Frank Burke
Structural Option

## Technical Assignment \#1

Thesis Advisor - Thomas E. Boothby

## Executive Summary

The Sallie Mae HQ is located in Reston, VA. Sallie Mae features a 5 level parking garage, and a 9 story office building. The parking garage enables spread footings to be used since the bottom of the parking garage consist of soil classified as rock. Spans reach $28^{\prime}$ and normal column sizes are $30^{\prime \prime} \times 30^{\prime \prime}$ concrete columns. The first exposed floor is the third level ( $\mathrm{P}-3$ ) of the garage, but ground level ( $\mathrm{P}-1$ ) is the first level exposed on the east side of the building which is the main entrance. The garage is made from a two-way slab system that features drop panels. The ground level of the parking garage primarily consists of a fire-lane, athletic field and heavy planters, with about 20 parking spots total. The load that can be caused by the moving vehicles, and heavy planters and caused post-tensioned beams to be used on the P-1 level.

The office's structure is a steel framing system that features braced concentric frames in the E-W direction, and mixed eccentric and concentric frames in the N-S direction. Since lateral loads in the E-W direction cause the most load, the strong axis of most columns are lined up in that direction. According to calculations the wind loads are much larger than any seismic loads. Normal floor have a 2"-18 gage deck with 3.25 " light weight concrete. However, the penthouse floor contains the elevator room and heavy mechanical equipment, so the slab depth and beam strength must be increased for that floor. Due to architectural requirements the spans of some of the steel beams reach up to $55^{\prime}$. Camber must be used to counteract deflection.

In analyzing any possible ways to redesign this building while maintaining the architectural spans, it becomes clear that either heavily reinforced concrete, a different steel framing method, or post-tensioned concrete are viable considerations.

## Building and Site

Sallie Mae HQ is located at the southeast quadrant of the intersection of Town Center Parkway and Bluemont Way, along the south side of Bluemont Way in Reston, Fairfax County, Virginia. Sallie Mae consists of a steel tower office building and a concrete parking garage. The office building is nine stories above grade and has a ground print of approximately $25,000 \mathrm{sf}$. It is located in the west portion of the site, at the southeast quadrant of the intersection of Town Center Parkway and Bluemont Way, along the south side of Bluemont Way. The office building's lowest floor (P-1) is located at an elevation of 403.5'. The parking garage is five stories and extends downward from P-1 to P-5, which is located at an elevation of $364^{\prime}$. The garage plan is approximately $75,000 \mathrm{sf}$, and is located on the east portion of the site, along the south side of Bluemont Way.

## Codes Used

- BOCA 96*
- VIRGINIA UNIFORM STATEWIDE BUILDING CODE - 2000*
- ASCE 7-98*
- ACI 318-99*
- ASD MANUAL - $9^{\text {th }}$ EDITION


## Loads

LL - 80 PSF for upper corridors in an office building/ 100 PSF for $1^{\text {st }}$ floor corridors and lobbies
Minimum RL if snow doesn't control - 30 PSF
Mechanical Rooms - 150PSF
Stairs - 100 PSF
Parking Garage - 50 PSF

## Foundations and Soil

Sallie Mae's geotechnical work was performed by Engineering Consulting Services, LTD. A total of 20 borings were performed, with the addition of two pressuremeter tests. Shallow spread footings were recommended due to the deep depth needed for the parking garage, and the soil at $364^{\prime}$ El. was considered rock. The footings were recommended to be designed using an allowable bearing pressure of $30,000 \mathrm{psf}$. The majority of the columns were supported on square isolated spread footings that ranged from 4' to 10 ' wide. The foundation walls that extend around the perimeter of the building range from $1^{\prime}-11^{\prime}-4{ }^{\prime \prime}$ thick.

## Structural Overview for Parking Garage Levels

## Gravity:



Picture (P-5)

The parking structure of Sallie Mae consists of 5 levels. The picture shows the lowest level of the parking structure which is located at an elevation of 364 ' and consists of a 5 " slab on grade that has 3500 psi in strength. The level above, P-4, consist of a 9 " two-way slab with drop panels that has a strength of 5000 psi. These spans get up to 28 ' in the parking garage, and bottom reinforcing for levels P-3 and above is \#5 @ 12. The reason for the increase in reinforcement compared to \#4 @ 12 (P-4 and P-5) is because on $\mathrm{P}-3$ there is a portion of the parking garage that is a cafeteria. And at some locations on this level there is a 14 " slab with a 5" topping for architectural purposes. P-2 has the same reinforcing as P-3. P-1 is ground level from the east side main entrance; this floor is the transition floor between office building and parking garage. Where originally the parking garage was on the lower floors, is now a fire lane which consist of a large circle loop, athletic courts, and planters that extend around the building. Due to the larger loads that these three new items impose, post-tensioning was needed in some beams in the $1^{\text {st }}$ floor.


Picture (P-1)


## Lateral:

> Typical Shearwall

The lateral elements in the parking garage consist of 8 shearwalls; 4 span in each direction. These shearwalls continue up to the first floor level, and then connect to braced frames that extend all the way up the building.

## - Spot check

Using tributary area of $55^{\prime} / 194$ ’ and using that ratio for the 233 k force from the E-W earthquake load. The largest force going into a shearwall is 66 k . There is 23 ' of length so approximately 3 k needs to be transferred per foot of length. \#4's @ 12 are ok.

## Structural Overview for Office Floors

## Gravity:

The office part of Sallie Mae mostly consists of floors that resemble the typical floor on the next page. There are four line of columns along the long direction (N-S), and girders also span between those columns in the N-S direction. The beams span E-W, and reach spans up to 55 ft . These longer spans require camber due to deflection. The typical floors are made up of 3.25 " lightweight concrete over 2" Deep x 18 gage galvanized composite metal deck. The connections consist of primarily simple shear connections with the exception of very few moment connections. The Penthouse houses all the heavy mechanical equipment including the elevator room. Slabs range from composite metal deck to12" reinforced concrete at the Penthouse level.

- Spot Check


I checked this W27 x 94 due to the fact that it's the longest spanning member in the building. Due to the rough hand analysis that would be required from the beam being connected to a girder on one end and a beam on the other end, I used Ram Steel to analyze the beam, and used ASD method so I could directly compare if something was off. Using $3 / 4$ in diameter studs, I came up with $25 \%$ full composite actions with the 2" steel deck and light weight concrete. The deflection failed at first because I added no camber onto it. Trying the 1 " camber that they originally designed the beam with the total load on the beam, the deflection came out to be -1.27 " which provides an $\mathrm{L} / \mathrm{D}$ of $519>$ then the required 400 .

Lateral:

Lateral Resisting System Plan


Typical


Sallie Mae consists of concentrically braced frames in the east-west direction, and in the north-south direction is eccentrically braced and concentrically braced frames. These frames are shown in the drawing above as green, and are placed in the two stairwell walls and in the elevator shaft. Due the possibility of heavy wind loads there are four sets of concentric frames in the E-W direction that extend from ground level all the way to the Penthouse. The N-S direction does not need as much bracing because the stiffness in that direction is already high due to the longer set of spans. The eccentric frames in the N-S direction also allow for higher energy dissipation in the case of a seismic event.

## LOAD CALCULATIONS

Dead Load Calculation per floor disregarding special considerations

- Assume 8 PSF for dead weight of steel beams
- Steel decking with lightweight concrete is 115 PCF x 3.25/12 $=32$ PSF +2 PSF for Deck $=34$ PSF
- Miscellaneous Equipment $=10$ PSF
- Total Dead = 52 PSF


## Snow Load Calculations assuming flat roof

- pg = 30 PSF
- $\mathrm{Ct}=1.0$
- $\quad \mathrm{Cs}=1.0$
- $\quad \mathrm{I}=1.1$
- $\quad \mathrm{pf}=30$ PSF x $1.1=33$ PSF


## Wind Load Calculation (E-W)



| Windward wall pressure |  |  |  |  |  |  | p (psf) |  |  | ${ }^{* * *} \mathrm{~F}$ (kip) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Floor \# | Height (ft.) | z (ft.) | ${ }^{*} \mathrm{Ae}\left(\mathrm{ft}^{\wedge} 2\right)$ | **KZ | qz (psf) | pw (psf) | (+GCpi) | (-Gcpi) | (Total) | $\max (\mathrm{p})$ |
| 1 | 14 | , | - | , | , | , | + | - | $\rightarrow$ |  |
| 2 | 14 | 14 | 2716 | 0.57 | 11.6 | 7.6 | 3.8 | 11.5 | 16.41 | 44.56 |
| 3 | 14 | 28 | 2716 | 0.69 | 13.9 | 9.1 | 5.3 | 13.0 | 17.89 | 48.60 |
| 4 | 14 | 42 | 2716 | 0.77 | 15.6 | 10.2 | 6.4 | 14.1 | 19.01 | 51.64 |
| 5 | 14 | 56 | 2716 | 0.84 | 17.0 | 11.1 | 7.3 | 15.0 | 19.89 | 54.03 |
| 6 | 14 | 70 | 2716 | 0.89 | 18.1 | 11.8 | 8.0 | 15.7 | 20.62 | 56.01 |
| 7 | 14.67 | 84 | 2780.99 | 0.94 | 19.1 | 12.5 | 8.6 | 16.3 | 21.26 | 59.12 |
| 8 | 15.67 | 98.67 | 2942.98 | 0.98 | 20.0 | 13.1 | 9.2 | 16.9 | 21.84 | 64.29 |
| PH | 12.67 | 114.34 | 2748.98 | 1.03 | 20.8 | 13.6 | 9.8 | 17.5 | 22.41 | 61.59 |
| Roof | $\square$ | 127.01 | 1228.99 | 1.06 | 21.4 | 14.0 | 10.2 | 17.9 | 22.82 | 28.05 |

