Sallie Mae Headquarters Reston, VA

Frank Burke Structural Option Technical Assignment #2 Thesis Advisor – Thomas E. Boothby

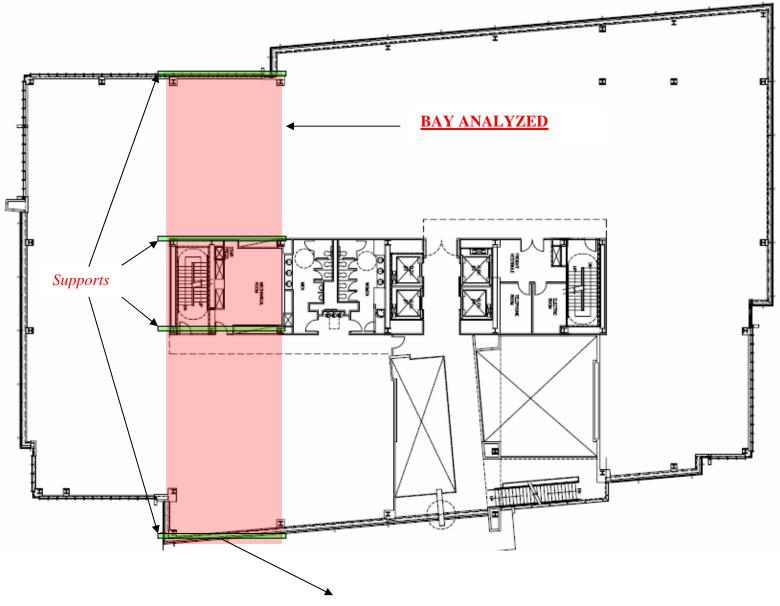
Executive Summary

For this assignment I will be analyzing four alternative systems for my building, Sallie Mae HQ. Sallie Mae is located in Reston, Virginia and consists of an underground parking garage and a 9 story office building. The parking garage was left out for this assignment due to the fact that it will remain concrete and alternative systems seem impractical. On the other hand, I analyzed a typical floor for the office building portion of Sallie Mae. The existing system for the office building is structural steel with a high quantity of cambered beams. The controlling factor for the design of all my systems would be the 45'-55' spans of the exterior bays spanning E-W. For the purpose of this assignment I simplified a strip in the E-W direction into a set of rectangular bays.

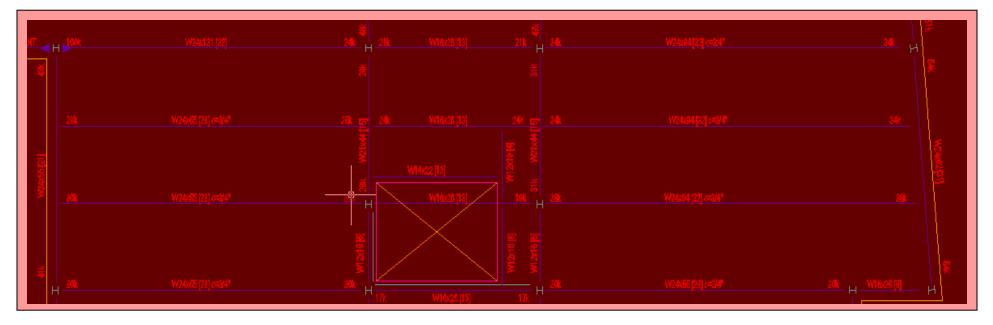
My alternative systems are post-tensioning, steel joist, precast concrete, and steel framing. For this design I came to the conclusion that post-tensioning won't work for slabs less than 13" deep because of the long spans. Also increasing slab depth over 14" would be very uneconomical due to the self-weight of the slab. Also the long exterior span is followed by a short 25' middle span which causes the tendon profile to be critical in my design. For post-tensioning to work 2-4 strands of ½ in. diameter, 7 wire, 270ksi strands are needed per foot of width. This makes post-tensioning a very possible solution.

The next two systems ended up with solutions that required 32" of structural depth. For the one way joist system a 32LH12 LH-SERIES JOIST is needed, and 4 rows of horizontal bridging is required with 16' max spacing. Also the decking could be reduced to a total depth of 4" due to the 4' spacing between the joists. Another concrete system that seemed reasonable was precast double tees. From analyzing Nitterhouse Concrete product catalog's, I picked a 32" x 12" Double Tee with .6 in. diameter, 7 wire, 270ksi strands.

The steel beam layout of the existing system was originally spaced at 9'o.c. So I attempted to change that spacing to 7'. The beam size needed for a 53' span was a W24 x 76 due to the fact that deflection controlled the design. It seemed that a lot of strength was being wasted on deflection, and I can understand why the original design had W27 x 84's spaced at 9' and cambered to resist that deflection. This design seemed to be a failure do to the fact that an extra beam per bay for 9 stories would be very costly.


Overall an alternate steel system is not a very efficient design, the joist and double tees are still probable, but post-tensioning seems like the forerunner for the best alternative design. This is due to the fact that there is a possibility because of the small depth compared to the existing systems, that another floor can be added to the building. In the long run this extra floor can offset any additional construction cost of the post-tensioning system.

Technical Assignment 2


Sallie Mae HQ is located in Reston, Fairfax County, Virginia. Sallie Mae consists of a steel tower office building and a concrete parking garage. The office building is nine stories above grade and has a ground print of approximately 25,000sf. The parking garage reaches five stories below grade and is approximately 75,000sf. Due to the fact the parking garage must remain concrete makes it invaluable for this assignment. Instead I will analyze a typical floor of the office building.

The office part of Sallie Mae mostly consists of floors that resemble the typical floor below. There are four lines of columns along the long direction (N-S), and girders also span between those columns in the N-S direction. The beams span E-W, and reach spans up to 55 ft. These longer spans require camber due to deflection. The typical floors are made up of 3.25" lightweight concrete over 2" Deep x 18 gage galvanized composite metal deck. The connections consist of primarily simple shear connections with the exception of very few moment connections. Furthermore, there is no typical bay in the system due to the fact that the outside of the building consistently slopes. So to analyze the alternate systems of this building I assumed that the bays were rectangular.

Alternate Systems:

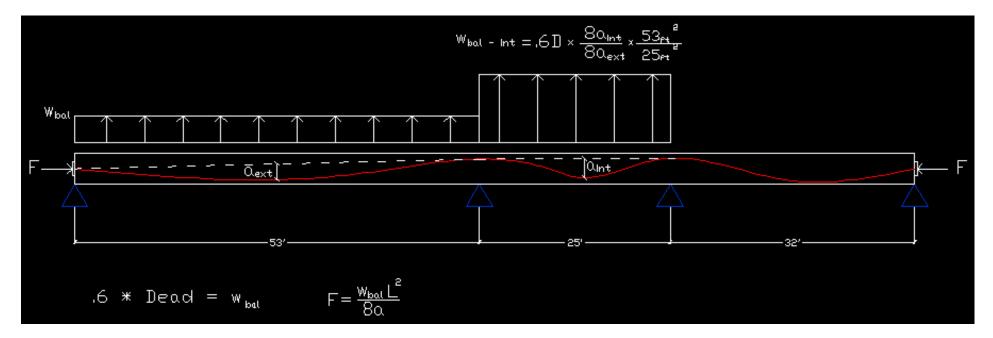
- 1. Post-Tensioning
- 2. One way joist system
- 3. Precast concrete
- 4. Steel Framing

Loads:

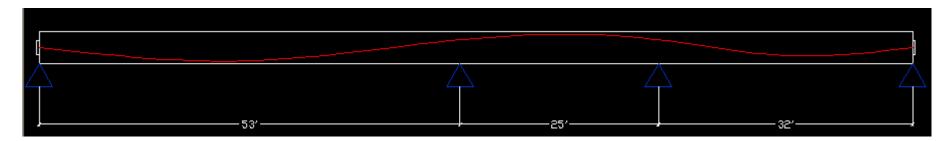
• Live Load = 80 PSF

- Dead Load = (Varies with system)
- SIDL = 20 PSF
- Facade Load = 15 PSF (was not included in calcs)

Codes and catalogs used:


- ACI 318-05
- LRFD 3rd edition
- United Steel Deck catalog
- NCJ joist catalog
- Nitterhouse Concrete Products

Alternate #1 Post-tensioning


Structural Details ¹/₂ in. diameter, 7 wire, 270ksi strands 2 – 4 strands need per foot of width 5000psi - 6000psi concrete required 13 – 14 inch slab thickness

Description:

When examining my structure for the consideration of post tensioning I came to the conclusion that special considerations need to be taken for my building. I began designing with a flat-plate two-way system and came to the conclusion that a 13" to 14" slab must be used to allow for a parabolic tendon profile with maximum drape for the exterior span. Designing this system seemed to be more difficult then expected due to the 53' span being directly followed by a 25' span. If continuous tendons were run across all three spans then the middle span would control the design due to uplift. (As shown below)

The most practical solution to preventing uplift for the middle span is to design a tendon profile that actually pushes down on the slab.

Benefits: 14" thickness High weight will prevent vibration

Downfalls: Expensive installation

Special considerations: If the columns and slabs are the same strength concrete, construction would be safer and faster.

Alternate #2 One way joist system

Structural Details
32LH12 LH-SERIES JOIST
4 Rows of horizontal bridging required, 16' max spacing
20 gage B-LOK deck a with lightweight slab depth of 4"

Description:

Joists are very inexpensive and seemed like a reasonable alternative due to there long span capabilities. As shown below joist on the exterior left span are spaced at 4' and the joist on the other two spans are spaced at 7'.

Benefits: Low self weight Cheap cost of installation *Downfalls:* 32" depth

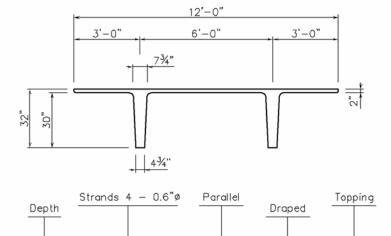
Special considerations: Bridging is critical

	W16x31 (20)	W8x10 (16)	
	32LH12		
	32LH12	20LH06	24LH09
44	32LH12 ឡ	20LH06	24LH09 5
W21x44	32LH12 00	20LH06 *** 120LH06	24LH09 9
_	32LH12	20LH06	24LH09
-	32LH12		
	32LH12	20LH06 - H	
-	32LH12		
-	32LH12	20LH06	24LH09
×44	32LH12 00	20LH06	24LH09
W21x44	32LH12 00	20LH06 77	24LH098
-	32LH12	20LH06	24LH09
-	32LH12		
		W8×10 (16)	W12x14 (16)
\sim			$) \longrightarrow ($

Alternate #3 Precast Concrete

Structural Details 32" x 12" Double Tee .6 in. diameter, 7 wire, 270ksi strands 10 parallel strands per leg 6000psi concrete

Description:


Another concrete system that can be used with the long spans of Sallie Mae is precast concrete. To decide which member to use, I simply used the NitterHouse design tables. The Double Tee shape was the only precast member that could handle long spans and referring to their charts I chose a 32" x 12" Double Tee with no topping.

Prestressed Concrete 32"x12' Double Tee

32

4.6

		PHYSICAL PRO	PERTI	ES	
		Precas	st		
A	=	663 in. ²	S⊾	=	2800 in. ³
1	=	63,361 in. ⁴	St	=	6762 in. ³
Υ _b	=	22.63 in.	Wt.	=	691 PLF
Yt	=	9.37 in.	Wt.	=	58 PSF

Ρ

D

DESIGN DATA

- 1. Precast strength @ RELEASE = 3000 PSI. (min.)
- 2. Precast strength @ 28 days = 6000 PSI. 3. Precast Density = 150 PCF 4. Strand = $0.6'' \phi$ 270k LO-relaxation.

- 5. Maximum bottom tensile stress is $12\sqrt{f'c} = 930$ PSI.
- 6. All superimposed load is treated as live load in the flexural strength analysis.
- 7. Flexural capacity is based on stress/strain strand relationships.
- 8. Maximum moment capacity is critical at midspan for parallel strands and is critical near 0.4 span for draped strands.

			Tab	le c	f Sa	ife S	Supe	rimp	osec	Lo	ads	(Ibs.	per	sq.	ft.)							
Section	ØМ _п										Spar	in in	Feet									
Section	(in. Kips)	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92
32-4.6 P	6,075	26																				
32-6.6 P	8,806	59	51	44	38	32																
32-8.6 P	11,280	88	79	70	62	55	48	42	37	32												
32-10.6 P	13,476	115	104	93	83	75	67	60	54	48	42	38	33									
32-12.6 P	15,554	140	126	114	103	93	84	76	69	62	56	50	45	40	36	32						
32-14.6 D	20,052	194	176	161	146	134	122	112	102	94	86	78	72	66	59	54	50	45	41	37	33	30
32-16.6 D	22,484				171	156	143	132	121	111	102	93	85	78	71	65	59	53	48	44	40	37
32-18.6 D	24,653										117	107	98	90	83	76	69	63	58	53	48	43

This table is for simple spans and uniform loads. Design data for any of these span—load canditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

2655 MOLLY PITCHER HWY. SOUTH, BOX N CHAMBERSBURG, PA 17201-0813 717-267-4505 · FAX: 717-267-4518

Benefits: Low self weight Cheap cost of installation

Downfalls: Expensive connections and custom made designs 32" depth

Special considerations: Special designs may need to be made due to the odd slope of the exterior

Alternate #4 Steel Framing

Structural Details W24 x 76 beams 7' spacing 20 gage B-LOK deck with a lightweight slab depth of 4"

Description:

The existing design of Sallie Mae had the cambered beams spanning E-W, spaced at 9' on average. I decided to try spacing these beams at 7' spacing with the aid of RAM. This reduction allowed for the decks spanning perpendicular to the beams, to be made lighter. This alternative design also allowed W27 x 76 (non-cambered) beams to be used.

