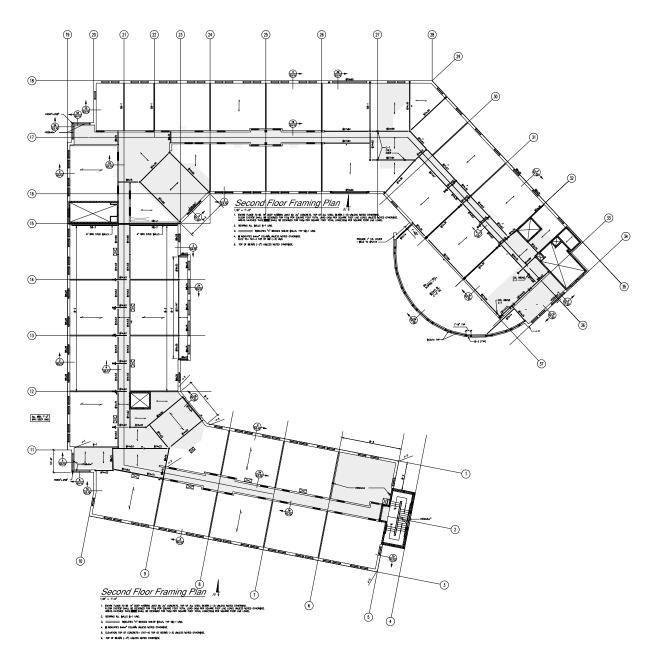
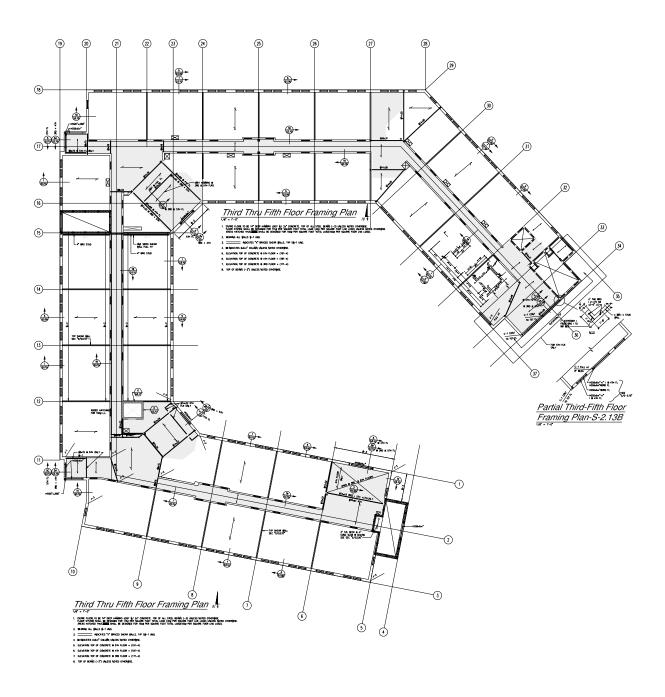


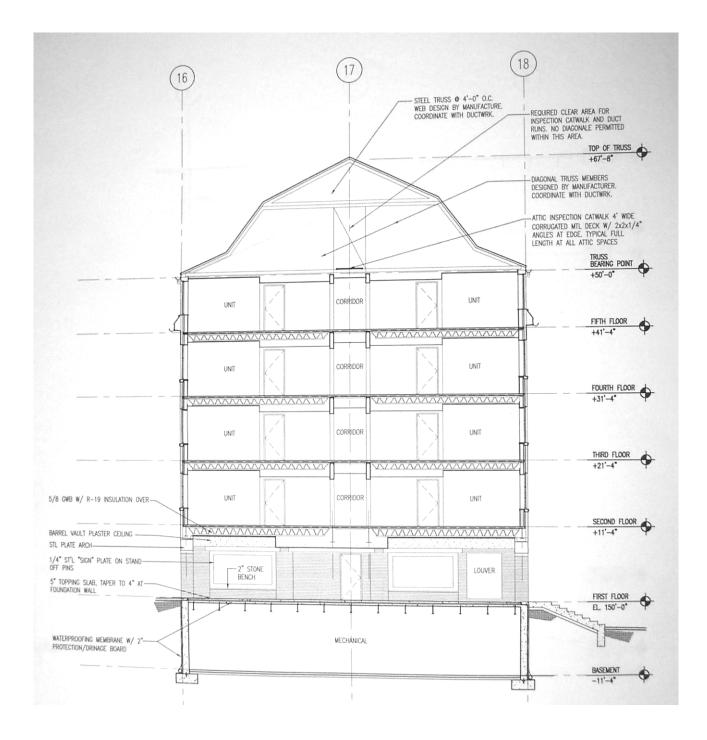
* Calculations not shown in this appendix are available upon request



