Technical Assignment 2

A Report Investigating the Consumption and Compliances of the Design Document Systems LA Fitness, West Oaks Houston,Texas

Prepared For Dr. James Freihaut and Dr. Jae-Weon Jeong The Pennsylvania State University

> By David J. Melfi Mechanical Option October 31, 2005

Table of Contents

Table of Contents	1
Executive Summary	2
Mechanical System First Cost	3
Lost Rentable Space	3
ASHRAE Standard 90.1-2004: Building Envelope	4
ASHRAE Standard 90.1-2004: Lighting	7
Design Load Estimation	9
LEED Green Building Certification Rating System	12
Energy Appendix	16

Executive Summary

The purpose of this report is to analyze the West Oaks location of LA Fitness located in Houston, Texas. This report reviews the first cost of the mechanical system, the lost rentable space as a result of the system, the building compliance with ASHRAE Standard 90.1-2004, the building's LEED credit points, and energy consumption.

The building's air handling system is comprised of 13 packaged rooftop air handling units. The first cost of the entire mechanical system including these units is \$551,000. That correlates to \$11.98/sf for the 46,000 sf building. The lost rentable space due to this system turned out to be negligible due to the small duct sizes and rooftop location of the units.

The two sections of ASHRAE 90.1-2004 that were checked were Section 5 on building envelope compliance and Section 9 for lighting compliance. After comparing the design documents with the standards requirements, it was found that the building did meet the building envelope standard, but failed to meet the lighting standard. This building was designed to satisfy the 2001 version of this standard and did not comply with the 2004 revisions which were more stringent on lighting power densities.

LA Fitness, West Oaks was not designed to meet the LEED criteria as can be seen by the results of that assessment. The building received 8 out of a possible 69 points.

Trane's energy simulation program TRACE was used to find the as-designed systems in the building. The results of this energy analysis showed that the building would use 1,676,874 kWh of energy each year. These results provided the lbm/yr data of building emissions that will be generated as found in the report.

Mechanical System First Cost

The mechanical system first cost came out to be \$551,000 in total. This correlates to \$11.98/sf.

Equipment	\$298,000.00
Fans &	
Grills	\$40,000.00
Controls	\$14,000.00
Ductwork	\$135,000.00
Т&В	\$13,000.00
Sales Tax	\$29,000.00
Misc	\$22,000.00
Total	\$551,000.00
Total/sf	\$11.98

The first cost figures shown below represent the first cost of the mechanical system for the West Oaks location of LA Fitness. These are the figures presented to the owner for owner review document set. These numbers are subject to change because the building has not been constructed yet, and there may be design alterations as the project develops.

Lost Rentable Space

There was not a very significant loss of rentable space due to the mechanical systems. The mechanical equipment for this building is almost entirely located on the roof of the building. The air for this building is handled by 13 packaged rooftop units. However, there is an equipment room that is dedicated to serving the pool equipment. This room is approximately 290 sf. This correlates to 0.63% of the buildings rentable area.

Typically, in larger buildings there is a loss of rentable space due to large vertical mechanical shaft runs. This is not significant in this building as it is only a two story building, and the duct runs are not as cumbersome.

Standard 90.1

Section 5 Building Envelope

In order to satisfy this standard, this building would have to comply with Sections: 5.1 (General), 5.4 (Mandatory Provisions), 5.5 (Prescriptive Building Envelope Option), 5.7 (Submittals), and 5.8 (Product Information and Installation Requirements).

5.1 General

All of the spaces at this location are categorized to be conditioned spaces in accordance with section 5.1.2.2. The building's spaces are nonresidential conditioned space.

Figure B-1 in Appendix B of Standard 90.1 shows that Fort Bend County of Houston, TX falls under into category 2A.

5.4 Mandatory Revisions

5.5 Prescriptive Building Envelope Option: *Opaque Areas:*

As this is a conditioned space, the exterior building envelope is to comply with the nonresidential requirements for climate section 2A. These requirements are:

Item	Description	Insulation Min.
		R-Value
Roofs	Insulation Entirely above Deck	R-15.0
Mass Walls	8" Tilt-wall construction with 2" insulation	Not Required
Floors	Steel Joist	R-19.0
Slab-On-Grade Floors	Unheated	-
Opaque Doors	Swinging	-

In the design documents, the architect calls for a roof assembly that ends up being R-24. This assembly far exceeds the R-15 criteria called for by the standard. The floor system has an R-value of 22 which will satisfy the R-19 requirement between the floors.

Fenestration:

The second part of the prescriptive method deals with fenestration. One major factor is the vertical fenestration area. The standard requires the total vertical fenestration area to be less than 50% of the gross wall area. As for skylight fenestration, it is to be less than 5% of the gross roof area..

Two major factors used when evaluating fenestration are the Solar Heat Gain Coefficient and the fixed or operable window U-values.

Fenestration	Operable/Fixed	% Glazing	Assembly Max. U	SHGC
North	All Fixed	6.96	1.22	0.61
South	All Fixed	6.96	1.22	0.25
East	All Fixed	3.86	1.22	0.25
West	All Fixed	24.9	1.22	0.25

This table shows the requirements for LA Fitness

U-Values for the windows used were 0.95 $Btu/h-ft^{2-o}F$. This values meets the 90.1 requirement for all of the orientations.

The SHGC was found to be 0.23 for these windows from the materials and information provided in the mechanical design documents. The solar coefficient is very close to the limit, so there will probably be a considerable heat load from solar radiation in spaces on the west elevation.

*Values for SHGC and U-Values were obtained from ASHRAE 2005 Fundamentals Handbook

5.7 Submittals

The submittals section essentially states that an authority with jurisdiction may require compliance documentation. This section of the standard has been met by the designers.

5.8 Product Information and Installation Requirements

The primary reason for this requirement is to ensure that insulation products are labeled clearly, labeled accurately, and reasonably protected. The standard requires clear identity of rated R-values. This part of the standard also requires that the installation of the insulation materials is done in such a way as to meet the listed values. Another requirement of this section is that the installation of recessed equipment (i.e. lighting fixtures, ductwork, etc.) does not adversely affect the thickness or performance of insulation. Exterior insulation is to be covered to protect it from prevailing outdoor weather conditions. Equipment is to be covered

This section of the standard can not be verified until after construction is complete due to the requirements that can only be inspected and evaluated at that point.

Envelope Conclusion:

This building meets all of the requirements necessary for passing the ASHRAE 90.1 2004 standard pending the post construction requirements being met. The windows were very close to the limits and it will be important in the commissioning phase to ensure that the listed glazing materials are not substituted during construction.

Standard 90.1

Section 9 Lighting

In order to pass this section of the standard, the building must satisfy: 9.1 (General), 9.4 (Mandatory Provisions), and either 9.5 (Building Area Method) or 9.6 (Space-by-Space Method)

The major design sections for this part of the standard are 9.5 or 9.6.

While the building area method is a more simplified approach to determine the power densities, a greater flexibility arises from the space-by-space method. Here are the results of an analysis from both methods.

Building Area Method

Building Area Type:	Exercise Center
Allowed Lighting Power Density:	1.0 W/ft^2
Gross Lighted Floor Area:	46,000 ft ²
Lighting Watts Used in Spaces:	84480 W
Actual Lighting Power Density:	1.84 W/ft ²

The lighting designer for this project stated that the code that the building was designed to was ASHRAE Standard 90.1 2001. This could possibly explain the higher power density. The 2004 revision to the standard was much more stringent with power densities. Tightening up the power densities was a major goal of this revision.

Space-by-Space Method

Space	Area (ft^2)	90.1 Category	90.1 Density (W/ft^2)	90.1 Watts Allowed
Aerobics	3083	Exercise Area	0.9	2774.7
Raquetball	835	Court Sports Area	2.3	1920.5
Raquetball	835	Court Sports Area	2.3	1920.5
Raquetball	835	Court Sports Area	2.3	1920.5
Raquetball	835	Court Sports Area	2.3	1920.5
Raquetball	835	Court Sports Area	2.3	1920.5
Restrooms	148	Restrooms	0.9	133.2
Storage	228	Active Storage	0.8	182.4
Kid's Club	1840	Playing Area	1.4	2576
Free Weights	2974	Exercise Area	0.9	2676.6
Basketball	3810	Court Sports Area	2.3	8763

David Melfi Mechanical Option

Storage	460	Active Storage	0.8	368
		· · · · ·		
Sp. Exercise	1366	Exercise Area	0.9	1229.4
Equipment				
Room	147	Exercise Area	0.9	132.3
Cardiovascular	10520	Exercise Area	0.9	9468
Mezzanine	3000	Exercise Area	0.9	2700
Trainer's Office	217	Office-Open Plan	1.1	238.7
Spinning	1141	Exercise Area	0.9	1026.9
Pool Equipment	290	Equipment Room	1.2	348
Pool & Spa	4112	Exercise Area	0.9	3700.8
		Locker/Fitting		
Locker Rooms	4125	Room	0.6	2475
Reception	1420	Lobby	1.3	1846
Membership				
Sales	687	Office-Open Plan	1.1	755.7
Juice Bar	280	Leisure Dining	1.4	392
Stairs	1977	Stairs-Active	0.6	1186.2

Interior Power Lighting Allowance	52575.4
Actual Lighting Used	84480

To meet the lighting requirements of Standard 90.1 the building must pass either the Building Area Method or the Space-by-Space Method. This building failed to meet either method and therefore does not pass Standard 90.1 for lighting.

