the christina landing apartment tower Wilmington, DE

senior thesis – 05/06 gregory eckel

structural

- presentation outline- -

- Building Information
- Existing Systems
- Proposal Summary
- Structural Depth Study 1 Gravity System Redesign
- Structural Depth Study 2 Lateral System Redesign
- Breadth Study 1 Acoustic Analysis
- Breadth Study 2 Construction Management Study
- Conclusions/Acknowledgements
- Questions

gregory eckel

- -building background- -

- Owner
 - The Buccini/Pollin Group
- Architect
 - Kling
- Engineering Disciplines
 - Kling
- General Contractor/CM
 - Gilbane Building Co.

- -building introduction- -

- 22 Story Apartment Tower, 250,000 ft²
- Location Wilmington, DE
- Development includes 63 townhouses, a river walk, condominium high rise, two acre park
- 173 one and two bedroom apartments
- General areas media room, fitness center, great room, bar, convenience store, dry cleaners
- Façade Non-structural precast concrete panels with architectural brick veneer
- Partition Walls Gypsum board on metal studs

gregory eckel

- -existing structural system- -

- 8" Reinforced concrete flat slab #6@10" O.C. E.W. top #4@10" O.C. E.W. bottom
- Typical spans 20'-25'
- Panel Ratios 1:1 to 1:1.5
- Both round and square columns Typical sizes 24" \oplus, Φ
- Lateral System Box of 4 shear walls on west side of building
- Foundation system Pile caps and H-piles driven up to 70'
- Concrete Strengths From 4000psi for pile caps to 8000psi for the columns below the fifth floor

gregory eckel

- -typical floor plan- -

gregory eckel

-proposal summary- -

- It was shown that both the existing gravity and lateral systems were sufficient
- The 8" slab was found to be the thinnest possible
- Existing lateral drift of L/360
- Goal of this thesis is to redesign both systems
- Attempt to make both systems more efficient
- Attempt to change the gravity system while having little impact on the project cost and schedule

gregory eckel

-proposed solutions- -

- Technical assignment 2 revealed that a post-tensioned flat plat would be the best solution
 - Unusual slab shape
 - Non-uniform column layout
 - Small floor to floor height
 - Architectural program controls design
- Technical assignment 3 revealed that large torsional forces were contributing a great deal of shear force
- In order to eliminate the torsional component it was proposed that an additional shear wall be added

gregory eckel

- depth study 1 – gravity redesign- --post-tensioned slab- -building loads-

The loads used for this design are as follows:

– Partitions =	20psf
– Miscellaneous Dead Load =	10psf
– Live Load =	40psf

- RAM factor the self weight of the structure automatically
- RAM uses all load combinations and checks for worst case loading conditions

gregory eckel

- depth study 1 – gravity redesign- -post-tensioned slab- -tendon layout-

- Used the technique of banded strands in one direction and distributed strands in the other (Typical in U.S.)
- 15 Strands per line in the E-W
- 4 Stands per line in the N-S
- Used ½" unbonded strands with 1" of cover

christina landing apartment tower

- depth study 1 – gravity redesign- -post-tensioned slab- -tendon layout-

- Special care was taken placing the tendons to maintain uniformity
- Areas of the slab where strength and deflection issues arose got special attention
 - Slab Edges
 - Penetrations
 - Congested areas
 - Cantilevered slabs

christina landing apartment tower

- depth study 1 – gravity redesign- -post-tensioned slab- -results-

- Minimum bonded reinforcement yielded #4 bars at 31" on center in the top and the bottom of the slab
- Initial service deflection after tensioning yielded a maximum camber of .18"
- Maximum long term deflection of the floor was .49" < L/480
- Punching shear reached 80% of max. allowable

Long Term Deflection

gregory eckel

gregory eckel

- depth study 2 – lateral redesign- -

-addition of shear wall- -intro-

- Technical report 3, maximum drift in wall 1 = 8" due to large torsional force
- Ignored affect of equivalent concrete moment frames
- Added shear wall 5 on east wall
- Sized and positioned to make C.M. and C.R. coincide
- Simplified building to conservative rectangle
- Applied wind loads

gregory eckel

- depth study 2 – lateral redesign - addition of shear wall - distribution of loads-