First Floor Plan:

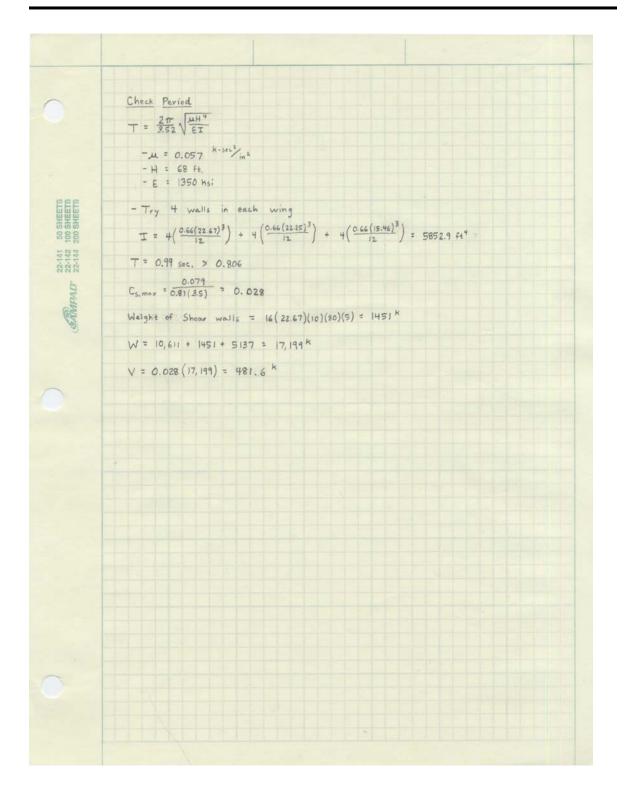


Second Floor Plan:

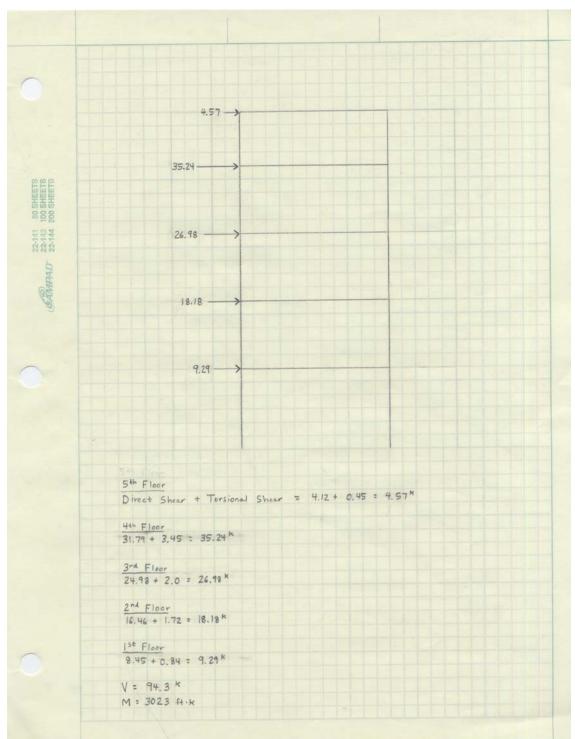


Third through Fifth Floor Plan:

Building Section:

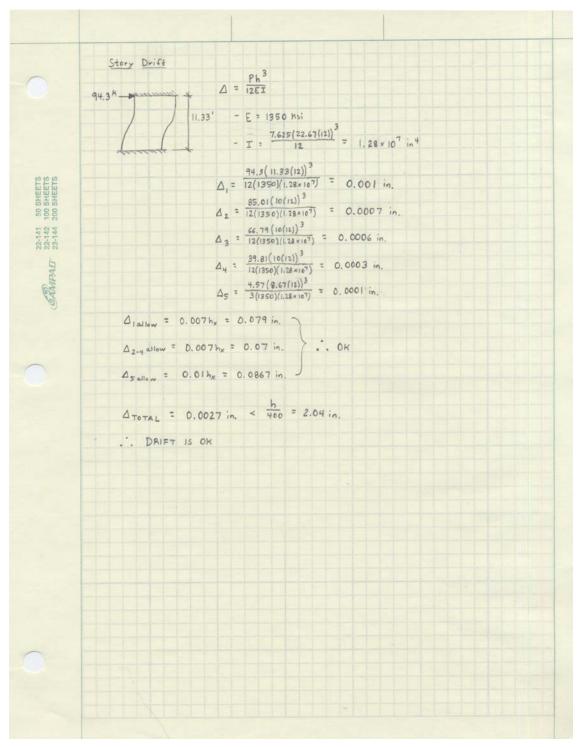


Seismic Calculations:

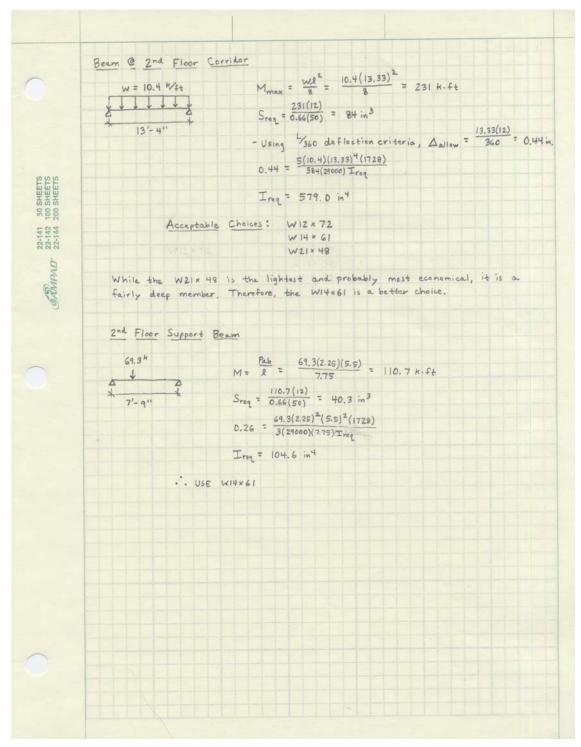

	Seismic Analysis for New Structure
~	Josimie Analysis for the Streeters
0	- Too tall for simplified method
	- Use Equivalent Lateral Force Method
	Ss = 0.225
	R = 3.5- intermediate reinforced masonry shear walls
	I = 1.0
w w w	S ₁ = 0.07
SHEETS SHEETS) SHEETS	$F_{a} = 1.2$ } Site class C $F_{v} = 1.7$ } Site class C
HS O SH	Fy = 1.7 J
50 200	$S_{MS} = F_{a}S_{s} = 1.2(0.225) = 0.27$
22-141 22-142 22-144	$S_{MS} = F_{w}S_{s} = 1.7(0.07) = 0.119$ $S_{M1} = F_{v}S_{1} = 1.7(0.07) = 0.119$
2222	
ġ	$S_{\text{bs}} = \frac{2}{3} S_{\text{Ms}} = \frac{2}{3} (0.27) = 0.18$ $S_{\text{b1}} = \frac{2}{3} S_{\text{M1}} = \frac{2}{3} (0.119) = 0.079$
IP,4	$S_{2} = \frac{2}{3}S_{2}S_{1} = \frac{2}{3}(0.119) = 0.079$
GAMPAD	
(I)	Base Shear
	$V = c_s w$
\frown	$A_{floer} = 27,418.5 fl^2$
	$A_{rest} = 27,418.5 \text{ ft}^{2}$
	W = 4(27, 418.5)(93) + 27, 418.5 (15) = 10, 611.0 k
	-Assume 8" grouted shear Walls
	$W = 24.5(22.67)(10)(80)(5) = 2,221.6^{K}$
	- Hollow, 12" Bearing Walls
	W = 1151 (55.5)(44.33) + 1074 (55.5)(38.67) = 5137 K
	WTOTAL = 10, 611.0 + 2221.6 + 5137 = 17,970.0 K
	T X
	$T = C_{\pm} 6_{\Lambda}^{X} = 0.02 (68)^{0.75} = 0.474 \text{sec.}$
	$C_5 = \frac{S_{D5}}{R_T} = \frac{0.18}{35} = 0.051$
	- Max. allowable period = 1.7(0.474) = 0.806 sec.
	$C_{smax} = \frac{S_{01}}{T(R/I)} = \frac{0.079}{0.806(55)} = 0.028$
	$V = C, w = 0.028 (17,970) = 503.2^{k}$
~	
	- How many walls needed to reach this period?
	(+ + + VAN/22/7/VIDIT//VAR) = ATITAL > 5422
	$(\# \text{ of walls})(8'')(22.67')(12'')(10.8) 1.5\sqrt{1500} \ge 503.2$
	# of walls = 4.97 = 5 walls in each direction

Seismic Forces:

Shear Wall Design:


	Shear Wall Design
	$f_{v} = \frac{94,300}{8(22.67)(12)} = 43.33/1.33 = 32.5 \text{ psi}$
	M = 3023 k.ft
	V = 94.3 K
	$M_{Vd} = \frac{3023}{((4+.3)(22.67))} = 1.41 > 1.0 \Rightarrow F_v = 35 \text{ psi}$
50 SHEETS 100 SHEETS 200 SHEETS	NO SHEAR REINFORCEMENT REQUIRED
50 S S S S S S S S S S S S S S S S S S S	f3 = A3jd ; Assume j= 0.85, d= 0.82
	$\frac{302.3(12000)}{A_5(0.85)(0.8)(22.67)(12)}$
22-141 22-142 22-144 22-144	$32,000 = A_5(0.85)(0.8)(22.67)(12)$
Edineran'	$A_s = 6.13 \text{ in}^2 \rightarrow \text{Try } 8-\#8 \text{ Bars}; A_s = 6.32 \text{ in}^2$
(ANN	# 8 8 8, d = 240 in.
a)	$P = \frac{6.32}{7.625(240)} = 0.0035$, $n = 21.5$
	$k = -pn + \sqrt{(pn)^2 + 2pn} = -0.0035(21.5) + \sqrt{(0.0035)(21.5)}^2 + 2(0.0035)(21.5) = 0.32$
	$j = (1 - \frac{k_3}{3}) = 1 - \frac{0.32}{3} = 0.893$
	$f_{s} = \frac{3023(12600)}{6.32(0.893)(240)} = 26,782 < 32,000 \rightarrow 0K$
	$f_m = \frac{2(3023)(12000)}{7.625(0.893)(0.32)(240)^2} = 578/1.33 = 434 \text{ psi} < 500 \rightarrow 0K$
	. USE 8-#8 REINFORCING BARS @ BASE
	2nd Story
	V = 85.01 K
	M = 1955.3 ft.k
	$32,000 = \frac{1955.3(12000)}{A_{5}(0.85)(0.8)(22.67)(12)}$
	$A_s = 3.96 \text{ in}^2 \rightarrow \text{Try} 5 - \# 8 \text{ Bars}; A_s = 3.95 \text{ in}^2, d = 252 \text{ in}.$
	$p = \frac{3.95}{7.625(252)} = 0.0021$
	k = 0.256
	j = 0.914
	$F_{s} = \frac{1955.3(12000)}{3.95(0.914)(252)} = 25,790 \text{ psi} < 32,000 \rightarrow 0K$
	$f_m = \frac{2(1955.3)(12000)}{7.625(0.256)(0.914)(252)^2} = 414.2/1.33 = 310.7 \text{ psi} < 500 \Rightarrow 0K$
	. USE 5- #8 BARS @ 2nd FLOOR