## Wind Load Calculation (N-S)



| Windward wall pressure |  |  |  |  |  |  | p (psf) |  |  | ***F (kip) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Floor \# | Height (ft.) | z (ft.) | * Ae ( $\mathrm{ft}^{\wedge} 2$ ) | **Kz | qz (psf) | pw (psf) | (+GCpi) | (-Gcpi) | (Total) | $\max (\mathrm{p})$ |
| 1 | 14 | ( | - | $\square$ |  |  | - | - | $\xrightarrow{ }$ |  |
| 2 | 14 | 14 | 1904 | 0.57 | 11.6 | 7.7 | 3.9 | 11.6 | 13.04 | 24.84 |
| 3 | 14 | 28 | 1904 | 0.69 | 13.9 | 9.2 | 5.4 | 13.1 | 14.55 | 27.70 |
| 4 | 14 | 42 | 1904 | 0.77 | 15.6 | 10.4 | 6.5 | 14.2 | 15.68 | 29.86 |
| 5 | 14 | 56 | 1904 | 0.84 | 17.0 | 11.2 | 7.4 | 15.1 | 16.57 | 31.55 |
| 6 | 14 | 70 | 1904 | 0.89 | 18.1 | 12.0 | 8.1 | 15.8 | 17.31 | 32.96 |
| 7 | 14.67 | 84 | 1949.56 | 0.94 | 19.1 | 12.6 | 8.8 | 16.5 | 17.95 | 35.00 |
| 8 | 15.67 | 98.67 | 2063.12 | 0.98 | 20.0 | 13.2 | 9.4 | 17.1 | 18.55 | 38.26 |
| PH | 12.67 | 114.34 | 1927.12 | 1.03 | 20.8 | 13.8 | 9.9 | 17.6 | 19.11 | 36.83 |
| Roof | - | 127.01 | 861.56 | 1.06 | 21.4 | 14.2 | 10.3 | 18.1 | 19.53 | 16.83 |



## Seismic Load Calculation:



Loads


$\mathrm{S}_{\mathrm{D} 1}=2 / 3^{*} \mathrm{~S}_{\mathrm{M} 1}$ (Eq. 9.4.1.2.4-2)
$N$-S direction
0.047

## E-W direction

| $R_{E-W}$ | 5.000 |
| :--- | ---: |
| $\mathrm{~T}(\mathrm{E}-\mathrm{W})$ | 0.757 |
| $\mathrm{C}_{\mathrm{s}(\mathrm{E}-\mathrm{W})}$ | 0.033 |
| $\mathrm{C}_{\mathrm{s} \text { max(E-W) }}$ | 0.015 |
| $\mathrm{C}_{\mathrm{s} \text { min }}$ | 0.007 |
| $\mathrm{k}(\mathrm{E}-\mathrm{W}$ direction $)$ | 1.128 |
| $\mathrm{~V}(\mathrm{E}-\mathrm{W}$ direction $)$ | 232.955 |


| Level | $w_{x}$ | $h_{x}$ | $w_{x} h_{x}^{1.318}$ | $w_{x} h_{x}^{1.128}$ | $C_{v x}(N-S)$ | $C_{v x}(E-W)$ | $F_{x}(N-S)$ | $F_{x}(E-W)$ | $M(N-S)$ | $M(E-W)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Roof | 1678.772 | 127.010 | 992678.6952 | 397035.359 | 0.228 | 0.212 | 25.282 | 49.287 | 3211.116 | 6259.959 |
| PH | 1678.772 | 114.340 | 864327.1018 | 352640.515 | 0.198 | 0.188 | 22.013 | 43.776 | 2517.014 | 5005.354 |
| 8 | 1678.772 | 98.670 | 711771.5163 | 298609.709 | 0.163 | 0.159 | 18.128 | 37.069 | 1788.690 | 3657.576 |
| 7 | 1678.772 | 84.000 | 575757.107 | 249015.625 | 0.132 | 0.133 | 14.664 | 30.912 | 1231.765 | 2596.631 |
| 6 | 1678.772 | 70.000 | 452811.6788 | 202713.884 | 0.104 | 0.108 | 11.533 | 25.164 | 807.281 | 1761.513 |
| 5 | 1678.772 | 56.000 | 337472.3474 | 157592.801 | 0.077 | 0.084 | 8.595 | 19.563 | 481.322 | 1095.541 |
| 4 | 1678.772 | 42.000 | 231010.0008 | 113910.41 | 0.053 | 0.061 | 5.884 | 14.141 | 247.109 | 593.905 |
| 3 | 1678.772 | 28.000 | 135403.4302 | 72089.6955 | 0.031 | 0.038 | 3.449 | 8.949 | 96.560 | 250.574 |
| 2 | 1678.772 | 14.000 | 54327.67763 | 32976.9137 | 0.012 | 0.018 | 1.384 | 4.094 | 19.371 | 57.312 |

Total W 15108.948

| $\Sigma=$ | $\Sigma=$ | $\Sigma=$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4355560 | 1876585 |  | 1 |  | 1 |  | 111 |  | 233 |  | 10400 | 21278 |