Benefits: Reduced deck size from 5.25" to 4"

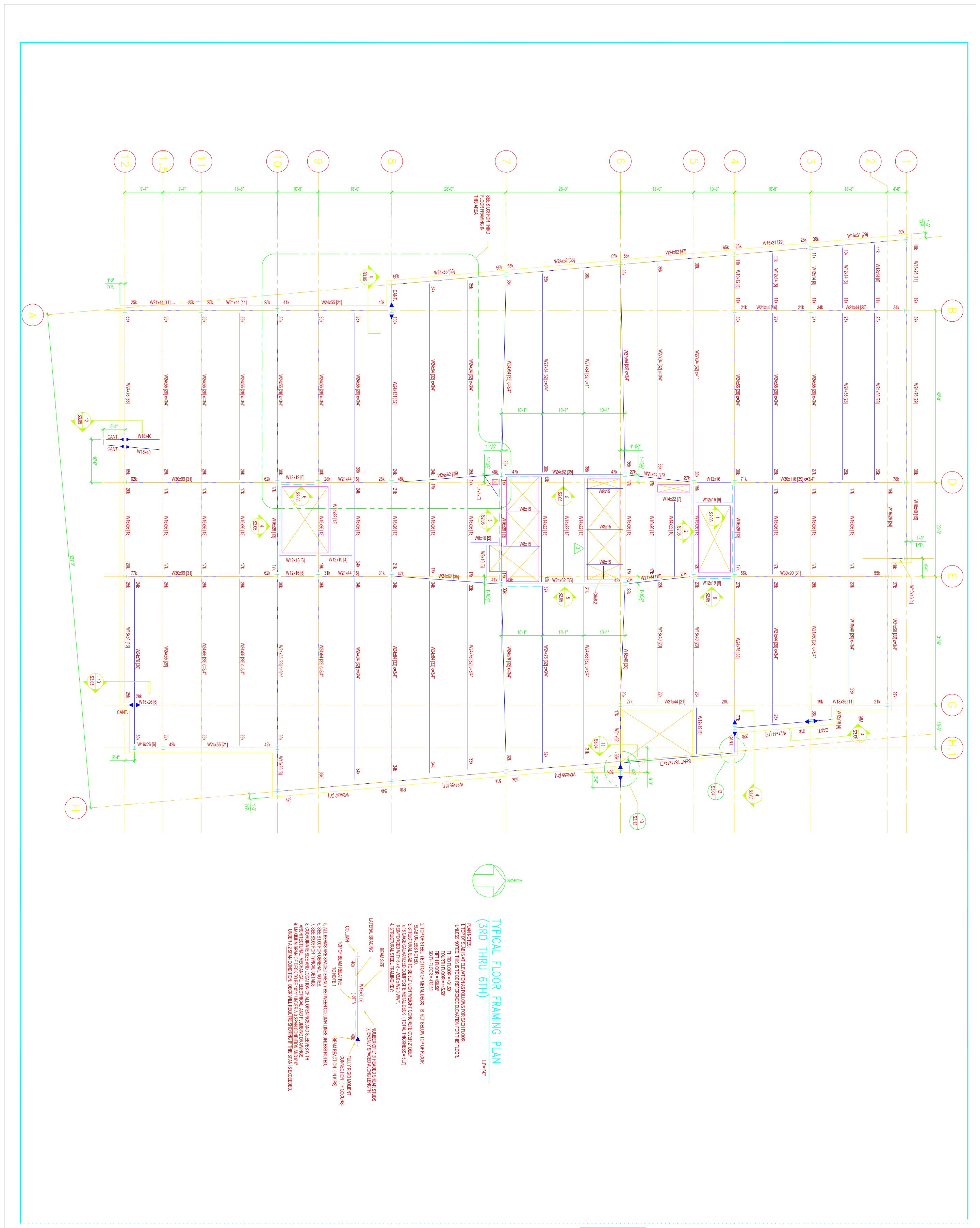
Downfalls:

This system due to the increase in number of beams will be more expensive. This includes the cost of steel and the cost of labor. A possible reduction in fire rating

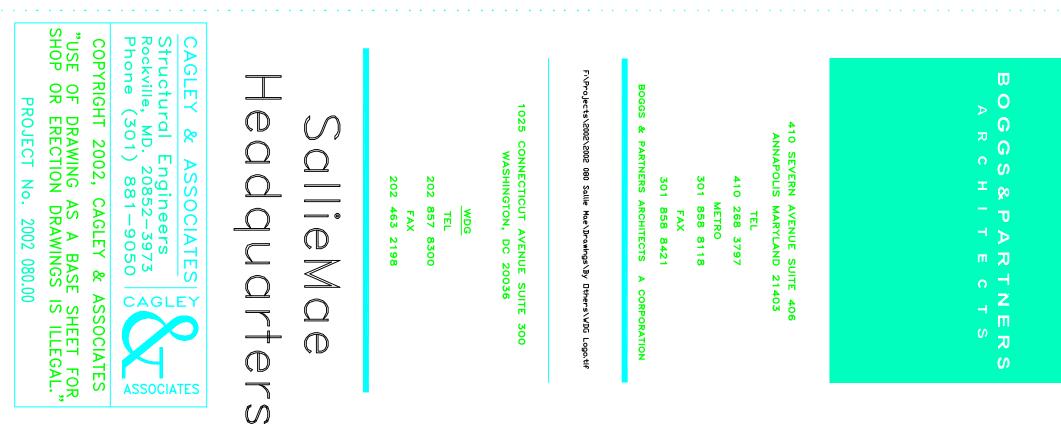
Special considerations:

Vibration may be dampened by the closer spacing of the beams, but may be increased by the smaller deck size

\bigcirc	H	₩10x12 (S)	W12x16 (26)
)	W24x76 (62)	W12x14 (1)	2)	W14x22 (26)
W24x55	W24x76 (62)	W12x14 (1	(C W24x55	
		W12x14 (1:		W14x22 (26)
\bigcirc		W12x14 (1	2)	W14x22 (26)
	VV24×76 (62)	W12x14 (1	2)	W14x22 (26)
W24x55	W24x76 (62)	W12x14 (1)	(C W24:55	
		W12x14 (1		W14x22 (26)
().	W24x55 (42)	W10x12 (9	<u>) </u>	W12x16 (26)
(


	Cost of building (1 - 5=Expensive)	Constructability	Depth of system	Fire Protection	Vibration	Continue Ana
Existing Steel System	3	NA	27"	Required fireproofing	NA	NA
Post-Tensioning	5	Difficult procedure for building but very possible	14"	Very Good	Very Good	YES
One way joist system	1-2	Very easy installation but difficult to get to site	32"	Needs fireproofing	Not sure - Good	YES
Precast Concrete	2-3	Easy installation but difficult to get to site	32"	Good	Not Sure - Good	YES
Alternate Steel System	3	ОК	24"	Need fireproofing	May be a problem due to thin decking	NO

Remarks:


Overall an alternate steel system is not a very efficient design, the joist and double tees are still probable, but post-tensioning seems like the forerunner for the best alternative design. This is due to the fact that there is a possibility because of the small depth compared to the existing systems, that another floor can be added to the building. In the long run this extra floor can offset any additional construction cost of the post-tensioning system.

Appendix A – Typical Floor

SHEET NO	TYPICAL FL PLAN (3RD 1/8"	DATE 8/11/04 JOB NUMBER	A.M.P. APPROVED	CHECKED	DRAWN	ת ח <	08/11/04 NO DATE	3 4 07/07/03	4/01/03	3/31/03	3/3/03	3/3/03	01/27/03	12/03/02
• 0 7	fYPICAL FLOOR FRAMING PLAN (3RD THRU 6TH) 1/8"=1'-0"	4				- - - - - S	PRINTING UPDATE REMARKS	FOR CONSTRUCTION SET	ISSUE FOR BUILDING PERMIT	ISSUE FOR COMPREHENSIVE BID	ISSUE FOR BUILDING PERMIT	CONCRETE & STEEL BID SET	SITE WORK BID	FOOTING & FOUNDATION PERMIT

Appendix B – Chart Used

STANDARD LOAD TABLE/LONG SPAN STEEL JOISTS, LH-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

C

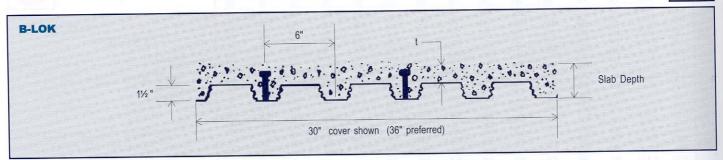
-

6

7

1100

1


1

Joist Designation	Approx. Wt in Lbs. Per Linear Ft.	Depth in inches	SAFEL in Lt Betwo	os.							CLE	AR SP/	AN IN FE	ET						
Designation	(Joists only)	Inches	28-3		33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
24LH03	11	24	115	00	342 235	339 226	336 218	323 204	307 188	293 175	279 162	267 152	255 141	244 132	234 124	224 116	215 109	207 102	199 96	19 90
24LH04	12	24	141	00	419 288	398 265	379 246	360 227	343 210	327 195	312 182	298 169	285 158	273 148	262 138	251 130	241 122	231 114	222 107	21
24LH05	13	24	151	00	449	446	440	419	399	380	363	347	331	317 171	304 160	291 150	280 141	269 132	258 124	24
24LH06	16	24	203	00	308 604	297 579	285 555	264 530	244 504	226 480	210 457	<u>196</u> 437	182 417	399	381	364	348	334	320	30
24LH07	17	24	223	00	<u>411</u> 665	<u>382</u> 638	<u>356</u> 613	<u>331</u> 588	<u>306</u> 565	284 541	263 516	245 491	228 468	211 446	<u>197</u> 426	<u>184</u> 407	172 389	161 373	152 357	34
24LH08	18	24	238	00	452 707	421 677	<u>393</u> 649	367 622	343 597	320 572	297 545	276 520	257 497	239 475	<u>223</u> 455	208 435	195 417	182 400	171 384	36
24LH09	21	24	280	00	480 832	447 808	416 785	388 764	362 731	338 696	<u>314</u> 663	292 632	272 602	254 574	238 548	222 524	208 501	196 480	184 460	44
24LH10	23	24	296	00	562 882	530 856	501 832	<u>460</u> 809	424 788	<u>393</u> 768	363 737	<u>337</u> 702	313 668	292 637	272 608	254 582	238 556	223 533	209 511	19
24LH11	25	24	312	00	<u>596</u> 927	559 900	528 875	500 851	474 829	4 <u>39</u> 807	406 787	378 768	351 734	326 701	304 671	285 642	266 616	249 590	234 567	22 54
			33-39	40	624 41	588 42	<u>555</u> 43	525 44	498 45	472 46	449 47	418 48	388 49	361 50	<u>337</u> 51	315 52	294 53	276 54	259 55	24
28LH05	13	28	14000		337	323	310	297	286	275	265	255	245	237	228 119	220	213 107	206	199 97	19
28LH06	16	28	18600	18600	219 448	<u>205</u> 429	<u>192</u> 412	180 395	169 379	1 <u>59</u> 364	1 <u>50</u> 350	142 337	1 <u>3</u> 3 324	126 313	301	113 291	281	271	262	2
28LH07	17	28	21000	21000	289 505	270 484	253 464	238 445	223 427	<u>209</u> 410	<u>197</u> 394	186 379	175 365	166 352	1 <u>56</u> 339	148 327	140 316	133 305	126 295	1 2
28LH08	18	28	22500	22500		305 517	285 496	267 475	251 456	236 438	420	<u>209</u> 403	<u>197</u> 387	<u>186</u> 371	176 357	1 <u>66</u> 344	1 <u>58</u> 331	150 319	308	1
28LH09	21	28	27700	27700	<u>348</u> 667	325 639	305 612	285 586	268 563	252 540	236 519	<u>222</u> 499	<u>209</u> 481	<u>196</u> 463	<u>185</u> 446	430	<u>165</u> 415	<u>156</u> 401	148 387	1
28LH10	23	28	30300	30300	428 729	400 704	375 679	351 651	329 625	<u>309</u> 600	291 576	274 554	258 533	243 513	228 495	<u>216</u> 477	<u>204</u> 460	193 444	183 429	
28LH11	25	28	32500		466 780	4 <u>39</u> 762	414 736	388	<u>364</u> 682	342 655	322 629	<u>303</u> 605	285 582	269 561	<u>255</u> 540	241 521	228 502	215 485	204 468	4
28LH12	27	28	35700		498	475 837	448 818	423 800	<u>397</u> 782	373 766	<u>351</u> 737	331 709	<u>312</u> 682	294 656	278 632	263 609	249 587	236 566	223 546	5
28LH13	30	28	37200	-	545	520 874	496 854	476 835	454 816	435 799	408	383 766	361 751	340 722	<u>321</u> 694	303 668	285 643	270 620	256 598	
LOLITIO			Contain Million		569 49	543 50	518 51	495 52	472	452 54	433 55	415 56	<u>396</u> 57	373 58	352 59	332 60	314 61	297 62	281 63	2
32LH06	14	32	16700	16700		326 199	315 189	304 179	294 169	284 161	275 153	266 145	257 138	249 131	242 125	234 119	227 114	220 108	214	
32LH07	16	32	18800	18800	379	366	353	341 200	329 189	318	308	298 162	288 154	279 146	271	262 133	254 127	247	240	2
32LH08	17	32	20400	20400		223 397 242	383	369 216	357	345 194	333 184	322 175	312 167	302 159	293 151	284	275	267	259	1 2
32LH09	21	32	25600	25600		498	480	463 270	447	432	418 230	404 219	391 208	379 198	367 189	356 180	345 172	335 164		5 3
32LH10	21	32	28300	28300		<u>302</u> 550	285	512	495	478	462	445	430	416	402 206	389	376	364	353	3 3
32LH11	24	32	31000	31000		<u>332</u> 602	315 580	297 560	282 541	267 522	254 505	- 488	473	458	443	429	416 206	403	390) 3
32LH12	27	32	36400	36400		363	343 688	<u>325</u> 664	<u>308</u> 641	<u>292</u> 619	277 598	263 578	251 559	239 541	524	508	492 243	477	463	3 4
32LH13	30	32	40600	40600		428 801	406 785	384	<u>364</u> 742	345	<u>327</u> 690	311 666	295 643	<u>281</u> 621	267 600	255 581	562	544	527	7 5
32LH14	33	32	41800	41800			810		780	766		713		665	643	622		583	249 564 264	1 5
32LH15	35	32	43200	43200				458 821	440 805	417	<u>395</u> 776	374		337	321	<u>304</u> 678	656	635	616	5 5
			42-46	47-56	532	<u>511</u> 58	492	473 60	454 61	438 62	422 63	407 64	<u>393</u> 65	<u>374</u> 66	<u>355</u> 67	338 68	69	306	71	
36LH07	16	36		16800		283	274		258	251	244			224	218	212		201	95	
36LH08	18	36	18500	18500		311	302	293		276 153	268	260	253	246 128	239 123		227	221	104	4
36LH09	21	36	23700	23700		398 235	386	374		352 195	342	333	323	314 163	306 157	297	289	282	275	5
36LH10	21	36	26100	26100		440	426	413	401	389	378	367	357	347 180	338 173	328	320	311	303	3
36LH11	23	36	28500	28500		480	465	451	438		412	401	389	378 196		358	348	339	330	C C
36LH12	25	36	34100	34100	593	575	557	540	523	508 279	493	478	464			424	412	400	389	9
36LH13	30	36	40100	40100		675	654	634	615	596	579	562	546		516	502	488	475	5 463	3
36LH14	36	36	44200	44200		755	729	706	683		641	621	602	584	567	551	535	520	505	5
36LH15	36	36	46600	4660	456 0 809				744	356 721 394			656		618	600	583	567	7 551	1

The **Deck Section Properties** are per foot of width. The I value is for positive bending (in.⁴); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_b and φV_n . are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, φM_{nf} .