	3rd Story
	V = 66.79 K
-	M = 1105.6 ft. K
	1105.6(12000)
	$32,000 = \overline{A_5(0.85)(0.3)(22.67)(12)}$
	As = 2.24 in2 -> Try 3-#8 Bars; As = 2.37 in2, d = 260 in.
50 SHEETS 200 SHEETS 200 SHEETS	$p = \frac{2.37}{7.625(260)} = 0.0012$
SHE	K = 0.202
2000	j = 0.932
	$f_s = \frac{1105.6(12000)}{2.37(0.932)(260)} = 23,102 \text{ psi} < 32,000 \rightarrow 0K$
22-141 22-142 22-144	
	$f_m = \frac{2(1105.6)(12000)}{7.625(0.202)(0.932)(260)^2} = 273.4 \text{ psi} < 500 \rightarrow 0K$
PA	+m = 7.625(0.202)(0.932)(260) = = = = = = = = = = = = = = = = = = =
Entran.	. USE 3-#8 BARS @ 3rd FLOOR
3	
	4th Story
	V = 39.81 K
	M = 437.7 ft.k
	$\frac{437.7(12000)}{32,000} = \frac{437.7(12000)}{A_3(0.85)(0.4)(22.47)(12)}$
1111	$A_s = 0.89 \text{ in}^2 \rightarrow \text{Try} \ 1 - \# 8 \text{ Bar}; \ A_s = 0.79 \text{ in}^2, \ d = 268 \text{ in}.$
	0.79
	P = 7.625(268) = 0.00039
	k = 0.121
	j = 0.96
	$f_s = \frac{437.7(12000)}{0.79(0.36)(260)} = 25,842 \text{ psi} < 32,000 \rightarrow 0K$
	2/122 21/12001
	fm = 21431.71(1200) fm = 7.525(0.121)(0.16)(262) ² = 165.1 psi < 500 → 0K
	. USE 1-#8 BAR @ 4th FLOOR
	5th Story
	V = 4.57 K
	M = 39.6 A+k
_	USE 1-#8 BAR @ 5th FLOOR

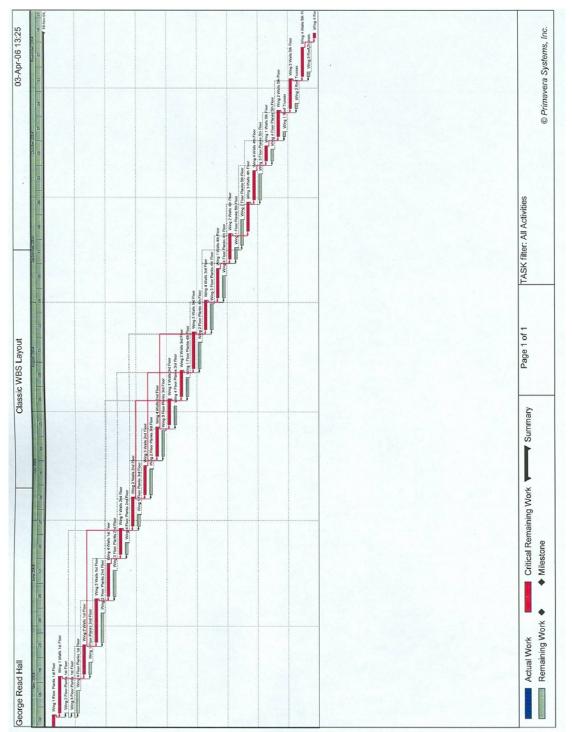


Drift Calculations:

Interior Beam Calculations:

Cost Analysis:

	Cost Estimate
	Bearing Walls :
	1151(50) + 363(50) + 711(38.67) - 16,175 = 87,019.5 ft2
	$(10.65 \frac{1}{2}/ft^2)(187,019.5ft^2) = 1926,758)$
n n n n n n n n n n n n n n n n n n n	Morter for Bearing Walls :
100 SHEETS 200 SHEETS	7.5 bags/300 blocks
	$\frac{103,194.4}{0.83} = 116,095$ blocks $\rightarrow 2900$ bags of mortar
T 22-142	(2900 bags) (7.10 \$/bag) = \$ 20,590
CAMPAD	I ton of sand/ 300 blocks -> 387 tons of sand
EA	(387 tons) (19 3/ton) = (\$ 7353)
	Shear/Interior Walls:
-	$(4.5(22.67)(50) + 10(22.67)(38.67) = 25,202 \text{ ft}^2$
	$(25, 202.4t^{2})(7.15^{\frac{1}{2}}/4t^{2}) = [$180, 196]$
	Mortar for Shear/Interior Walls:
	25,202 0.89 = 28,317 blecks -> 708 bags of mortar
	(708 bags)(7.10 \$/bag) = \$5027
	$\frac{28,317}{300} \rightarrow 95 \text{ tons of sand}$
	(15 tons) (19 \$/ton) = \$1805
	Grout for Shear Walls:
	- 8" Thk. pumped
	$(16)(22.67)(50) = 18,136 ft^{2}$
	$(18, 136 \text{ ft}^2)(3.53 /\text{ft}^2) = [\$64, 020]$
)	Scaffolding :
	(320 + 212)(11.33) = 6027.6/100 = 60.3 C.S.F (81 1/menth)(7 menths) = \$34,190


	Reinforcing for Shear Walls:
	16 bars (11.33 ft.) + 18(10) + 2(8.67) = 378.62 ft (16 walls) = 6058 ft. of bars
	Area of # 8 bar = 0.0055 ft ²
	$6058(0.0055) = 33.23 +t^3$
00 00 00	Weight of Steel = 490 16/ff3 => 490(33.23) = 16,285 16.
50 SHEETS 100 SHEETS 200 SHEETS	(16,285 16)(1.16 1/16.) = \$ 18,891
	Precast Planks:
22-141 22-142 22-144	4 (27,418.5) + 4478 + 7280 = 121,432 ft ²
Edinpan'	$(121, 432 \text{ ft}^{2})(8.40 \text{ ft}^{2}) = [1, 020, 029]$
EAN	Concrete Topping:
	$(121, 432, 44^{2})(2.11^{\frac{13}{2}}/A^{2}) = [\$ 256, 222]$
	Bond Beams:
	1151(4) + 363(4) + 711(3) = 8189 ft.
	(8189 ft)(14.90 /ft) = 122,016
	Waste :
	(1,099,020 + 180, 196 + 122,016)(0.03) = \$42,037
	(20,590 + 5027 + 7353 + 1805)(0.25) = \$869H
	Wide Flange Beams:
	W14x22 - 115 ft. (35.50 B/ft) = (\$ 4082)
	$W14x30 - 814t(40.50 \frac{1}{7}/4t) = 33281$
	W14 × 34 - 170 ft. (45.50 B/ ft) = \$ 7735
	[월경상] 김 김 씨는 배월 김 유명은 ㅋㅋㅋㅋ 김 도로 것 않고 고 나 봐 도 마 너 바 문제.
	W14×61 - 264 ft. (75.67 \$/4) = \$ 19,976
	$W14 \times 68 - 81 ft(83.83 / ft) = 3 6791$

	Light Gauge Metal Trusses:
0	(277 Trusses) (400 B/Truss) = \$ 110,800
	Pre-cast Lintels:
	(256 lintels)(369 \$/lintel) = \$315,864
50 SHEETS 100 SHEETS 200 SHEETS	Total Cost = \$3,176,357
1 50 SI 2 100 SI 4 200 SI	
22-141 22-142 22-144	
EAMPAD'	
14	
0	
0	
	the state of the s

Construction Schedule:

