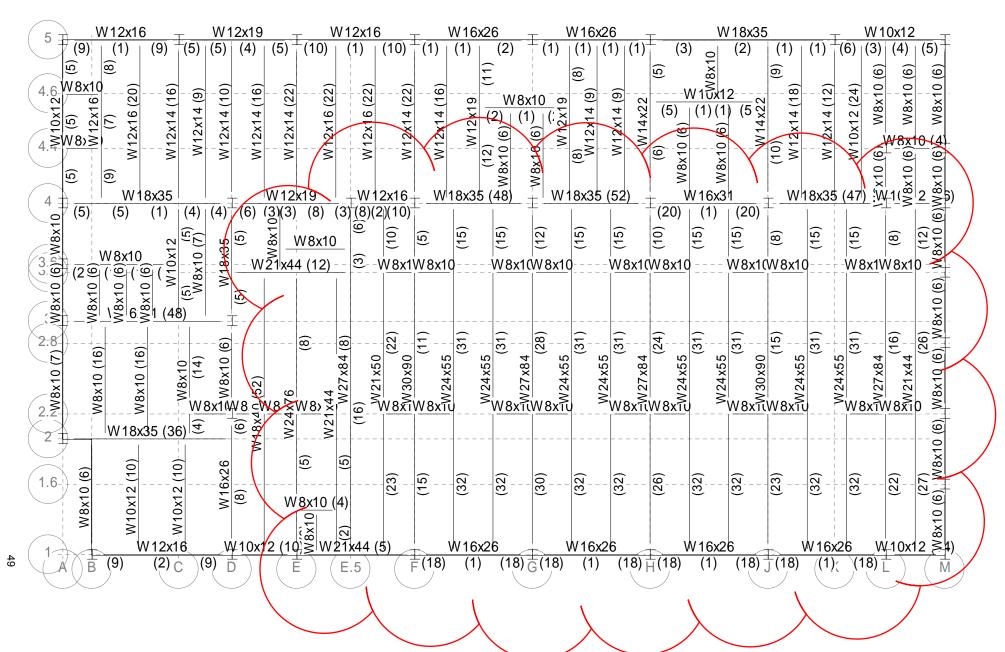
Proposed Steel Joist System

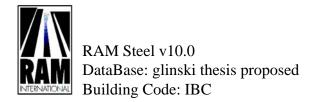

ltem	Number	Total Length (ft.)	Tons	Material \$ / L.F.	Total Material \$	Labor \$ / L.F.	Total Labor \$	Equipment \$ / L.F.	Total Equipment \$	Total Cost	Daily Output	Total Work Days
Steel Joists												
44LH15	6	358.50	6.45	28.50	\$10,217.25	1.36	\$487.56	0.68	\$243.78	\$10,948.59	2200	0.163
44LH09	18	1075.50	10.22	14.85	\$15,971.18	1.36	\$1,462.68	0.68	\$731.34	\$18,165.20	2200	0.489
				Material		Labor						
Beams				\$ / Ton		\$ / Ton						
W 8x10	10	100.00	3.80	2550.00	\$9,690	360.00	\$1,368	169.00	\$642	\$11,700	600	0.167
W 12x19	4	80.00	0.61	2550.00	\$1,556	360.00	\$220	169.00	\$103	\$1,878	880	0.091
W 14x22	1	20.00	16.61	2550.00	\$42,356	360.00	\$5,980	169.00	\$2,807	\$51,142	990	0.020
W 16x26	3	60.00	2.50	2550.00	\$6,375	360.00	\$900	169.00	\$423	\$7,698	1000	0.060
W 16x31	1	20.00	1.43	2550.00	\$3,647	360.00	\$515	169.00	\$242	\$4,403	900	0.022
W 18x35	1	60.00	17.15	2550.00	\$43,733	360.00	\$6,174	169.00	\$2,898	\$52,805	960	0.063
Total	44	1774.00	58.77		\$133,543.43		\$17,106.24		\$8,090.02	\$158,739.69		1.074