The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. $\varphi\,M_{nf}$ is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). Ac is the area of concrete available to resist shear, in.² per foot of width. Vol. is the volume of concrete in ft.3 per ft.2 needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft.². S_c is the section modulus of the "cracked" concrete composite slab; in.³ per foot of width. $I_{\rm av}$ is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in.4 per foot of width. The lav transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use is 29.5 x 106 psi. φ M_{no} is the factored resisting moment of the composite slab if there are no studs on the beams (the deck is attached to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{nt} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed $\varphi\,4(f_c)^{\!\!\!/_2}A_c;$ pounds (per foot of width). The next three columns list the maximum unshored spans in feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. $\mathbf{A}_{\mathsf{wwf}}$ is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.

				DECK PRC	PERTIES	a at			01.24
Gage	t	w	As	, I	Sp	S _n	R _b	ϕV_n	studs
22	0.0295	1.6	0.470	0,165	0.195	0.206	1320	2620	0.52
20	0.0358	1.9	0.570	0.212	0.247	0.260	1880	3170	0.63
19	0.0418	2.3	0.670	0.260	0.292	0.304	2500	3680	0.73
18	0.0470	2.6	0.760	0.308	0.337	0.349	3200	4160	0.83
16	0.0598	3.3	0.960	0.400	0.434	0.439	4750	5210	1.05

		10-10-10-10-10-10-10-10-10-10-10-10-10-1			CO	MPOSIT	E PRO	PERTIE					-
	Slab	φ M _{nf}	A,	Vol.	W	S _c in ³	l _{av} in ⁴	φM _{no}	φV _{nt}		shored spa		Awwf
- 1	Depth	in.k	A _c in ²	ft3/ft2	psf	in ³	in ⁴	in.k		and the second se	2span 3		
	4.00	38.19	21.3	0.255	29	0.91	3.1	25.66	2980	5.14	6.82	6.91	0.023
	4.50	44.78	24.8	0.297	34	1.11	4.3	31.13	3460	4.90	6.53	6.61	0.027
B	4.75	48.07	26.5	0.318	37	1.21	5.1	33.93	3700	4.80	6.39	6.47	0.029
5	5.00	51.37	28.3	0.339	39	1.31	5.9	36.77	3960	4.70	6.27	6.34	0.03
	5.50	57.96	32.1	0.380	44	1.52	7.9	42.53	4480	4.52	6.04	6.11	0.03
5	5.75	61.26	34.0	0.401	46	1.62	8.9	45.45	4750	4.43	5.94	6.01	0.03
J	6.00	64.55	36.0	0.422	49	1.73	10.1	48.39	5030	4.36	5.84	5.91	0.04
K	6.50	71.15	40.1	0.464	53	1.94	12.8	54.31	5420	4.21	5.66	5.73	0.04
	6.75	74.44	42.2	0.484	56	2.04	14.3	57.30	5570	4.15	5.58	5.64	0.04
	7.00	77.74	44.3	0.505	58	2.15	15.9	60.30	5720	4.09	5.50	5.56	0.05
	4.00	45.45	21.3	0.255	29	1.09	3.3	30.45	2980	6.02	8.01	8.11	0.02
	4.50	53.44	24.8	0.297	34	1.32	4.7	36.98	3460	5.72	7.64	7.74	0.02
(1)	4.75	57.44	26.5	0.318	37	1.44	5.5	40.33	3700	5.59	7.48	7.57	0.02
lage	5.00	61.44	28.3	0.339	39	1.56	6.4	43.73	3960	5.47	7.33	7.41	0.03
N	5.50	69.43	32.1	0.380	44	1.81	8.5	50.64	4480	5.25	7.05	7.13	0.03
57	5.75	73.43	34.0	0.401	46	1.93	9.7	54.14	4750	5.15	6.92	7.00	0.03
-	6.00	77.43	36.0	0.422	49	2.06	11.0	57.67	5030	5.06	6.80	6.88	0.04
2NNN	6.50	85.42	40.1	0.464	53	2.31	13.8	64.79	5600	4.89	6.58	6.66	0.04
	6.75	89.42	42.2	0.484	56	2.44	15.4	68.38	5890	4.81	6.48	6.56	0.0
	7.00	93.42	44.3	0.505	58	2.57	17,1	71.98	6190	4.73	6.39	6.46	0.0
	4.00	52.41	21.3	0.255	29	1.25	3.6	35.09	2980	6.70	8.94	9.05	0.0
	4.00	61.81	24.8	0.297	34	1.52	5.1	42.65	3460	6.36	8.52	8.62	0.0
4	4.30	66.51	26.5	0.318	37	1.66	6.0	46.54	3700	6.21	8.33	8.43	0.0
ŏ	5.00	71.20	28.3	0.339	39	1.80	6.9	50.49	3960	6.08	8.16	8.25	0.0
jage	5.50	80.60	32.1	0.380	44	2.09	9.1	58.52	4480	5.83	7.84	7.93	0.0
Ö	5.75	85.30	34.0	0.401	46	2.23	10.4	62.60	4750	5.71	7.69	7.78	0.0
-	6.00	90.00	36.0	0.422	49	2.38	11.7	66.71	5030	5.61	7.56	7.65	0.0
0	6.50	99.39	40.1	0.464	53	2.67	14.8	75.02	5600	5.41	7.31	7.39	0.0
-	6.75	104.09	42.2	0.484	56	2.82	16.5	79.20	5890	5.32	7.19	7.28	0.0
	7.00	104.09	44.3	0.505	58	2.97	18.3	83.41	6190	5.24	7.08	7.17	0.0
		58.42	21.3	0.255	29	1.40	3.8	39.20	2980	7.34	9.64	9.93	0.0
	4.00	69.07	24.8	0.235	34	1.70	5.4	47.67	3460	6.96	9.19	9.44	0.0
-	4.50		24.0	0.257	37	1.85	6.3	52.03	3700	6.79	8.99	9.23	0.0
X	4.75	74.40	28.3	0.339	39	2.01	7.3	56.46	3960	6.64	8.80	9.03	0.0
ade	5.00	79.73	32.1	0.339	44	2.33	9.6	65.49	4480	6.36	8.46	8.67	0.0
0		90.39 95.72	34.0	0.380	44	2.50	11.0	70.08	4750	6.24	8.30	8.51	0.0
	5.15	95.72	34.0	0.401	40	2.50	12.4	74.71	5030	6.12	8.15	8.35	0.0
8	6.00		40.1	0.422	53	3.00	15.6	84.06	5600	5.90	7.88	8.07	0.0
-	6.50	111.71	40.1	0.464	56	3.16	17.4	88.78	5890	5.80	7.75	7.94	0.0
	6.75	117.04	42.2	0.464	58	3.33	19.3	93.52	6190	5.71	7.63	7.82	0.0
	7.00	122.37 58.42	21.3	0.505	29	1.70	4.3	39.20	2980	8.58	10.76	11.12	0.0
	4.00		21.3	0.255	34	2.08	6.0	47.67	3460	8.12	10.27	10.61	0.0
	4.50	69.07		0.297	34	2.08	7.0	52.03	3700	7.92	10.05	10.38	0.
Y	4.75	74.40	26.5 28.3	0.318	39	2.46	8.1	56.46	3960	7.73	9.84	10.17	0.0
dade	5.00	79.73		0.339	44	2.46	10.7	65.49	4480	7.40	9.46	9.78	0.
E	5.50	90.39	32.1		44	3.07	12.1	70.08	4750	7.25	9.28	9.60	0.
	0110	95.72	34.0	0.401		3.07	13.7	70.00	5030	7.11	9.12	9.43	0.
C	6.00	101.05	36.0	0.422	49		17.2	84.06	5600	6.85	8.81	9.11	0.
-		111.71	40.1	0.464	53	3.69			5890	6.74	8.67	8.96	0.
	6.75	117.04	42.2	0.484	56	3.90	19.2	88.78	6190	6.62	8.54	8.82	0.
	7.00	122.37	44.3	0.505	58	4.11	21.3	93.52	0190	0.02	0.04	0.02	0.

R - LOK

Appendix C – Calculations

Frank Burke Oct 27 2005 - Sallie Mae Alternate Design #1 Post-Tensioning · Plan View of typical Strip (A) B) (C) 0 0 D 28' (typ) \Box 17 53' 25' 32' V. V Materials: Concrete: Normal Weight 150 pcs 5'c = 5000 psi 5'ci = 3000 psi Rebor: Sy = GO,000 psi Unbonded tendons PT: 2" Ø, 7 wire strands, A=. 153 fpu= 270 Ksi Estimated prestress losses = 15ksi (ACI 18.6) Sse = .7 (270ksi) - 15ksi = 174 ksi (ACI 18.5.1) Pess = A* Sse = (.153) (174 Ksi) = 26.6 Kips/tendon Determine Preliminary Slab Thickness Stort with L/h= 50 h= 53×12/50 ~ try 12" slab Loading DL= 150 PSF SIDL= 20055 LLo = 80ps5 IBC 1607.9.1 allows for LL reduction L= 80p55 (.25 + 15 (JX[25'x28'))= .82×80p55 = 65.6-> 66p55

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

CAMPAD'

Design of E-W Frome

Use Equivalent Frame method, ACI 13.7 (excluding sections 13.7.7.4-5) Total boy width between centerlines = 28St No pattern loading required, since LL/DL < 3/4 (ACI 13.7.6)

Calculate Section properties

Two-way slab must be designed as Class ((ACI 18.3.3), Gross Cross-sectional properties allowed (ACI 18.3.4)

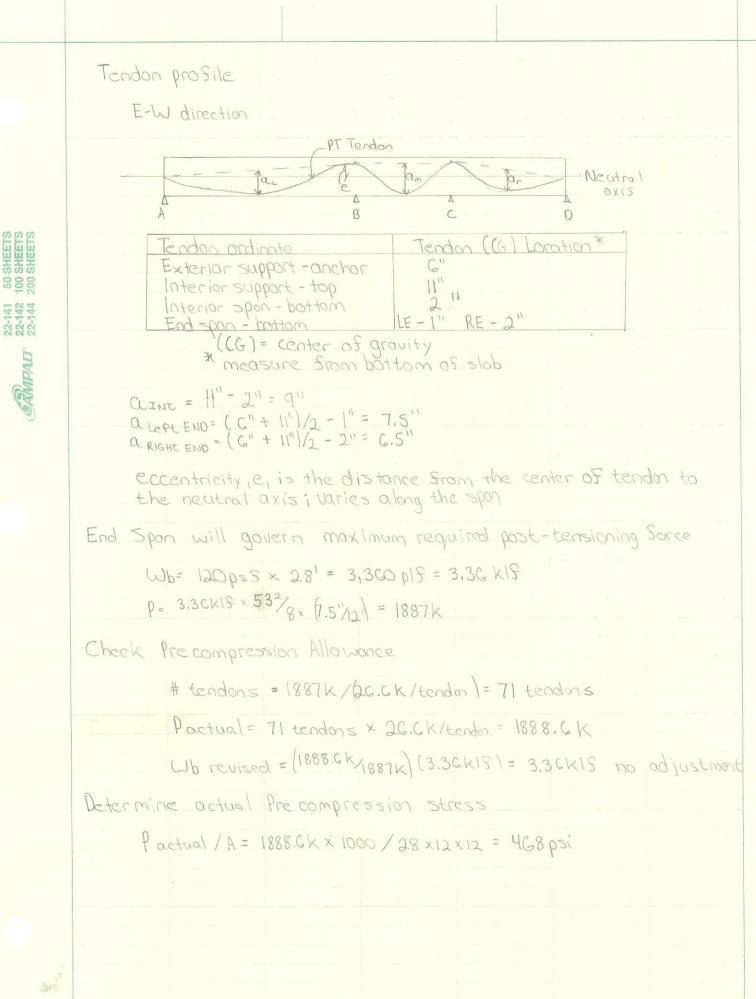
 $A = b \cdot h = 28' \times 12'' \times 12''/st = 4032 in^2$

5= bh2/c= 28'× 12"/gE × 122/c= 8064103

Set design parameters

Allowable stresses: Class U (ACI 18.3.3)

At time of jacking (ACI 18,4.1) Sci = 3,000 psi Compression = , CO S'ci = .6(3,000 psi) = 1,800 psi Tension = 3 JSTci = 3,J3000 = 164 psi


At service loads (ACI 18,4,26) and 18,3,3) S'c= 5000 psi Compression=.45 S'c=.45(5,000 psi)=2,250 psi Tension= 6 J5'c= 6 J 5000 = 424 psi

Average precompression limits A= 125 psimin (ACI 18.12.4) = 300 psi mox

Target Load Balonces Use 80% of DL (selsweight) Sorslobs 0.8×150pss= 120psf

Cover requirements IBC2003 - Use 3/4" Sor 2 hour, Sire rating (assume corbonate aggregate)

22-141 50 SHEETS 22-142 100 SHEETS 22-142 200 SHEETS 22-144 200 SHEETS

Check Interior Span Force P= (3.36 K/St) (25St) 2/ [8 (9"/12)] = 350K ~ 1887K - Less Some required in center boy Check Right end spon P= (3.36 K/SE) (325E)2/E8 (C.5/12)]=794K - Less Some required in right end spon How much force will be boloned on right end spon with 1888k Wb=1888×8×(6.5/12)/322 = 7.98K/SE > .15K59×28'= 4.2K/SE - there would be uplise on slab Check int spon Wb = 1888 × 8 × (9/12)/252 = 18,12 K/St > 4.2K/St Try changing tendon profile (CG) location $a_{INC} = \frac{(11 \pm 9)}{2} - 4 = 6''$ 11" LE 9" RE QLE= 7.5" Exterior support anchor Interior support top Interior spon-bottom LE-1" RE-3" QRE= (9±6)-3"=4.5" End spon - bottom USE .7 OL Sor Wb Wb= 150 ps8 x.7 x 28' = 2940 p13 = 2.94 K18 P= 2.94 K18 × 532/8 (7.5/2) = 1651 K Check pre compression allowonce # tendons = IGSIK/(26.6K/tendon) = 63 tendons Pactual = 63 tendors x 26.6k/tendor = 1676k Wb revised = (167CK/1651K) (2.94K15) = 2.98K15 Determine actual precompression stress Pactual/A = 1676K × 1000/28×144 = 415 psi

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD

How mach Sorce will be belonged on right end open with 1676k
wilds = 1676k × 8 ×
no good - try 13⁴ slab
new DL = 13⁴(2×150 PCF = 162.5 PSF
new A = 29¹×12⁴5t × 13 = 4363 cn²
S = 28¹×12⁴5t × 13 = 4362 cn²
S = 28¹×12⁴5t × 13 = 4362 cn²
(C6) location
$$a_{FWC} (\frac{12}{3} - \frac{1}{3} -$$