- Equating C.M. and C.R. wall length was found to be 28'
- Distributed loads by stiffness of resisting elements per floor
- Found both direct and torsional story shears
- Used story shears to determine story drifts
- Summed story drifts to calculate total element drifts

_	depth stue -additi	dy 2 – lat ion of shear w	eral re	edesi sults-	gn		
•	By eliminating the torsional shear wall 1 decreases from an 8.6" deflection to 4.9"						
•	Each of the walls in the N-S direction improves						
٠	The walls in the	Summary					
	E-VV air.		Direction	Original	Redesign		
	remain	Wall 1	N-S	8.60	4.89		
	similar	Wall 2	N-S	6.77	5.25		
		Frames/Wall 5	N-S	6.47	4.74		
		Wall 3	E-W	6.28	6.28		
		Wall 4	E-W	6.39	6.36		

gregory eckel

christina landing apartment tower

- -breadth study 1 – acoustic analysis- -

- Important to remember people of different lifestyles might live adjacent to each other
- Areas analyzed Walls between units, slabs above and below fitness room
- 4 factors affect noise reduction sound generated
 - transmission loss
 - properties of rooms
 - background noise
- Both existing systems and redesigns considered

- -breadth study 1 – acoustic analysis- --calculations-

- Transmission Loss
 Original Floor = 57 dB
 New Floor = 55 dB
 Wall = 57 dB
- Impact Isolation Class
 Original Floor = 36 dB
 New Floor = 34 dB
- NR = TL + $10*\log(\Sigma(S\alpha)/S)$

gregory eckel

- -breadth study 1 – acoustic analysis- --conclusions-

- Original wall partition < 30dB Satisfactory
- Original floor slab above < 30dB Satisfactory
- Original floor slab below < 50dB Satisfactory
- **PT slab below** > 50dB Unsatisfactory

Add drop ceiling below

- PT slab above > 30dB Unsatisfactory
 - Add rubber below carpet in apartment above

- -breadth study 2 - cm study- -

-intro-

- Objective was to determine the cost and schedule differences between the floor systems
- Material savings in both concrete and reinforcement
- Additional costs due to post-tensioning strands, jacking equipment, and increased duration

-breadth study 2 – cm study- -

-cost comparison-

- Concrete savings \$13,500
- Retialf Graveinness pea viogs \$330, 5000
- Post-tensioning strand cost \$11,100

			Original Design		Proposed Redesign	
	Unit Cost Material	Unit Cost Labor	Quantity	Total Cost	Quantity	Total Cost
Concrete	232 /cy	140 /cy	291.2 cy	\$108300	254.8 су	\$94790
PT Strands	.46 /lb	.72 /lb	0 lbs	\$0	9449 lbs	\$11150
Formwork	1.6 /sqft	2.94 /sqft	11790 sqft	\$53540	11790 sqft	\$53540
Reinforcing Steel	850 <i>/</i> ton	420 /ton	31.38 tons	\$39850	7.373 tons	\$9363
Totals	9.59 /sqft	7.514 /sqft	11790 sqft	\$201700	11790 sqft	\$168800

gregory eckel

- -breadth study 2 – cm study- --schedule analysis-

- Constructed typical floor schedules for both systems
- Broke floor plan into 2 phases
- The original design had a 7 day turnover time b/w floors
- The redesign had an 8 day turnover time
- The post-tensioned system added one day to the schedule per floor
- Results in a total duration increase of 22 days
- General conditions cost for additional days ≈ \$30,000
- Small total savings by using PT design

- -conclusions- -

- Gravity redesign Deflections improved Slab thinned, Reinforcing decreased
- Lateral redesign Torsional shears eliminated Building drift reduced
- Acoustic Study Partitions acceptable PT slab needs drop ceiling below and rubber below carpet above
- Construction Management Study Material Savings = \$33,000 Schedule impact = \$30,000

- -acknowledgements- -

- Thanks to
 - The Buccini/Pollin Group
 - Kling
 - My advisor Professor Boothby and all the AE faculty
 - My family
 - All my friends and classmates who helped me the past 5 years

- -questions- -

the christina landing apartment tower Wilmington, DE

senior thesis – 05/06 gregory eckel

structural