Design Load Estimation:

Trane's energy simulation program TRACE was used to evaluate the systems as they appear in the design documents. No existing data for yearly consumption exists for comparison with these simulated loads because this is a new building. The simulation used actual data from design documents for inputs as opposed to "rule of thumb" measures. Lighting loads were input on a W/ft² basis and are not as space specific. The lights are very evenly distributed with throughout the building with few exceptions (i.e. more powerful display lighting in reception area).

Weather Conditions:

The program TRACE has preset conditions for many U.S. cities. For the purpose of the computer simulation, Houston was selected. From this point, data overrides for dry and wet bulb temperatures were established. The data used for these overrides come from the ASHRAE 2005 Fundamentals Handbook. These are the values for the 0.4% condition.

	Cooling		Heating
	Dry Wet Bulb Bulb		Dry
			Bulb
Fort Bend County,			
Houston, TX	96.9	80.1	27.7

Rooms:

All of the spaces in the building were input to TRACE with their appropriate design occupants, square footages, exterior orientations, glazing ratios, and other miscellaneous equipment loads.

Air-side Sytems:

The initial decision made was to use multizone rooftop units for the air-side systems in the buildings. The building uses packaged rooftop units that serve one or more zone, so this choice seemed to be a perfect fit. However, due to the way in which TRACE models that piece of equipment, there would need to be a chiller that serves the coils. As there is no chiller on site, new modeling techniques had to be implemented.

The units at the site are natural gas fired units that use R-22 as the refrigerant. All of the units are air cooled. With this in mind, a decision was made to model these units as "variable refrigerant volume" handlers. This eliminated the use of chillers from TRACE's calculation.

Assignments:

Every conditioned space in the building was assigned to its listed air-handler. Each of these air-side systems was assigned a cooling and heating mechanism to run the calculation s from. The cooing mechanism chosen was an air-cooled unitary unit consuming

Energy Rates:

To finish the energy consumption analysis, a power company with rates for Houston, TX had to be established. A sample company with the rates listed below was created and utilized during the simulation.

As of July 2005, natural gas was valued at 8.43/1000 ft³ in Texas. Electricity was selling at an average of 0.078/kilowatt-hour in 2004.

Spark Gap Calculation:

Natural Gas: Electricity:	\$8.43/1000 ft ³ = \$0.078/kilowatt-hour =	\$8.03/MMBtu \$22.86/MMBtu
Spark Gap =	\$22.86 - \$8.03 =	\$14.83
Demand used	in simulation:	\$8/kW

*Natural gas data obtained from the Energy Information Administration <u>http://www.eia.doe.gov/emeu/states/main_tx.html</u>

*Electricity data obtained from Public Policy Institute http://www.ppinys.org/reports/jtf2004/electricprice.htm

Schedules:

There were three schedules set up for modeling this building. The schedules set up were set up based on an exercise center's most usable hours. A weekend schedule showed more use from 8 A.M. to 7 P.M.. The weekday schedule had higher load before and after work hours until night. The third schedule was for a high energy days in the summer in Texas when the coils would be seeing their highest design loads.

David Melfi Mechanical Option

Energy Use:

	Elect Cons. (kWh)	Energy		(kBtu/yr)
Primary heating		0.00	%	0.00
Cooling Compressor	633,873.56	37.80	%	64,908.80
Tower/Cond Fans	52,352.87	3.12	%	5,360.95
Condenser Pump		0.00	%	0.00
Other CLG Accessories	414,385.12	24.71	%	42,433.14
Cooling Subtotal	1,100,611.50	65.63	%	112,702.88
Supply Fans	33,394.59	1.99	%	3,419.61
Circ Pumps		0.00	%	0.00
Base Utilities		0.00	%	0.00
Aux Subtotal	33,394.59	1.99	%	3,419.61
Lighting	542,872.94	32.37	%	55,590.32
Receptacles		0.00	%	0.00
Base Utilities		0.00	%	0.00
Cogeneration		0.00	%	0.00
Totals**	1,676,879.00	100.00	%	171,712.80

Emissions:

	Texas Grid lbm/year			Bui	lding Emissi	ons lbm/yea	r	
Fuel	Particulates	SO₂/kWh	NO _x /kWh	CO₂/kWh	Particulates	SO₂/kWh	NO _x /kWh	CO₂/kWh
Coal	4.51E-04	5.24E-03	3.04E-03	8.82E-01	7.56E+02	8.79E+03	5.10E+03	1.48E+06
Natural								
Gas	0	6.21E-06	1.17E-03	6.17E-01	0.00E+00	1.04E+01	1.96E+03	1.03E+06
Totals	4.51E-04	5.25E-03	4.21E-03	1.50E+00	7.56E+02	8.80E+03	7.06E+03	2.51E+06

LEED Green Building Certification Rating System

The LEED (Leadership in Energy and Environmental Design) Green Building Certification Rating System is a set of checks and measures provided by the U.S. Green Building Council. The purpose of this system is to be a design guideline for determining whether a building is "green" or not. There are six major categories that are evaluated, and within those categories, points are awarded for energy efficient design techniques. When a building has been thoroughly examined and the points have been tallied, the building is labeled inadequate, certified, silver, gold, or platinum with platinum being the highest LEED honor.

After analyzing the criteria for LEED certification it became clear that the West Oaks location of LA Fitness was not going to meet the requirements necessary. The designers of this location were not given the budget or design flexibility to consider many of the methods and decisions necessary. This building received 8 out of the 69 possible credit points.

A number of the design points were quite close to suitable and could easily be reworked to achieve credit, however it would take considerable redesign to obtain enough points necessary for the lowest level of certification (26 points).

The first major change that would have to occur would be for the building to meet all of the section prerequisites. This site is currently not meeting ASHRAE Standard 62 requirements. The building is meeting locally governed ventilation requirements, but they are less stringent, and not accepted for LEED. Also, R-22 is being used in the packaged rooftop units that serve the air in the building. This is another prerequisite violation that occurs. The other instance of prerequisite violation is a commissioning requirement that could be fixed by simply sending out an inspection crew that did not work on the major design.

While there is much room for improvement in terms of energy savings on this project, it would first be necessary to bring all of the prerequisites up to par to make this building eligible for certification.

	Sustainable Sites		
	Description	Possible	Earned
Prereq			
1	Erosion & Sedimentation Control	Req'd	Yes
Credit 1	Site Selection	1	1
Credit 2	Urban Redevelopment	1	1
Credit 3	Brownfield Redevelopment	1	0
Credit			
4.1	Alternative Transportation, Public	1	0
Credit			
4.2	Alternative Transportation, Bicycle	1	0
Credit			
4.3	Alternative Transportation, Fuel	1	0

wiechanic			nous
Credit			0
4.4	Alternative Transportation, Parking	1	0
Credit 5.1	Reduced Site Disturbance, Open Space	1	0
Credit	Reduced Sile Disturbance, Open Space		0
5.2	Reduced Site Disturbance, Footprint	1	0
Credit		•	0
6.1	Stormwater Management, Rate & Quantity	1	0
Credit			-
6.2	Stormwater Management, Treatment	1	0
Credit			
7.1	Heat Island Effect, Non-Roof	1	0
Credit			
7.2	Heat Island Effect, Roof	1	0
Credit 8	Light Pollution Reduction	1	0
	Water Efficiency		
Credit			
1.1	Water Efficient Landscaping, Reduce by 50%	1	0
Credit			
1.2	Water Efficient Landscaping, No Potable/Irrigation	1	1
Credit 2	Innovative Wastewater Technologies	1	0
Credit			
3.1	Water Use Reduction, 20%	1	0
Credit			•
3.2	Water Use Reduction, 30%	1	0
	Energy & Atmosphere		
Prereq			
1	Fundamental Building Systems Commissioning	Req'd	No
Prereq		- Roy u	NO
2	Minimum Energy Performance	Req'd	Yes
Prereq			
3	CFC Reduction in HVAC&R Equipment	Req'd	No
Credit 1	Optimize Energy Performance	1-10	0
Credit			
2.1	Renewable Energy, 5%	1	0
Credit			
2.2	Renewable Energy, 10%	1	0
Credit			
2.3	Renewable Energy, 20%	1	0
Credit 3	Additional Commissioning	1	0
Credit 4	Ozone Depletion	1	0
Credit 5	Measurement & Verification	1	0
Credit 6	Green Power	1	0
Draws	Materials & Resources		
Prereq	Storage & Collection of Description	Deald	Vaa
1 Crodit	Storage & Collection of Recyclables	Req'd	Yes
Credit 1.1	Building Rouse Maintain 75% of existing shall	1	0
	Building Reuse, Maintain 75% of existing shell	1	0
Credit	Building Reuse, Maintain 100% of shell	1	0

			Hous
1.2			
Credit			
1.3	Building Reuse, Maintain 100% shell and 50% Non	1	0
Credit			
2.1	Construction Waste Management, Divert 50%	1	0
Credit			
2.2	Construction Waste Management, Divert 75%	1	0
Credid			
3.1	Resource Reuse, Specify 5%	1	0
Credid			
3.2	Resource Reuse, Specify 10%	1	0
Credit			
4.1	Recycled Content, Specify 5% (p.c. +1/2 p.i.)	1	0
Credit			
4.2	Recycled Content, Specify 10% (p.c. +1/2 p.i.)	1	0
Credit			
5.1	Local/Regional Materials, 20% Manufactured Locally	1	1
Credit	Local/Regional Materials, 20% of Above Harvested		
5.2	Locally	1	0
Credit 6	Rapidly Renewable Materials	1	0
Credit 7	Certified Wood	1	0
		1	
	nvironmental Quality		r
Prereq			
1	Minimum IAQ Performance	Req'd	No
Prereq			
2	Environmental Tobacco Smoke (ETS) Control	Req'd	Yes
Credit 1	Carbon Dioxide (CO2) Monitoring	1	0
			0
Credit 2	Ventilation Effectiveness	1	0
Credit 2 Credit	Ventilation Effectiveness	1	0
Credit			
Credit 3.1	Ventilation Effectiveness Construction IAQ Management Plan	1	1
Credit 3.1 Credit	Construction IAQ Management Plan	1	1
Credit 3.1 Credit 3.2			
Credit 3.1 Credit 3.2 Credit	Construction IAQ Management Plan Construction IAQ Management Plan	1	1
Credit 3.1 Credit 3.2 Credit 4.1	Construction IAQ Management Plan	1	1
Credit 3.1 Credit 3.2 Credit 4.1 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials	1 1 1	1 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2	Construction IAQ Management Plan Construction IAQ Management Plan	1	1
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials	1 1 1 1	1 0 0 1
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.2 Credit 4.3	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials	1 1 1	1 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials	1 1 1 1 1 1	1 0 0 1 1
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.3 Credit 4.4	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials	1 1 1 1 1 1 1	1 0 0 1 1 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials	1 1 1 1 1 1	1 0 0 1 1
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.3 Credit 4.4 Credit 5 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control	1 1 1 1 1 1 1 1	1 0 0 1 1 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5 Credit 5 Credit 6.1	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials	1 1 1 1 1 1 1	1 0 0 1 1 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5 Credit 5 Credit 6.1	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control	1 1 1 1 1 1 1 1	1 0 0 1 1 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.3 Credit 4.4 Credit 5 Credit 6.1 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control	1 1 1 1 1 1 1 1	1 0 0 1 1 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.3 Credit 4.4 Credit 5 Credit 6.1 Credit 6.2	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control Controllability of Systems	1 1 1 1 1 1 1 1 1	1 0 0 1 1 1 0 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5 Credit 6.1 Credit 6.2 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control Controllability of Systems Controllability of Systems	1 1 1 1 1 1 1 1 1 1	1 0 0 1 1 1 0 0 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.4 Credit 5 Credit 6.1 Credit 6.2 Credit 7.1	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control Controllability of Systems	1 1 1 1 1 1 1 1 1	1 0 0 1 1 1 0 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit 4.3 Credit 4.4 Credit 5 Credit 6.1 Credit 6.2 Credit 7.1 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control Controllability of Systems Controllability of Systems Thermal Comfort	1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 1 1 1 0 0 0 0 0
Credit 3.1 Credit 3.2 Credit 4.1 Credit 4.2 Credit 4.3 Credit	Construction IAQ Management Plan Construction IAQ Management Plan Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Low-Emitting Materials Indoor Chemical & Pollutant Source Control Controllability of Systems Controllability of Systems	1 1 1 1 1 1 1 1 1 1	1 0 0 1 1 0 0 0 0

David Melfi Mechanical Option

Credit	Doutlight & Viewe	1	0
8.2	Daylight & Views	1	0
Innovatio	on & Design Process		
Credit			
1.1	Innovation in Design	1	0
Credit			
1.2	Innovation in Design	1	0
Credit			
1.3	Innovation in Design	1	0
Credit			
1.4	Innovation in Design	1	0
Credit 2	LEED Accreditied Professional	1	1
Project T	otals		
Points		69	8

Energy Calculation Appendix:

Energy Consumed:

	Elect Cons. (kWh)	Energy		(kBtu/yr)
Primary heating		0.00	%	0.00
Cooling Compressor	633,873.56	37.80	%	64,908.80
Tower/Cond Fans	52,352.87	3.12	%	5,360.95
Condenser Pump		0.00	%	0.00
Other CLG Accessories	414,385.12	24.71	%	42,433.14
Cooling Subtotal	1,100,611.50	65.63	%	112,702.88
Supply Fans	33,394.59	1.99	%	3,419.61
Circ Pumps		0.00	%	0.00
Base Utilities		0.00	%	0.00
Aux Subtotal	33,394.59	1.99	%	3,419.61
Lighting	542,872.94	32.37	%	55,590.32
Receptacles		0.00	%	0.00
Base Utilities		0.00	%	0.00
Cogeneration		0.00	%	0.00
Totals**	1,676,879.00	100.00	%	171,712.80

Emissions Results:

		Texas Grid	lbm/year		Bui	lding Emissi	ons lbm/yea	r
Fuel	Particulates	SO₂/kWh	NO _x /kWh	CO₂/kWh	Particulates	SO₂/kWh	NO _x /kWh	CO₂/kWh
Coal	4.51E-04	5.24E-03	3.04E-03	8.82E-01	7.56E+02	8.79E+03	5.10E+03	1.48E+06
Natural								
Gas	0	6.21E-06	1.17E-03	6.17E-01	0.00E+00	1.04E+01	1.96E+03	1.03E+06
Totals	4.51E-04	5.25E-03	4.21E-03	1.50E+00	7.56E+02	8.80E+03	7.06E+03	2.51E+06

Design Airflow Quantities:

System Description	System Type	cfm	cfm	cfm	cfm	cfm	cfm	cfm
RTU-1	Variable Refrigerant Volume	500	5,000	5,000	5,000	500	0	0
RTU-2	Variable Refrigerant Volume	700	5,000	5,000	5,000	700	0	0
RTU-3	Variable Refrigerant Volume	3,500	10,500	10,500	10,500	3,500	0	0
RTU-4	Variable Refrigerant Volume	3,350	8,300	8,300	8,300	3,350	0	0
RTU-5	Variable Refrigerant Volume	750	7,500	7,500	7,500	750	0	0
RTU-6	Variable Refrigerant Volume	750	6,000	6,000	6,000	750	0	0
RTU-7	Variable Refrigerant Volume	1,000	10,000	10,000	10,000	1,000	0	0
RTU-8	Variable Refrigerant Volume	500	4,000	4,000	4,000	500	0	0
RTU-9	Variable Refrigerant Volume	1,675	6,600	6,600	6,600	1,675	0	0
RTU-10	Variable Refrigerant Volume	1,675	6,600	6,600	6,600	1,675	0	0
RTU-11	Variable Refrigerant Volume	748	5,500	5,500	5,500	748	0	0
RTU-12	Variable Refrigerant Volume	500	3,500	3,500	3,500	500	0	0
RTU-13	Variable Refrigerant Volume	750	5,900	5,900	5,900	750	0	0