System Comparison Summary

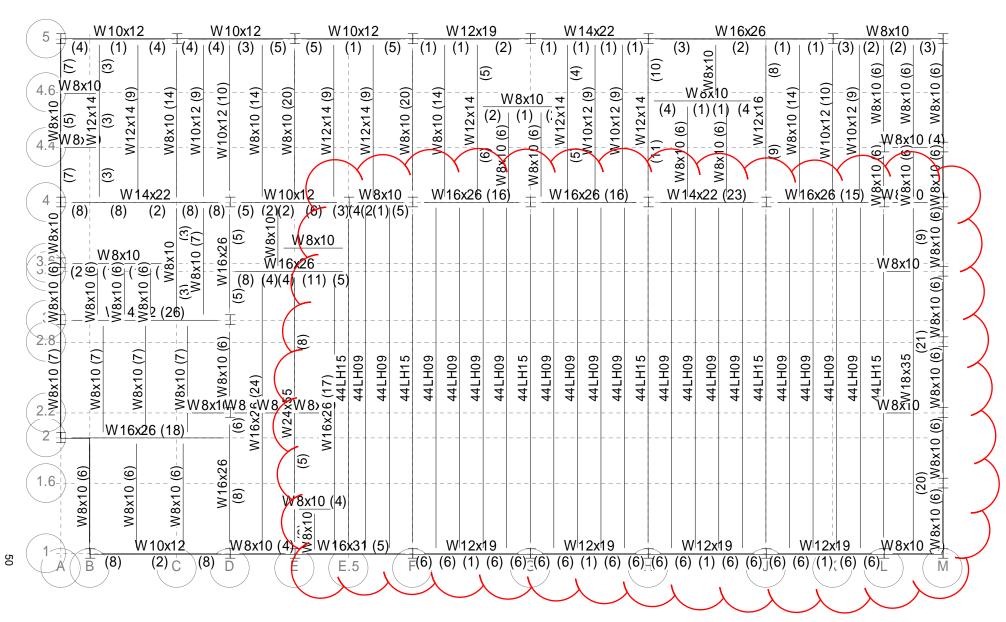
ltem	Number	Total Length (ft.)	Tons	Total Material \$	Total Labor \$	Total Equipment \$	Total Cost	Total Work Days
Original Steel System	53	1354.00	62.66	\$159,780.45	\$22,557.24	\$10,589.37	\$192,927.06	1.284
Reduced Steel System	53	1354.00	34.54	\$88,077.00	\$12,434.40	\$5,837.26	\$106,348.66	1.129
Proposed Steel Joist System	44	1774.00	58.77	\$133,543.43	\$17,106.24	\$8,090.02	\$158,739.69	1.074

* Costs and daily output taken from R.S. Means 2006


** Systems only include the area of redesign, the gymnasium ceiling structure, Columns 1-4 and E.5 - M.



03/22/06 21:27:43 Steel Code: ASD 9th Ed.


Floor Type: FOURTH

03/22/06 21:25:40 Steel Code: ASD 9th Ed.

Floor Type: FOURTH

Gravity Beam Design Takeoff

RAM Steel v10.0 DataBase: glinski thesis proposed Building Code: IBC

STEEL BEAM DESIGN TAKEOFF:

Floor Type: ROOF Story Level 2 Steel Grade: 50

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	144	2526.26	25445
W10X12	7	143.91	1734
W12X14	4	88.00	1246
W12X16	4	103.00	1651
W8X18	1	24.00	430
W12X19	1	31.33	594
W14X22	4	110.25	2435
	165		33533

Total Number of Studs = 897

Floor Type: FOURTH Story Level 1

Steel Grade: 50

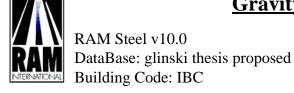
SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	59	870.09	8764
W10X12	11	270.16	3254
W12X14	7	194.25	2750
W12X16	1	27.75	445
W12X19	5	100.00	1895
W14X22	4	97.50	2153
W16X26	10	280.24	7324
W16X31	1	20.00	621
W18X35	1	59.75	2094
W24X55	1	48.00	2662
	100		31962

Total Number of Studs = 1010

TOTAL STRUCTURE GRAVITY BEAM TAKEOFF

Steel Grade: 50

Gravity Beam Design Takeoff


RAM Steel v10.0 DataBase: glinski thesis proposed Building Code: IBC

Page 2/3 03/22/06 21:25:40 Steel Code: ASD 9th Ed.

SIZE	#	LENGTH (ft)	WEIGHT (lbs)	
W8X10	203	3396.35	34209	
W10X12	18	414.07	4988	
W12X14	11	282.25	3995	
W12X16	5	130.75	2096	
W8X18	1	24.00	430	
W12X19	6	131.33	2489	
W14X22	8	207.75	4588	
W16X26	10	280.24	7324	
W16X31	1	20.00	621	
W18X35	1	59.75	2094	
W24X55	1	48.00	2662	
	265		65496	

Total Number of Studs = **1907**

Gravity Beam Design Takeoff

JOIST SELECTION TAKEOFF:

Floor Type: FOURTH Story Level 1

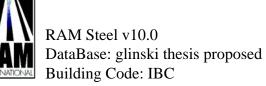
Standard Joists:

SIZE 44LH09	# 18	LENGTH (ft) 1075.50	WEIGHT (lbs) 20435
Special Joists:	18		20435
SIZE 44LH15	# 6 6	LENGTH (ft) 358.50	WEIGHT (lbs) 12906

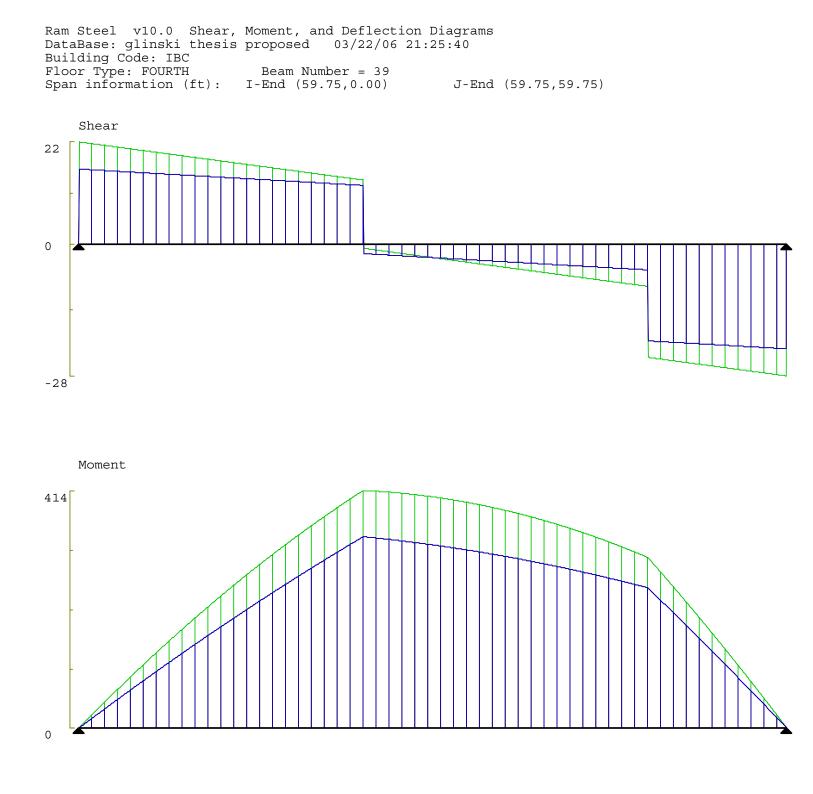
TOTAL STRUCTURE JOIST SELECTION TAKEOFF

Standard Joists:

SIZE	#	LENGTH (ft)	WEIGHT (lbs)
44LH09	18	1075.50	20435
	18		20435
Special Joists:			
SIZE	#	LENGTH (ft)	WEIGHT (lbs)
44LH15	6	359	12906
	6		


Special Joist Selection

RAM Steel v10.0 DataBase: glinski thesis proposed Building Code: IBC


03/22/06 21:25:40

Floor Typ	e: FOURT	H	Bear	m Number	· = 39			
Joist S	ORMATI ize (User S Beam Lengt	elected)	=	9.75,0.00) 44LH15 59.75	J-End	(59.75,5)	9.75)	
POINT LO Dist 24.000 48.000	DADS (kip DL 14.24 14.61	s): RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%
LINE LO	ADS (k/ft):							
Load	Dist	DL	LL	Red%	Typ	be		
1	0.000	0.140	0.200	6.4%				
	59.750	0.140	0.200					
2	0.000	0.000	0.000		Non	R		
	59.750	0.000	0.000					
MOMEN	ГS:							
Span	Cond		Moment		@			
1			kip-ft		ft			
Center	Max	+	413.8	24	4.0			
REACTIO	ONS (kips):							
				Left	Right			
DL rea	action			15.57	21.64			
Max +	LL reaction	1		5.59	5.59			
Max +	total reaction	on		21.17	27.23			

03/22/06 21:25:40

	: FOURTH nation (ft): I-End (5	Beam Num 9.75,0.00) J-	ber = 39 End (59.75,59.75	5)		
		P1			P 2	
W1						W 2
Load	Dist	DL	LL+	LL-	Max Tot	_
	ft	kips	kips	kips	kips	
P1	24.000	14.240	0.000	0.000	14.240	
P2	48.000	14.607	0.000	0.000	14.607	
	ft	k/ft	k/ft	k/ft	k/ft	
W1	0.000	0.140	0.187	0.000	0.327	
W2	59.750	0.140	0.187	0.000	0.327	

Max DL Shear = 21.64 kips Max Shear = 27.23 kips at 24.000 ft Max Pos Moment = 413.79 kip-ft

Standard Joist Selection

RAM Steel v10.0 DataBase: glinski thesis proposed Building Code: IBC

03/22/06 21:25:40

Floor Type: FOURTH

Beam Number = 172

SPAN INFORMATION (ft): I-End (63.75,0.00) J-End (63.75,59.75)

Joist Size (User Selected)	= 44LH09
Total Beam Length (ft)	= 59.75
LINE LOADS (k/ft):	

Load	Dist	DL	LL	Red%	Type
1	0.000	0.140	0.200	6.4%	Red
	59.750	0.140	0.200		
2	0.000	0.000	0.000		NonR
	59.750	0.000	0.000		

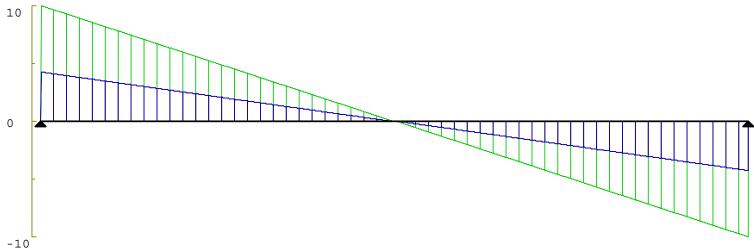
Maximum Total Unif. Load at any location (lbs/ft): 327.2

Allowable Stress Ratio: 1.00

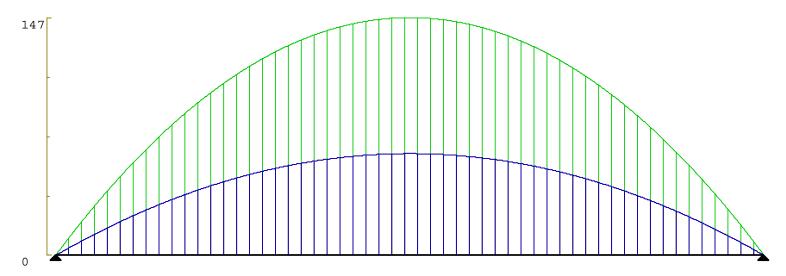
	Design Loads		Allowable Loads (lbs/ft)		
Dead:		140.0			
Live:		187.2			240.4
Total:		327.2			334.6
MOMENTS:					
Span	Cond	Moment		@	
-		kip-ft		ft	
Center	Max +	146.0	2	9.9	
REACTIONS (kips):					
			Left	Right	
DL reactio	n		4.18	4.18	
Max +LL	reaction		5.59	5.59	
Max +tota	l reaction		9.78	9.78	
DEFLECTIO	NS:				
Dead load	(in)	= 1	.160	L/D =	618
Live load	(in)	= 1	.551	L/D =	462
Total load	(in)	= 2	2.711	L/D =	264

Load Diagram

RAM Steel v10.0 DataBase: glinski thesis proposed Building Code: IBC


03/22/06 21:25:40

Floor Type: FOURT	H Beam N	Beam Number = 172		
Span information (ft):	I-End (63.75,0.00)	J-End (63.75,59.75)		


W1						W2
Load	Dist	DL	LL+	LL-	Max Tot	
	ft	k/ft	k/ft	k/ft	k/ft	
W1	0.000	0.140	0.187	0.000	0.327	
W2	59.750	0.140	0.187	0.000	0.327	

Ram Steel v10.0 Shear, Moment, and Deflection Diagrams DataBase: glinski thesis proposed 03/22/06 21:25:40 Building Code: IBCFloor Type: FOURTHSpan information (ft):I-End (63.75,0.00) J-End (63.75,59.75) Shear

Moment

Max DL Shear = 4.18 kips Max Shear = 9.78 kips at 29.875 ft Max Pos Moment = 146.02 kip-ft

Conclusion

Overall, the RAM Steel software was extremely helpful for redesigning the steel system in the gymnasium. After determining all the building loadings and entering that information into the RAM model, it was determined that the steel system could be reduced (still incorporating steel I-beams), or it could be changed to open-web steel joists. Each system would reduce the amount of steel material in Columbia Heights Community Center, which would yet again support the building's LEED[®] aspect. Along with the savings of material, costs would also be reduced. The reduced system would save approximately \$85,000 while the open-web joists would save roughly \$35,000. Each option would only affect the schedule by a few minutes, and thus, this should be considered negligible.

Ultimately, the option of open-web joists should be pursued. Despite the fact that it does not reduce costs and material tonnage as much as the reduced steel system, it is a more solid system that is known to handle the loads. The results from the RAM model that produced the reduced steel system were unexpected. The structural engineer must have included some extra loading in order to obtain the large sized members. Using the open-web steel joists will maximize the ceiling space in the gymnasium since the ducts could pass between the open-webs. It would also be a safer choice that would still reduce costs and material amounts.