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

EAMPAD"

Equivalent Frame Characteristic (E-W)
-
$$K_c = {}^{4E_c} I_c - 2h$$
 (Assume 30°×30° Columns - 12'tall)
- $I_c = {}^{30^{9}}I_a = G7800 in^{4}$
- $I_c = {}^{30^{9}}I_a = G7800 in^{4} \times 2 = 4575 in {}^{10}/rad/E_{cc}$
- $I_{crstonal constant}$
 $C = \Sigma (1 - .63 \frac{x}{3}) \times {}^{3}J = (1 - .63 \times {}^{13}_{12}) 13^{3} \times {}^{12}J_3 = 2790$
- $I_{crstonal constant}$
 $C = \Sigma (1 - .63 \frac{x}{3}) \times {}^{3}J = (1 - .63 \times {}^{13}_{12}) 13^{3} \times {}^{12}J_3 = 2790$
- $I_{crstonal StiSSness of the slob at the column line}$
 $K_t = \Sigma \frac{4E_{cc}C}{L_2(1 - Ca/L_a)^3} = {}^{9}\times12 2790$
- $I_{crstonal StiSSness}$
 $K_{cc} = (\frac{1}{K_c} + \frac{1}{K_a})^{-1} = (\frac{4}{4575} + \frac{1}{193})^{-1} = 190 in {}^{10}/rad/E_{cc}$
Slob stiSSness
- $I_c = \frac{1}{L_a} \times 12 \times 13^3 = 2197 in^{4} \times 28^{3} = 61516 in^{41}$ $S = 12 \times 13^{2}/C = 338 in^{-3}$
 $K_s = \frac{4E_{cs}I_s}{L_a - C1/2}$
- $K_s (a_{R,cl}) = {}^{4}\times12 \times C1516 in^{4} = 396 in {}^{10}/rad/E_{cs}$
- $K_s (a_{R,cl}) = {}^{4}\times12 \times C1516 in^{4} = 396 in {}^{10}/rad/E_{cs}$
- $K_s (a_{R,cl}) = {}^{4}\times12 \times C1516 in^{4} = 666 in {}^{10}/rad/E_{cs}$
- $K_s (a_{R,cl}) = {}^{4}\times12 \times C1516 in^{4} = 6666 in {}^{10}/rad/E_{cs}$

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

For A	DF = 39G/						
For BL	, DF = 396/	(396 t 863	E 190) =.	.273			
for Bp	DF= 863/(863 E 396 t	: 190] = ,	595			
	DF= 863/						
	$C_1 D_F = 666$.387			
For D	1 DF= 666	(190+666)=	,778				· · · · · · · · · · · · · · · · · · ·
Fixed	End Moment:	5		DI		wb	
For A	LL 2 GCOSEX 5	3)2×18-105					
101 /1.	3 66 ps \$x(5	DI VXT = 185	in-K	102.3×33	- 31310-1	28	210
For B	C 66 × 25	2 = 41 in.K		182,5×252=	114m.K	3 <u>9</u> × 28	252= 87 in X
For C	$D C C C X 3 2^2$	= 67.5in.k	1	82.5×32 ² =	187in.k	2.38×	322= 87 in. K
Assume	Corry Over S	actor of .t	Ś			28	
* 00	oment distr	ibution c	S LL				
ÛE	A	B	595		C	262	2.2%
DF	•G7C	.273 185	.595 -41		,502 41	-67.5	۲۲, ۲.5_
FEUI		20.2	85 J		-13.3	10.2	-52,5
FEM					1 4 7	10.3	02,0
Dist	125	-39.3	-85.7_	X			X
	-19.6 13.2	- 39.3 C2.5 - 18.9	6.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-42.8	-26.2 26.7	5.1
Dist CO Dist CO	-19.6	C2.5	616		-42.8	-26.2 26.7	
Dist CO Dist CO Dist	-19.6 13.2 -9.5	C2.5 -18.9 -6.5 -6.5	6.6 -41.1 17.3 -14.2 5.6		-42.8 34.6 -20.5 11.3 -7.1	-26.2 26.7 - 2 8.7 -5.1	- 4 13.3 - 10.3 4.3
Dist CO Dist CO	-19.6 13.2 -9.5 6.4	C2.5 -18.9 -6.5	6.6 -41.1 17.3 -14.2		-42.8 34.6 -20.5 11.3 -7.1	-26.2 26.7 - 2 8.7	- 4 13.3 - 10.3

22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

DF A GTU		5 B	02 .387	,778
EM -513	513	- 4	4 -187	187
)ist <u>3468</u>	-108.9	-237.4 31	516 28,3	-1455
CO -59.5 Dist 30.8	173.4 - 52.3	18.3 - 11 -114.1 9(3.7 -72.7 3.1 74.1	1, 4, 1 0, 11 -
CO -26,2 Dist 17.7	18,4 - 18,1		57 -5.5 1.4 24.2	37 -28,5
(0 -9.6 Dist 6.1	8,8 -6,7		19.8 -14,4 7,2 13.2	12.1 -9,4
	517 5	-437.6	19.8 - 139.9	55.0
MOL -195.	5 02113			
NOL -195.	5			
NOL -195.	5			
A				
	Moment Dist	ribution of Wbal		- 87
)F - 7(Moment Dist - 218	ribution of Wbal -87		
) [= * = E (n * 218) ist - 187: CO 2C. [Moment Dist - 278. 7 52.1 -941	ribution of Wbal -87 113.6 6	- 87 - 87 0 0 16 - 8 33.8	67.7
$\frac{DF}{=Em} = 278$ $\frac{Dist}{-187!}$ $\frac{CO}{Dist} = \frac{2C.1}{-17.0}$	Moment Dist - 278. 7 52.1 -941 25.7	ribution of Wbal 87 113.6 6 55.9	- 87 - 87 0 0 (C , 8 33, 8 (15, 5 - 35, 1)	67.7 0 0
) [= * = E (n * 218) ist - 187: CO 2C. [Moment Dist - 278. 7 52.1 -941	cibution of Wbal -87 113.4 55.9 -22.8	- 87 - 87 0 0 16 - 8 33.8	67.7
$DF = \frac{3}{218}$ = Em = 218 Dist = -187: CO = 2C.T Dist = -17,C CO = 12.8	Moment Dist - 278. 9 52.1 -947 25.7 -8.8	-22.8 18.8 -7.0	- 87 - 87 0 0 33.8 45.5 - 35.1 2.8 0	67.7 0 -17.5

22-141 50 SHEETS 22-142 100 SHEETS 22-142 200 SHEETS 22-144 200 SHEETS

At time of jacking DL= 182.5 p5P What AB=99ps What BC= 139ps What CD= 85ps 85p15 182.5p15 99015 Δ TRB TRC TRO TRA 97.5p19 83.5 plf T 43.5 plf 91.2 in. K 13.54K 11.633 K 83.5 plf 231.9 in.k (1.633 K 97.5 plf]] 31.2 in.k 71,99K 1.47K $-F_{A} \times 53' - 231.9^{11} \times + 91.2^{11} \times + 083.5 \times 53 \times 53/2 = 0$ ZMB= O Fox 32' - 31.2in.k + 64.4in.K - ,0975x 32×32 = 0 ZMc=0 $\begin{array}{c} -1.99 \text{ K} \times 78^{\circ} - \text{ FB} \times 25^{\circ} + 1.47 \times 32^{\circ} + .0835 \times 53 \times 53^{\circ} \times 53^{\circ}$ ZMc=0 EFY=0 -.0835×53' - .0435×25 - .0975×32 +1.99+1.47 + 3.54 + Fe=0 $\Sigma_{M_B} = 0 - 1.99 \times 53' + F_c \times 25' + 1.47 \times 57' + .0835 \times 53^2 - .0435 \times 25^2$ - .0975 × 32 × (16+25) - 31.2 + 91.2 = 0² 12 12 $1.99/.0835 = 23.8' \text{ mox pos moment} = -91.2 \pm 1.99 \times 23.8 \times 12 = 193^{11} \text{ K}$ at left cod 1.99-,0835×53=1.1045/ = 25.39->-185.3 +1.1045×25.39×12 = -174 ok ,0435 2 1,47/ = 15' Srom right end = -31.2 ink + 1,47×15×2 = 101.1"K 193 1K 101.1 K 393"h 64.4"h 91.211K 1 231.9"4

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD"

Check stresses for jacking $A = 12 \times 13$ $S = 12 \times 13^{2} / c$ = 15 cio² = 338 io³ At support A $S_t = \frac{91.2}{k} + \frac{1463}{28} = -65.1$ (compression) Sc= 605 psi 50 SHEETS 100 SHEETS 200 SHEETS At midspon AB ft = 193000"16_1463/28 = 23C psi) > 3551c 22-141 22-142 22-144 Sc= 905.9 psi) EAMPAD" fails At support B (lest) SE = 2319001116_1463/28 = 351psi > 355. 5c= 1021 psi * Chis Design won't work - need to revise tenden layout * Resering to the moment diagrams on the previous page the moments of the long spon control * When designing this slab . GDL was used as what because is continous tendons are run through all the spons then the middle spon which is much smaller than the exterior spon will control the design. And is what isn't lower then . 7DL Son the exterior spon, then when the Spice corries it self to the middle span -> uplist will occur.

Alternatives from the previous post-tension design * Woys to make this work - need to lower moment in the exterior spons - need to prevent uplist in interior spon * Lowering moment while keeping this a practical design - a max slab thickness needs to be made at 14" or the self weight will start overrunning the design - the end plate can be highered to cause a higher drope which will make Wbal higher 13-14 Δ - concrete strength can be highered to 6000 psi - a lorger Pactual con be implented but this needs to be limited to 300-350 mox for an e Spective design * While highering What ways to prevent uplife an interior spon, - One way is to revise tenden layout to counterattack the high neg moments from the exterior spon 7-1-1-1 Another method is to only run half the tendons into the interior spon 1 1 D 14 17 U Post-tensioning is desinitely a probable design for sollie mae but Surther analysis needs to be made before an exact post-tensioning × solution can be made but the definites about the = 13"-14" 5/ab - 5000 psi - 6000 psi concrete = 2-4 tendons per St

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD'

Fronk Burke Oct 27 2005

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

CAMPAD'

- Sallie Mae Alternate Design #2 Steel joists

* Joist I with known loading - spacing = 4' LL= 320 p15 DL=(20 + 30,61×4' + 27p15= 229,4p15 TL= 549,4 p13 Stay with 32 LH12 joist) SHEETS) SHEETS) SHEETS - LH series joist chord and web sections are based on 36 Kai minimum yield strength 50 - They must extend at least 4" on to support 22-141 22-142 22-144 - Bridging is critical for LH joists - Max. Spacing of horizontal bridging = 16' (Table 104.5.1 pg 48 NCJ) EAMPAD - Required # of 4 Rows of bridging (pg XI) of NCJ) * Stoy with 22 Gage B-Lok Deck Assume joist 3= joist 2 * joist 3 Assume spacing of 71 LL= 80 ps 8 x7 = 560 p19 = DL = 70p38×7 + 27p15 = 517p15 Cassume 32LH12 TL= 1067 p19 Try a 32LH 12 again Safe Load = 36400165/(32t.67)=1114p150K For Live Load 450p15×(49t.67)2/ (32t.67)2 = 1040p15 ok ()se 321412 Decking Use 20 gage BLok Deck with a slob depth of 4" W= 31p5f Max unshored spon = 8.111 ok con withstood up to 365ps & LL > 1.6 × 80

* For easiness of ordering and erecting use 32LH12 joint * Use 20 gage B-Lok with depth of " - Lightweight 22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS

Frank Burke Oct 27 2005 -Sallie Mae Alternate Design #3 Precast-Prestressed Loads SIDL = 20PSF LL= 80PSF LL reduction (assume none) TL= 100 PSF 53' spon will control design 32" depth double tee beams with no topping are satisfactory * Using tables from Nitterhouse Concrete products 32"× 12" Double Tee (No topping) St= 6000 psi Sci must be 3000 psi (min) @ Release W= 150 PCF Strond = . 6" & 270K LO-relaxation max bottom tensile stress is 1203' = 930BE Table of Safe Superimposed Loads (1bs. per say St) Section OMn (in. Kips) 52 54 32-(10) C(P) 13,476 115 104 Porellel strond 109psf copacity 10 per deep section Typical Box - (rectongle Sor onalysis) Girders are assumed to be 32" For equal depth 28 53 0 for the actual design special cut precast-tees will need to be made to match column line 0

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD'

Frank Burke Oct 27 2005 - Sallie Mae Alternate Design #4 Steel respaced From original design $AI = 53 \times 14 = 742 ft^2$ Loads L= 80ps8 (.25 t 15/1742) = G5psF 65ps5 -> LL 20ps 3-> SIDL 31 psf -> Decking t Slab 70 plf - for beam Spacing = 7' 65 ps f x 7' = 455 p13 20psf + 31psf × 7' + 70 015 = 427p15 TL= 1.2 × 427 + 1.6 × 455 = 1240 p19 Mmax = W12/8 = 1.24k18 × 532 = 4351K - Decking - Try 20 Gage B-Lok Deck Total thickness = 4" deck height = 11/2" LTWE concrete = 115 PCF W= 29ps5 t 1.9ps5 = 31psf Mox unshared spon = 8.11 56 $bcff = smaller of (spacing = 7' \times 12'' = 84'')$ spon 4 = 53 × 12/4 = 165'' beff = 84" f'c = 3ksiSy = 50ksi Try W21×44 A=13in2 d= 20.7 tf=.45 bf=6.5 tw=.35 Cc= .85 (3 Ksi) (84") × 2.5" = 214 K To= 50 × 13in2 = 650K $\frac{1}{12.75''} = \frac{14}{1.34c} + \frac{20.12}{1.5} + 2(\pm \times 6.5) \times 50 \times \frac{1}{2}$ * Assume PNA is at 7 $\min = \frac{455 > 435^{11/4}}{20n} = \frac{163 k}{21k} \times 2 = 16 \text{ stud} = 1000$

) SHEETS) SHEETS) SHEETS

500

22-141 22-142 22-144

CAMPAD'

strength is ok will deslection be a problem I= 843 A= 5 w14 × 1728 = 5 × 1882 × 534 × 1728 = 614" major Sailure 384 EI = 384 × 29000 × 843 = 614" major Sailure Check de flection using composite section Icgs=Is+ J(ZOn/Cf)(Itr-Is) Deflection controls this design try to stoy within 1500 = 53×12 = 1.272" I 2 4500 10" Or comber is needed Try 24×76 - (n=13.3?) error in Rom From Rom Iter = 4135 in 4 Ie SF = 3883 Live Load = . 455 × 5× 53"× 1728 384×29000×3883 = . 7" o.K USE 24X76

50 SHEETS 100 SHEETS 200 SHEETS

22-141 22-142 22-144

EAMPAD"