ENGINEERING CHECKS

By PSU

				COOLING				HEATING	3	Floor Area
Description	Туре	% OA	cfm/ft ²	cfm/ton	ft²/ton	Btu/hr.ft ²	% OA	cfm/ft ²	Btu/hr.ft ²	ft²
Reception	Zone	10.00	3.59	449.9	125.2	95.86	10.00	3.59	-29.99	1,391
RTU-1	System - Variable Refrigerant Volume	10.00	3.59	449.9	125.2	95.86	10.00	3.59	-29.99	1,391
Child Restrooms	Zone	14.00	0.34	291.8	863.0	13.90	14.00	0.34	-4.16	148
Membership Sales	Zone	14.00	1.09	367.7	336.6	35.65	14.00	1.09	-8.13	686
Storage	Zone	14.00	0.95	374.5	393.2	30.52	14.00	0.95	-7.13	210
Juice Bar	Zone	14.00	1.54	385.9	250.8	47.85	14.00	1.54	-11.33	260
Kids Club	Zone	14.00	1.97	197.1	100.1	119.85	14.00	1.97	-41.71	1,829
RTU-2	System - Variable Refrigerant Volume	14.00	1.60	227.1	142.3	84.33	14.00	1.60	-27.74	3,133
Pool	Zone	33.33	2.55	277.2	108.6	110.55	33.33	2.55	-45.67	4,112
RTU-3	System - Variable Refrigerant Volume	33.33	2.55	277.2	108.6	110.55	33.33	2.55	-45.67	4,112
Lockers	Zone	40.36	2.16	271.5	125.7	95.46	40.36	2.16	-41.42	3,843
RTU-4	System - Variable Refrigerant Volume	40.36	2.16	271.5	125.7	95.46	40.36	2.16	-41.42	3,843
Basketball	Zone	10.00	1.97	439.6	223.3	53.74	10.00	1.97	-12.90	3,810
RTU-5	System - Variable Refrigerant Volume	10.00	1.97	439.6	223.3	53.74	10.00	1.97	-12.90	3,810
Free Weights	Zone	12.50	2.02	344.5	170.8	70.28	12.50	2.02	-14.08	2,974
RTU-6	System - Variable Refrigerant Volume	12.50	2.02	344.5	170.8	70.28	12.50	2.02	-14.08	2,974
Aerobics	Zone	10.00	3.24	397.6	122.6	97.89	10.00	3.24	-18.13	3,083
RTU-7	System - Variable Refrigerant Volume	10.00	3.24	397.6	122.6	97.89	10.00	3.24	-18.13	3,083
Raquetball	Zone	12.50	0.96	379.0	395.6	30.34	12.50	0.96	-9.16	4,175
RTU-8	System - Variable Refrigerant Volume	12.50	0.96	379.0	395.6	30.34	12.50	0.96	-9.16	4,175
Cardio	Zone	25.38	1.25	316.2	252.0	47.61	25.38	1.25	-15.70	5,260
RTU-9	System - Variable Refrigerant Volume	25.38	1.25	316.2	252.0	47.61	25.38	1.25	-15.70	5,260
Cardio2	Zone	25.38	1.25	316.2	252.0	47.61	25.38	1.25	-15.70	5,260
RTU-10	System - Variable Refrigerant Volume	25.38	1.25	316.2	252.0	47.61	25.38	1.25	-15.70	5,260
Special Exercise	Zone	13.60	2.38	414.6	174.3	68.86	13.60	2.38	-15.57	1,366
Lower Stairs	Zone	13.60	1.33	440.0	330.0	36.37	13.60	1.33	-8.78	1,500
Trainers Office	Zone	13.60	1.15	390.6	339.0	35.40	13.60	1.15	-7.61	217
RTU-11	System - Variable Refrigerant Volume	13.60	1.78	422.3	236.7	50.70	13.60	1.78	-11.71	3,083
Spinning	Zone	14.29	3.07	417.0	136.0	88.26	14.29	3.07	-21.23	1,141
RTU-12	System - Variable Refrigerant Volume	14.29	3.07	417.0	136.0	88.26	14.29	3.07	-21.23	1,141
Mezzanine	Zone	12.71	1.97	415.5	211.3	56.80	12.71	1.97	-12.82	3,000

ENGINEERING CHECKS

By PSU

				COOLING				HEATING	i	Floor Area
Description	Туре	% OA	cfm/ft ²	cfm/ton	ft²/ton	Btu/hr-ft ²	% OA	cfm/ft ²	Btu/hr-ft ²	ft²
RTU-13	System - Variable Refrigerant Volume	12.71	1.97	415.5	211.3	56.80	12.71	1.97	-12.82	3,000

By PSU

LA Fitness West Oaks Houston, TX System - RTU-1 Zone - Reception Room - Reception

Coil Location - Room

Ambient DB/WB/HR: 96 / 79 / 125

96 / 79 / 125 Coil Peak Calculation Time: August, hour 16

Total

COOLING COIL LOAD INFORMATION

Btu/h

5.318

3,500

11,906

11.1

0

24,680

0

0

Latent

70,488

108.70

3,500

49.95

91,112

1,481

0

0

0

0

0

10.0

3,359

3,324

133,375

255

0

0

0

0

0

-37721,180

tonft²/ton

Btu/h

8,051

0.2 %

0.0 %

133.38

0.0 %

3,500

0.0 %

0.0 %

68.3 %

1.1 %

0.0 %

449.86

2.5 %

0.0 %

0.0 %

100.0 %

60

0

0 0

1,330

0

3,324

0.0 %

033,085

cfm

0

71.02 77.8 / 64.8

Sensible

255

0

0

0

0

People

87,612

125.18

1,481

3,359

0

0

0

108,695

Exhaust Heat

Airflow / Load

Lighting Load to PlenumMisc. Equip. Load to Plenum1,330

Glass Transmission

Coil Total Load

Entering Air (DB / WB)Coil Entering Humidity Ratio

Floor Transmission Partition Transmission

Net Duct Heat PickupWall Load to Plenum

Glass Solar to Plenum Over/Under Sizing

Cooling AirflowResulting Room Relative Humidity 5,000.00

Load Component

Wall Transmission

Roof Transmission

Net Ceiling Load

Cooling Infiltration

Sub-Total ==>

Ventilation Load

Supply Fan Load

Return Fan Load

Terminal Bypass

Roof Load to Plenum

Glass Transmission to

Total Cooling Loads

Misc. Equipment Loads

Solar Gain

Sensible Load

Lighting

Load

Outdoor Air

Plenum

COOLING COIL SELECTION

Btu/h

Percent of Total Coil Selection Parameters

70,488	,	52.8 %	6.0 %	Co
°F	gr/lb			
Coil Leaving Air (DB / WB)	58.4 / 56.1			
Coil Leaving Humidity Ratio	63.87	gr/lb		
0	0	0.0 %	0.0 %	С
MBh	MBh			
Cooling Supply Air Temperature	58.60	°F		
5,318	7,000	4.0 %	5.2 %	Т
%				

General Engineering Checks

2.5 %

-377 24.8 %	-0.3 %	Total Cooling	g Load	Area /
Total Floor Area Cooling Airflow 0 60 cfm/ton Cooling Load Methodology 1.0 % 0.0 %		cfm/ft ² 0.0 %	Percent	

Project Name:	LA Fitness West Oaks
Dataset Name:	C:\CDS\TRACE700\Projects\LAFitness.trc

By PSU

LA Fitness West Oaks Houston, TX System - RTU-10 Zone - Cardio2 Room - Cardio2

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

60,412 0.0 %

Total

Coil Peak Calculation Time: August, hour 15

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 89.61 82.1 / 69.7 Wall Transmission 0 0 0.0 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 162.30 250.45 Net Ceiling Load 0 0.0 % 0 People Lighting 20.107 26,300 26,300 Cooling AirflowResulting Room Relative Humidity 6,600.00 58.45 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 46,407 26,300 72,707 29.0 % Ventilation Load Exhaust Heat 40.817 -3,72161,844 0102,661 Area / Load 252.03 20.9ton ft²/ton Load Supply Fan Load 1.956 1.956 0.8 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 0 316.24 Outdoor Air Airflow / Load 25.4 Roof Load to Plenum 11,406 11,406 4.6 % Lighting Load to PlenumMisc. Equip. Load to Plenum5,027 0 0 5,027 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 60,412 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 162,302 88,144 250,447 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	59.8 / 58.5	°F		
Coil Leaving Humidity Ratio	71.26	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	60.00	°F		
20,107	52,600	8.0 %	21.0 %	Total
%				

Percent of Total Coil Selection Parameters

General Engineering Checks

24.1 %

-3,721	41.0 % -1.5 %	Total Cooling
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.0 % 0.0 %	5,260 ft² 1.25 cfm/ft² 0.0 % 0.0 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-11 Zone - Trainers Office Room - Trainers Office

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

Total

0

°F

0

MBh

830

0.0 %

33.9 %

%

COOLING COIL LOAD INFORMATION

Btu/h

Latent

Btu/h

Sensible

Load Component

COOLING COIL SELECTION

Coil Leaving Air (DB / WB)

Coil Leaving Humidity Ratio

Cooling Supply Air Temperature

Btu/h	Percent	of Total	Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

Load Component	Sensible	Blu/II	Latent	Blu/II		ļ	1
Solar Gain G	lass Transmission		0	0			
Entering Air (DB / WB)Coil	Entering Humidity Ration	C	80.31 7	78.8 / 66.9			
Wall Transmission	0		0	0.0 %			
Roof Transmission	0		0	0.0 %			
Floor Transmission Part	ition Transmission		0	0			
Sensible Load	Coil Total Load		5.67	7.68			
Net Ceiling Load	0		0	0.0 %			
Lighting	People	830	675	675			
Cooling AirflowResulting Ro	oom Relative Humidity	250.00	55.76	cfm			
Misc. Equipment Loads	0	0	0	0.0 %			
Cooling Infiltration	0	0	0	0.0 %			
Sub-Total ==>	1,505	675	2,180	28.4 %		(,
Ventilation Load	Exhaust Heat	829	-321,	340 02	.169		
Load	339.01	0.6	tonft ²		,105		
Supply Fan Load	74	0.0	74	1.0 %			
Return Fan Load	0		0	0.0 %			
Net Duct Heat PickupWa	all Load to Plenum		Ō	0			
Outdoor Air	Airflow / Load		13.6	390.56			
Roof Load to Plenum	482		482	6.3 %			
Lighting Load to Plenum	Misc. Equip. Load to P	lenum207	0	0	207	0	
Glass Transmission to	0		0	0.0 %			
Plenum							
Glass Solar to Plenum	Over/Under Sizing		2,602	0	0	2,602	
Terminal Bypass	0	0	0	0.0 %			
Total Cooling Loads	5,666	2,015	7,681	100.0 %			
-							

General Engineering Checks

-32 28.2 %	-0.4 % Total Cooling Load	Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.7 % 0.0 %	217 ft ² 1.15 cfm/ft ² 0.0 % 0.0 % Percent % TETD-TA1	

0 0.0 %

0 0.0 %

gr/lb

MBh

60.00 °F

1,350 10.8 %

66.84 gr/lb

59.8/57.4 °F

0.0 %

0.0 %

17.6 % Total

Coil

Coil

By PSU

LA Fitness West Oaks Houston, TX System - RTU-11 Zone - Lower Stairs **Room - Lower Stairs**

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

COOLING COIL LOAD INFORMATION

COOLING COIL SELECTION

Btu/h	Percent	of Total	Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

Load Component	Sensible	Btu/h	Latent	Btu/h		т	otal	Btu/h
Solar Gain	Glass Transmission		0	0			0	
Entering Air (DB / WB)Co	il Entering Humidity Rat	io	78.02 7	78.8 / 66.5			°F	
Wall Transmission	0		0	0.0 %			Coil Lea	aving Air (D
Roof Transmission	0		0	0.0 %			Coil Lea	aving Humic
Floor Transmission Pa	rtition Transmission		0	0			0	
Sensible Load	Coil Total Load		41.32	54.55			MBh	
Net Ceiling Load	0		0	0.0 %			Cooling	Supply Air
Lighting	People	5,734	2,000	2,000			5,734	
Cooling AirflowResulting R	Room Relative Humidity	2,000.00	53.75	cfm			%	
Misc. Equipment Loads	s 0	0	0	0.0 %				
Cooling Infiltration	0	0	0	0.0 %				
Sub-Total ==>	7,734	2,000	9,734	17.8 %		G	Seneral	Enginee
Ventilation Load	Exhaust Heat	6,628	-2591 [·]	1,229 01	7,857		-259 32	.7 %
Load	329.97	4.6	tonft ²	?/ton	,			
Supply Fan Load	593		593	1.1 %			Total FI	oor Area
Return Fan Load	0		0	0.0 %			Cooling	Airflow
Net Duct Heat PickupV	Vall Load to Plenum		0	0			0 0	
Outdoor Air	Airflow / Load		13.6	439.96			cfm/ton	
Roof Load to Plenum	0		0	0.0 %			Cooling	Load Meth
Lighting Load to Plenu	mMisc. Equip. Load to F	Plenum1,433	0	0	1,433	0	2.6 %	0.0 %
Glass Transmission to	0		0	0.0 %				
Plenum								
Glass Solar to Plenum	Over/Under Sizing		25,192	0	0	25,192	0.0 %	46.2 %
Terminal Bypass	ō	0	0	0.0 %				
Total Cooling Loads	41,321	13,229	54,550	100.0 %				

0 °F	0 gr/lb	0.0 %	0.0 %	Coil
Coil Leaving Air (DB / WB)	59.8 / 58.0	°F		
Coil Leaving Humidity Ratio	69.40	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	60.00	°F		
5,734	4,000	10.5 %	7.3 %	Total
%				

General Engineering Checks

-259 32.7 %	-0.5 %	Total Cooling	g Load	Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.6 % 0.0 %		cfm/ft ² 0.0 %	Percent	

By PSU

LA Fitness West Oaks Houston, TX System - RTU-11 Zone - Special Exercise Room - Special Exercise

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

Total

0.0 %

Coil Peak Calculation Time: August, hour 15

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 79.40 78.8 / 66.8 Wall Transmission 0 0 0.0 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 69.49 94.07 Net Ceiling Load 0 0.0 % 0 People Lighting 5,222 6,825 6,825 Cooling AirflowResulting Room Relative Humidity 3,250.00 54.96 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 12,047 6,825 18,872 20.1 % Ventilation Load Exhaust Heat 10.771 -42117,750 028.521 7.8 tonft²/ton Load 174.26 Supply Fan Load 963 963 1.0 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 0 Outdoor Air Airflow / Load 414.60 13.6 Roof Load to Plenum 3,033 3,033 3.2 % Lighting Load to PlenumMisc. Equip. Load to Plenum1,305 0 0 1,305 0 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 41,794 0 0 41.794 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 69,492 24,575 94,067 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	59.8 / 57.8	°F		
Coil Leaving Humidity Ratio	68.44	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	60.00	°F		
5,222	13,650	5.6 %	14.5 %	Total
%				

Percent of Total Coil Selection Parameters

General Engineering Checks

44.4 %

-421 30.3 %	-0.4 % Total Cooling Load Area	a /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 1.4 % 0.0 %	1,366 ft ² 2.38 cfm/ft ² 0.0 % 0.0 % Percent % TETD-TA1	

By PSU

LA Fitness West Oaks Houston, TX System - RTU-12 Zone - Spinning Room - Spinning

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

Total

48,040

0.0 %

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 79.17 78.7 / 66.7 Wall Transmission 0 0 0.0 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 74.67 100.71 Net Ceiling Load 0 0.0 % 0 Lighting People 4,362 5,700 5,700 Cooling AirflowResulting Room Relative Humidity 3,500.00 54.41 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 10,062 5,700 15,762 15.7 % Ventilation Load Exhaust Heat 12.184 -29220.337 032.521 tonft²/ton Load 135.96 8.4 Supply Fan Load 1,037 1,037 1.0 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 0 Outdoor Air Airflow / Load 417.05 14.3 Roof Load to Plenum 2,550 2,550 2.5 % Lighting Load to PlenumMisc. Equip. Load to Plenum1,090 0 0 1,090 0 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 48,040 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 74,671 26,037 100,708 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	59.8 / 57.7	°F		
Coil Leaving Humidity Ratio	68.22	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	60.00	°F		
4,362	11,400	4.3 %	11.3 %	Total
%				

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

47.7 %

-292 32.3 %	-0.3 %	Total Cooling Load		Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 1.1 % 0.0 %		cfm/ft ² 0.0 %	Percent	

By PSU

LA Fitness West Oaks Houston, TX System - RTU-13 Zone - Mezzanine **Room - Mezzanine**

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129 Coil Peak Calculation Time: August, hour 15

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h		Т	otal	Btu/h
Solar Gain	Glass Transmission		0	0			0	
Entering Air (DB / WB)Cc	oil Entering Humidity R	atio	79.47 7	9.0 / 66.8			°F	
Wall Transmission	0		0	0.0 %				aving Air (D
Roof Transmission	0		0	0.0 %			Coil Lea	aving Humic
Floor Transmission Pa			0	0			0	
Sensible Load	Coil Total Load		125.63	170.40			MBh	
Net Ceiling Load	0		0	0.0 %			Cooling	Supply Air
Lighting	People	11,468	15,000	15,000			11,468	
Cooling AirflowResulting I	Room Relative Humidi	ty 5,900.00	55.46	cfm			%	
Misc. Equipment Load	s 0	0	0	0.0 %				
Cooling Infiltration	0	0	0	0.0 %				
Sub-Total ==>	26,468	15,000	41,468	24.3 %		G	Seneral	Enginee
Ventilation Load	Exhaust Heat	18,276	-1,05229	9,773 04	8,049		-1,052	
Load	Area / Load	211.26	14.2to	n ft²/ton	,		,	
Supply Fan Load	1,748		1,748	1.0 %			Total FI	oor Area
Return Fan Load	0		0	0.0 %			Cooling	Airflow
Net Duct Heat Pickup	Vall Load to Plenum		0	0			0 0	
Outdoor Air	Airflow / Load		12.7	415.48			cfm/ton	
Roof Load to Plenum	6,605		6,605	3.9 %			Cooling	Load Meth
Lighting Load to Plenu	mMisc. Equip. Load to	Plenum2,867	0	0	2,867	0	1.7 %	0.0 %
Glass Transmission to			0	0.0 %				
Plenum								
Glass Solar to Plenum	Over/Under Sizing		70,719	0	0	70,719	0.0 %	41.5 %
Terminal Bypass	Ō	0	0	0.0 %				
Total Cooling Loads	125,632	44,773	170,405	100.0 %				

COOLING COIL SELECTION

otal	Btu/h	Percent	of Total	Coil Selection	Parameters		
0 °F				0 gr/lb	0.0 %	0.0 %	Coil
Coil Le	aving Air (DB / WB)		59.8 / 57.9	°F		
Coil Le	aving Hum	idity Ratio		68.85	gr/lb		
0				0	0.0 %	0.0 %	Coil
MBh				MBh			
Coolin	g Supply Ai	r Temperatu	ire	60.00	°F		
11,468				30,000	6.7 %	17.6 %	Total
%							

General Engineering Checks

-1,052	28.2 % -0.6 %	Total Cooling
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 1.7 % 0.0 %	3,000 ft ² 1.97 cfm/ft ² 0.0 % 0.0 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-2 **Zone - Child Restrooms Room - Child Restrooms**

Coil Location - Room

0

-147

Ambient DB/WB/HR: 96 / 79 / 122 Coil Peak Calculation Time: July, hour 16

Total

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain G	lass Transmission		0	0	
Entering Air (DB / WB)Coil	Entering Humidity Rati	0	81.53 7	9.3 / 67.3	
Wall Transmission	107		107	5.2 %	
Roof Transmission	0		0	0.0 %	
Floor Transmission Par	tition Transmission		0	0	
Sensible Load	Coil Total Load		1.53	2.06	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	565	300	300	
Cooling AirflowResulting Ro	com Relative Humidity	50.00	57.49	cfm	
Misc. Equipment Loads	0	0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	972	300	1,272	61.9 %	
Ventilation Load	Exhaust Heat	166	-1123	31 03	96
Load	863.02	0.2	tonft ²	/ton	
Supply Fan Load	15		15	0.7 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupW	all Load to Plenum		0	25	
Outdoor Air	Airflow / Load		14.0	291.83	
Roof Load to Plenum	364		364	17.7 %	
Lighting Load to Plenum	nMisc. Equip. Load to P	lenum141	0	0	141
Glass Transmission to	0		0	0.0 %	
Plenum					
Glass Solar to Plenum	Over/Under Sizing		-147	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	1,526	531	2,056	100.0 %	

COOLING COIL SELECTION

otal	Btu/h	Percent	of Total	Coil Selection	Parameters		
0				-	0.0 %	0.0 %	Coil
°F				gr/lb			
Coil Le	aving Air (DB / WB)		58.3 / 54.3	°F		
Coil Le	aving Hum	idity Ratio		56.45	gr/lb		
0	Ũ				0.0 %	0.0 %	Coil
MBh				MBh			
Cooling	Supply Ai	r Temperatu	ire	58.50	°F		
565	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			600	27.5 %	29.2 %	Total
%							

General Engineering Checks

0.0 % -7.1 %

-11 19.3 %	-0.5 %	Total Coc	ling Load	Area /
Total Floor Area Cooling Airflow 0 25 cfm/ton		ft² cfm/ft² 1.2 %	Percent	
Cooling Load Methodology 6.9 % 0.0 %	70 TETD	-TA1		

By PSU

LA Fitness West Oaks Houston, TX System - RTU-2 Zone - Membership Sales Room - Membership Sales

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

8,702

0.0 %

Total

COOLING COIL SELECTION

Btu/h

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain	Glass Transmission		0	0	
Entering Air (DB / WB)Coi	I Entering Humidity Rati	0	77.87 7	9.4 / 66.6	
Wall Transmission	0		0	0.0 %	
Roof Transmission	0		0	0.0 %	
Floor Transmission Pa	rtition Transmission		0	0	
Sensible Load	Coil Total Load		18.11	24.47	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	2,624	2,000	2,000	
Cooling AirflowResulting R	oom Relative Humidity	750.00	53.42	cfm	
Misc. Equipment Loads	з О	0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	4,624	2,000	6,624	27.1 %	
Ventilation Load	Exhaust Heat	2.559	-1634,	367 06.	926
Load	336.56	2.0	tonft ²		
Supply Fan Load	222		222	0.9 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupW	all Load to Plenum		0	0	
Outdoor Air	Airflow / Load		14.0	367.72	
Roof Load to Plenum	1,507		1,507	6.2 %	
Lighting Load to Plenur	mMisc. Equip. Load to P	lenum656	0	0	656
Glass Transmission to	0		0	0.0 %	
Plenum					
Glass Solar to Plenum	Over/Under Sizing		8,702	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	18,108	6,367	24,475	100.0 %	

0 0 0.0 % 0.0 % Coil °F gr/lb 58.4/56.4 °F Coil Leaving Air (DB / WB) 64.74 gr/lb Coil Leaving Humidity Ratio 0 0.0 % 0.0 % 0 Coil MBh MBh Cooling Supply Air Temperature 58.60 °F 2,624 4,000 10.7 % 16.3 % Total %

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

35.6 %

-163 28.3 %	-0.7 %	Total Coo	ling Load	Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.7 % 0.0 %		cfm/ft ² 0.0 %	Percent	

By PSU

LA Fitness West Oaks Houston, TX System - RTU-2 Zone - Storage Room - Storage

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

2,436 0.0 % 38.0 %

Total

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain 0	Glass Transmission		0	0	
Entering Air (DB / WB)Coi	I Entering Humidity Ration	C	75.88	79.4 / 66.2	
Wall Transmission	0		0	0.0 %	
Roof Transmission	0		0	0.0 %	
Floor Transmission Par	tition Transmission		0	0	
Sensible Load	Coil Total Load		4.90	6.41	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	803	300	300	
Cooling AirflowResulting R		200.00	51.67	cfm	
Misc. Equipment Loads	0	0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	1,103	300	1,403	21.9 %	
Ventilation Load	Exhaust Heat	682	-431	,210 01	,892
Load	393.18	0.5	tonf	t²/ton	
Supply Fan Load	59		59	0.9 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupW	all Load to Plenum		0	0	
Outdoor Air	Airflow / Load		14.0	374.46	
Roof Load to Plenum	461		461	7.2 %	
	nMisc. Equip. Load to P	lenum201	0	0	201
Glass Transmission to	0		0	0.0 %	
Plenum					_
Glass Solar to Plenum	· · · · · · · · · · · · · · · · · · ·	-	2,436	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	4,899	1,510	6,409	100.0 %	

COOLING COIL SELECTION

Btu/h

0		0	0.0 %	0.0 %	Coil
°F		gr/lb			
Coil Leaving Air (DB	/ WB)	58.4 / 56.1	°F		
Coil Leaving Humidit	y Ratio	63.56	gr/lb		
0		0	0.0 %	0.0 %	Coil
MBh		MBh			
Cooling Supply Air Te	emperature	58.60	°F		
803		600	12.5 %	9.4 %	Total
%					

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

-43 29.5 %	-0.7 % Total Cooling Load Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 3.1 % 0.0 %	210 ft ² 0.95 cfm/ft ² 0.0 % 0.0 % Percent % TETD-TA1

By PSU

LA Fitness West Oaks Houston, TX System - RTU-2 Zone - Kids Club **Room - Kids Club**

Coil Location - Room

Ambient DB/WB/HR: 96 / 79 / 125 Coil Peak Calculation Time: August, hour 16

0

-23,082 0.0 % -10.5

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain G	Solar Gain Glass Transmission				
Entering Air (DB / WB)Coil	Entering Humidity Ra	atio	44.73 7	79.3 / 59.6	
Wall Transmission	1,927		1,927	0.9 %	
Roof Transmission	0		0	0.0 %	
Floor Transmission Part	ition Transmission		0	0	
Sensible Load	Coil Total Load		176.92	219.20	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	6,991	9,150	9,150	
Cooling AirflowResulting Ro	oom Relative Humidit	y 3,600.00	24.47	cfm	
Misc. Equipment Loads	0	0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	181,373	9,150	190,523	86.9 %	
Ventilation Load	Exhaust Heat	12,001	-78133	3,126 04	5,127
Load	100.13	18.3	tonft ²	/ton	
Supply Fan Load	1,067		1,067	0.5 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupWa	all Load to Plenum		0	239	
Outdoor Air	Airflow / Load		14.0	197.08	
Roof Load to Plenum	4,357		4,357	2.0 %	
Lighting Load to Plenum	Misc. Equip. Load to	Plenum1,748	0	0	1,748
Glass Transmission to	0		0	0.0 %	
Plenum					
Glass Solar to Plenum	Over/Under Sizing		-23,082	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	176,922	42,276	219,198	100.0 %	

COOLING COIL SELECTION

Total	Btu/h	Percent	of Total	Coil Selection	Parameters		
140,61 °F	6			22,688 gr/lb	64.2 %	10.4 %	Coil
Coil Le	eaving Air (DB / WB)		34.8 / 34.2	°F		
Coil Le	eaving Hum	dity Ratio		28.00	gr/lb		
0				0	0.0 %	0.0 %	Coil
MBh				MBh			
Coolin	g Supply Ai	r Temperatu	ire	35.00	°F		
6,991				18,300	3.2 %	8.3 %	Total
%							

General Engineering Checks

-781 20.6 %	-0.4 % Total Cooling Load	Area /
Total Floor Area Cooling Airflow 0 239 cfm/ton Cooling Load Methodology 0.8 % 0.0 %	1,829 ft ² 1.97 cfm/ft ² 0.0 % 0.1 % Percent % TETD-TA1	

By PSU

LA Fitness West Oaks Houston, TX System - RTU-2 Zone - Juice Bar Room - Juice Bar

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

5,520

0.0 %

Total

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 76.10 79.4 / 66.3 Wall Transmission 0 0 0.0 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 9.38 12.44 Net Ceiling Load 0 0 0.0 % Lighting People 994 650 650 Cooling AirflowResulting Room Relative Humidity 400.00 51.86 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 1,644 650 2,294 18.4 % Ventilation Load Exhaust Heat 1.365 -872.410 03.775 tonft²/ton Load 250.81 1.0 Supply Fan Load 119 119 1.0 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 0 385.86 Outdoor Air Airflow / Load 14.0 Roof Load to Plenum 571 571 4.6 % Lighting Load to PlenumMisc. Equip. Load to Plenum248 0 0 248 0 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 5,520 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 9,380 3,060 12,440 100.0 %

COOLING COIL SELECTION

Btu/h

			•	
0		0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	58.4 / 56.5	°F		
Coil Leaving Humidity Ratio	65.11	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	58.60	°F		
994	1,300	8.0 %	10.5 %	Total
%				

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

44.4 %

-87 30.3 %	-0.7 % Total Cooling Load Area /
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.0 % 0.0 %	260 ft ² 1.54 cfm/ft ² 0.0 % 0.0 % Percent % TETD-TA1

By PSU

LA Fitness West Oaks Houston, TX System - RTU-3 Zone - Pool Room - Pool

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129 Coil Peak Calculation Time: August, hour 15

0

74,140 0.0 % 16.3 %

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain 0	Glass Transmission		70,184	11,776	
Entering Air (DB / WB)Coi	I Entering Humidity R	atio	89.35	83.5 / 70.1	
Wall Transmission	985		985	0.2 %	
Roof Transmission	0		0	0.0 %	
Floor Transmission Par			0	0	
Sensible Load	Coil Total Load		288.37	454.57	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	15,718	20,575	20,575	
Cooling AirflowResulting R			53.40	cfm	
Misc. Equipment Loads		0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	119,238	20,575	139,813	30.8 %	
Ventilation Load	Exhaust Heat	85,289	-6,4621	45,621 023	30,911
Load	Area / Load	108.55	37.9tc	on ft²/ton	,
Supply Fan Load	3,111		3,111	0.7 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupW	all Load to Plenum		0	144	
Outdoor Air	Airflow / Load		33.3	277.19	
Roof Load to Plenum	8,979		8,979	2.0 %	
Lighting Load to Plenur	nMisc. Equip. Load to	o Plenum3,930	0	0	3,930
Glass Transmission to	0		0	0.0 %	
Plenum					
Glass Solar to Plenum	Over/Under Sizing		74,140	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	288,370	166,196	454,567	100.0 %	

COOLING COIL SELECTION

Total	Btu/h	Percent	of Total	Coil Selection	Parameters		
70,184 °F				gr/lb	15.4 %	2.6 %	Coil
	aving Air(aving Humi			57.9 / 57.1 68.58			
0 MBh				0 MBh	0.0 %	0.0 %	Coil
Cooling 15.718	g Supply Ai	. Temperatu	ire	58.10 41.150		9.1 %	Total
%				41,100	0.0 /0	5.1 /0	Total

General Engineering Checks

-6,462	50.8 % -1.4 %	Total Cooling
Total Floor Area Cooling Airflow 0 144 cfm/ton Cooling Load Methodology 0.9 % 0.0 %	4,112 ft ² 2.55 cfm/ft ² 0.0 % 0.0 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-4 Zone - Lockers Room - Lockers

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

95,315

0.0 %

Total

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 97.08 84.9 / 71.9 Wall Transmission 2,483 2,483 0.7 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 222.20 366.84 Net Ceiling Load 0 0.0 % 0 People Lighting 14,690 19,225 19,225 Cooling AirflowResulting Room Relative Humidity 8,300.00 57.90 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 15.2 % 36,398 19,225 55,623 Ventilation Load Exhaust Heat 81.634 -5,882125,407 0207,041 Area / Load 125.71 30.6ton ft²/ton Load Supply Fan Load 2,459 2,459 0.7 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 202 271.51 Outdoor Air Airflow / Load 40.4 Roof Load to Plenum 8,406 8,406 2.3 % Lighting Load to PlenumMisc. Equip. Load to Plenum3,673 0 0 3,673 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 95,315 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 222,205 144,632 366,837 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	60.3 / 59.2	°F		
Coil Leaving Humidity Ratio	73.50	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	60.50	°F		
14,690	38,450	4.0 %	10.5 %	Total
%				

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

26.0 %

-5,882	56.4 % -1.6 %	Total Cooling
Total Floor Area Cooling Airflow 0 202 cfm/ton Cooling Load Methodology 1.0 % 0.0 %	3,843 ft ² 2.16 cfm/ft ² 0.0 % 0.1 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-5 Zone - Basketball Room - Basketball

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129 Coil Peak Calculation Time: August, hour 15

0

105,956 0.0 % 51.8 %

COOLING COIL LOAD INFORMATION

Load Component	Sensible	Btu/h	Latent	Btu/h	
Solar Gain G	Blass Transmission		2.705	1,340	
Entering Air (DB / WB)Coil	Patio	,	78.7 / 65.0		
Wall Transmission	4.614	lano	4,614	2.3 %	
Roof Transmission	4,014		4,014	0.0 %	
Floor Transmission Par	tition Transmission		ů 0	0.0	
Sensible Load	Coil Total Load		165.65	204.74	
Net Ceiling Load	0		0	0.0 %	
Lighting	People	14,564	5,000	5,000	
Cooling AirflowResulting R	oom Relative Humid	ity 7,500.00	49.25	cfm	
Misc. Equipment Loads		0	0	0.0 %	
Cooling Infiltration	0	0	0	0.0 %	
Sub-Total ==>	28,223	5,000	33,223	16.2 %	
Ventilation Load	Exhaust Heat	18.276	-1,3203	4.087 05	2,363
Load	Area / Load	223.31	17.1tc	,	,
Supply Fan Load	2,222		2,222	1.1 %	
Return Fan Load	0		0	0.0 %	
Net Duct Heat PickupW	all Load to Plenum		0	321	
Outdoor Air	Airflow / Load		10.0	439.59	
Roof Load to Plenum	8,333		8,333	4.1 %	
Lighting Load to Plenun	nMisc. Equip. Load to	o Plenum3,641	0	0	3,641
Glass Transmission to	0		0	0.0 %	
Plenum					
Glass Solar to Plenum	0	_	105,956	0	0
Terminal Bypass	0	0	0	0.0 %	
Total Cooling Loads	165,652	39,087	204,738	100.0 %	

COOLING COIL SELECTION

Total	Btu/h	Percent	of Total	Coil Selection	Parameters		
2,705 °F				1,340 gr/lb	1.3 %	0.7 %	Coil
	aving Air (58.2 / 56.1	-		
Coil Le	aving Humi	dity Ratio		64.18	gr/lb		
0				0	0.0 %	0.0 %	Coil
MBh				MBh			
Cooling	g Supply Air	r Temperatu	ire	58.40	°F		
14,564				10,000	7.1 %	4.9 %	Total
%							

General Engineering Checks

-1,320	25.6 % -0.6 %	Total Cooling
Total Floor Area Cooling Airflow 0 321 cfm/ton Cooling Load Methodology 1.8 % 0.0 %	3,810 ft² 1.97 cfm/ft² 0.0 % 0.2 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-6 Zone - Free Weights Room - Free Weights

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

101,253 0.0 %

Total

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 70.04 78.9 / 64.9 Wall Transmission 2,713 2,713 1.3 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 158.77 209.01 Net Ceiling Load 0 0.0 % 0 People Lighting 11,368 14,875 14,875 Cooling AirflowResulting Room Relative Humidity 6,000.00 47.41 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0.0 % 0 Sub-Total ==> 28,956 14,875 43,831 21.0 % Ventilation Load Exhaust Heat 18.276 -1,06435,357 053,634 Area / Load 17.4ton ft²/ton Load 170.75 Supply Fan Load 1,778 1.778 0.9 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 186 344.49 Outdoor Air Airflow / Load 12.5 Roof Load to Plenum 6,546 6,546 3.1 % Lighting Load to PlenumMisc. Equip. Load to Plenum2,842 0 0 2,842 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 101,253 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 158,774 50,232 209,006 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	55.1 / 53.4	°F		
Coil Leaving Humidity Ratio	58.26	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	55.30	°F		
11,368	29,750	5.4 %	14.2 %	Total
%				

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

48.4 %

-1,064	25.7 % -0.5 %	Total Cooling
Total Floor Area Cooling Airflow 0 186 cfm/ton Cooling Load Methodology 1.4 % 0.0 %	2,974 ft ² 2.02 cfm/ft ² 0.0 % 0.1 % % TETD-TA1	Percent

By PSU

LA Fitness West Oaks Houston, TX System - RTU-7 Zone - Aerobics Room - Aerobics

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

Total

COOLING COIL LOAD INFORMATION

Btu/h

Latent

Btu/h

Sensible

Load Component

Project Name: LA Fitness West Oaks

Dataset Name: C:\CDS\TRACE700\Projects\LAFitness.trc

COOLING COIL SELECTION

Btu/h	Percent	of Total	Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

-		Ochibible	Dtu/II	Latent	Dta/II		
	Solar Gain	Glass Transmission		0	0		
En	tering Air (DB / WB)Coi	I Entering Humidity I	Ratio	68.48	78.5 / 64.5		
	Wall Transmission	3,616		3,616	1.2 %		
	Roof Transmission	0		0	0.0 %		
	Floor Transmission Pa	rtition Transmission		0	0		
Se	nsible Load	Coil Total Load		239.32	301.79		
	Net Ceiling Load	0		0	0.0 %		
	Lighting	People	11,785	15,425	15,425		
Co	oling AirflowResulting R	oom Relative Humic	lity10,000.00	47.51	cfm		
	Misc. Equipment Loads	s 0	0	0	0.0 %		
	Cooling Infiltration	0	0	0	0.0 %		
	Sub-Total ==>	30,826	15,425	46,251	15.3 %		
	Ventilation Load	Exhaust Heat	24,368	-1,4714	17,051 07	1,420	
Lo	ad	Area / Load	122.59	25.2t	on ft²/ton		
	Supply Fan Load	2,963		2,963	1.0 %		
	Return Fan Load	0		0	0.0 %		
	Net Duct Heat PickupW	all Load to Plenum		0	245		
Οι	itdoor Air	Airflow / Load		10.0	397.62		
	Roof Load to Plenum	6,780		6,780	2.2 %		
	Lighting Load to Plenur	mMisc. Equip. Load t	o Plenum2,94	6 0	0	2,946	
	Glass Transmission to	0		0	0.0 %		
	Plenum						
	Glass Solar to Plenum	0		172,661	0	0	
	Terminal Bypass	0	0	0	0.0 %		
		000 040	00 470	004 704	400.0.0/		
	Total Cooling Loads	239,318	62,476	301,794	100.0 %		

0

172,661 0.0 % 57.2 %

0 °F Coil Leaving Air (DB / WB) Coil Leaving Humidity Ratio 0 MBh Cooling Supply Air Temperature 11,785 %	gr/lb 56.4 / 54.5 60.48	gr/lb 0.0 % °F	0.0 % 0.0 % 10.2 %	Coil Coil Total
General Engineering Checks				
-1.471	23.7 %	-0.5 %	Total Co	olina

-1,471	23.7 % -0.5 %	Total Cooling
Total Floor Area Cooling Airflow	3,083 ft ² 3.24 cfm/ft ²	
0 245	0.0 % 0.1 %	Percent
cfm/ton Cooling Load Methodology	% TETD-TA1	
1.0 % 0.0 %		

By PSU

LA Fitness West Oaks Houston, TX System - RTU-8 Zone - Raquetball Room - Raquetball

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

48,534

0.0 %

Total

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 72.25 79.4 / 65.5 Wall Transmission 3,305 3,305 2.6 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 98.96 126.65 Net Ceiling Load 0 0.0 % 0 People Lighting 15,959 5,000 5,000 Cooling AirflowResulting Room Relative Humidity 4,000.00 49.32 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 24,265 5,000 29,265 23.1 % Ventilation Load Exhaust Heat 12.184 -97122,691 034.875 tonft²/ton Load 395.57 10.6 Supply Fan Load 1.185 1,185 0.9 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 676 378.99 Outdoor Air Airflow / Load 12.5 Roof Load to Plenum 9,101 9.101 7.2 % Lighting Load to PlenumMisc. Equip. Load to Plenum3,990 0 0 3,990 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 48,534 0 0 **Terminal Bypass** 0 0 0 0.0 % Total Cooling Loads 98,963 27,691 126,654 100.0 %

COOLING COIL SELECTION

Btu/h

0	0	0.0 %	0.0 %	Coil
°F	gr/lb			
Coil Leaving Air (DB / WB)	57.4 / 55.3	°F		
Coil Leaving Humidity Ratio	62.01	gr/lb		
0	0	0.0 %	0.0 %	Coil
MBh	MBh			
Cooling Supply Air Temperature	57.60	°F		
15,959	10,000	12.6 %	7.9 %	Total
%				

Percent of Total Coil Selection Parameters

Coil Peak Calculation Time: August, hour 15

General Engineering Checks

38.3 %

-971 27.5 %	-0.8 % Total Cooling Load Area /
Total Floor Area Cooling Airflow 0 676 cfm/ton Cooling Load Methodology 3.2 % 0.0 %	4,175 ft ² 0.96 cfm/ft ² 0.0 % 0.5 % Percent % TETD-TA1

By PSU

LA Fitness West Oaks Houston, TX System - RTU-9 Zone - Cardio Room - Cardio

Coil Location - Room

Ambient DB/WB/HR: 97 / 80 / 129

0

60,412 0.0 %

Total

Coil Peak Calculation Time: August, hour 15

COOLING COIL LOAD INFORMATION

Load Component Sensible Btu/h Latent Btu/h Solar Gain Glass Transmission 0 0 Entering Air (DB / WB)Coil Entering Humidity Ratio 89.61 82.1 / 69.7 Wall Transmission 0 0 0.0 % Roof Transmission 0 0 0.0 % Floor Transmission Partition Transmission 0 0 Sensible Load Coil Total Load 162.30 250.45 Net Ceiling Load 0 0.0 % 0 People Lighting 20.107 26,300 26,300 Cooling AirflowResulting Room Relative Humidity 6,600.00 58.45 cfm Misc. Equipment Loads 0 0 0 0.0 % Cooling Infiltration 0 0 0 0.0 % Sub-Total ==> 46,407 26,300 72,707 29.0 % Ventilation Load Exhaust Heat 40.817 -3,72161,844 0102,661 Area / Load 252.03 20.9ton ft²/ton Load Supply Fan Load 1.956 1.956 0.8 % Return Fan Load 0.0 % 0 0 Net Duct Heat PickupWall Load to Plenum 0 0 316.24 Outdoor Air Airflow / Load 25.4 Roof Load to Plenum 11,406 11,406 4.6 % Lighting Load to PlenumMisc. Equip. Load to Plenum5,027 0 0 5,027 Glass Transmission to 0 0 0.0 % Plenum Glass Solar to Plenum Over/Under Sizing 60,412 0 0 0 **Terminal Bypass** 0 0 0.0 % Total Cooling Loads 162,302 88,144 250,447 100.0 %

COOLING COIL SELECTION

Btu/h

			•	
	0	0.0 %	0.0 %	Coil
	gr/lb			
r (DB/WB)	59.8 / 58.5	°F		
umidity Ratio	71.26	gr/lb		
	0	0.0 %	0.0 %	Coil
	MBh			
Air Temperature	60.00	°F		
·	52,600	8.0 %	21.0 %	Total
	umidity Ratio	r (DB / WB) 59.8 / 58.5 umidity Ratio 71.26 0 Air Temperature 60.00	r (DB / WB) 59.8 / 58.5 °F umidity Ratio 71.26 gr/lb 0 0.0 % MBh	gr/lb r (DB / WB) 59.8 / 58.5 °F umidity Ratio 71.26 gr/lb 0 0.0 % 0.0 % MBh Air Temperature 60.00 °F

Percent of Total Coil Selection Parameters

General Engineering Checks

24.1 %

-3,721	41.0 % -1.5 %	Total Cooling
Total Floor Area Cooling Airflow 0 0 cfm/ton Cooling Load Methodology 2.0 % 0.0 %	5,260 ft² 1.25 cfm/ft² 0.0 % 0.0 % % TETD-TA1	Percent

By PSU