Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Executive Summary

The purpose of this report is to provide an analysis of the existing floor system of the Earth and Engineering Sciences Building at University Park, Pennsylvania, as well as investigating four additional floor systems that will compare and contrast with the original. A typical bay, which will be defined in the report, was used to provide a small scale design for each floor system. All loads were computed in accordance to the International Building Code with the exception of the loading used with the CRSI Handbook. Each design includes a design of the main floor system, accompanied by suggestions for column and girder sizing. The existing system, a steel frame with concrete on metal decking, was analyzed by hand and by RAM structural analysis software.

A comparison of four systems will also be detailed in this report. The four alternate systems considered are as follows:

- 1. A992 (50 ksi) Grade Steel, w/concrete on metal deck
- 2. Hollow core plank, w/ steel framing members
- 3. One way concrete pan joists, w/concrete framing members
- 4. Open web steel joists, w/steel framing members

Each alternate system involves slightly altered spans, loadings, and directional properties. All of which are defined in the section that explains their design. Various methods were used for each system, as well as multiple references. After analysis each system was compared and contrasted to each other and the existing system in order to determine a suitable alternate. The first alternative is similar to the existing system in design but still provides added benefits. The other three systems are significantly different and added many aspects that needed to be considered.

After evaluating all the pros and cons of all the systems a recommendation for an appropriate alternate system will be made. The A992 grade steel system was discarded due to it's likeness to the original system in depth. It does have the benefit of smaller members and a reduction in weight but does not provide many additional benefits. The open web steel joist system was not considered an option after it was found to be a deeper system than the existing one and would be difficult to fireproof. The two remaining systems were both concrete based systems. The edge in the recommendation went to the hollow core system. The hollow core slabs provide a smaller self weight and a more shallow depth than the one way pan joist. This summarization is provided in greater detail at the end of the report and can be viewed in both written and tabular format. The existing system was an efficient and cost effective system, but upon further investigation it can be determined that both of the alternate concrete based systems can be viable options. The hollow core plank system should be looked at in greater detail as a new option for design of the EES Building at Penn State.

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Existing Structural Floor System Composite 36 ksi Steel Beams w/Concrete on Metal Deck

The existing floor system is composed of composite action steel beams that work in conjunction with the floor slab system. The steel used in the system is primarily 36 ksi grade steel. There are a few exceptions where 50 ksi grade steel was used, but predominantly the 36 ksi steel is found. The slab system has three deck types, however the most common deck a 3", 20 GA galvanized composite metal deck with 3 $\frac{1}{4}$ " light weight concrete topping reinforced with 6 x 6, W2.1 x W2.1 welded wire fabric will be used in this study. This deck, commonly referred to as Slab 1, is used in most floor spaces with the exception of some high live load areas such as stairwells. The beams frame into steel girders which help transfer the load to the steel columns. The columns then transfer the load to the concrete piers and footings that they rest on.

A typical bay was chosen to compare and contrast alternate systems to the existing system. Most bays in the Earth and Engineering Sciences building are fairly uniform spanning either 30'-6" or 32'-6". The widths of the bays are 20' with beams spaced midway at 10' on center. Two typical bays spanning in the North-South Direction are shown to the right. (Fig. 1)

The bay spanning 30'-6" (Bay 2) will be the focus of the analysis and comparison of the existing and alternate floor systems. The unfactored service loads to be used will be as follows:

- Dead load (excluding self weight of floor system) 25 psf
- Live Load (For Northern most bays, i.e. Bay 1) 125 psf
- Live Load (For Southern most bays, i.e. Bay 2) 80 psf

Fig. 1

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

The plan for the existing structural system specifies a number of beam and girder sizes throughout the building, however there is repetition and a common bay does exist. The most common configuration is shown below (Fig. 2a, Fig. 2b). As can be seen below, the beam sizes in Bay 1 are larger than Bay 2. This is due to the higher live load on this bay which was noted earlier. A previous spot check was performed on these bays and found that member sizes are accurate for the assumptions and loadings that will be used to perform further analysis of alternate systems. This spot check can be found in Technical Assignment 1 in Justin Strauser's e-portfolio. A second check was performed using RAM structural design software. The results of this analysis also yielded beam and girder sizes that were close to that of the original plans, the output of this program can be seen in Appendix A.

Fig. 2A

Fig. 2B

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Advantages:

- Easily connected
- Erection is fast
- Relatively light in weight
- Composite action improves strength and easy to connect
- Slab provides fire rated barrier between floors

Disadvantages:

- Deep floor system that does not provide much room for supplementary systems (i.e. mechanical, electrical)
- Steel corrodes and rusts
 - \rightarrow Requires protective layer
- Steel fails under high temperatures
 - \rightarrow Needs to be fireproofed

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Al ternate Structural Floor System 1 Composite and Non-Composite 50 ksi Steel Beams w/Concrete on Metal Deck

The first alternative system was to change the steel from 36 ksi steel to 50 ksi steel. This change could be more efficient in that smaller beams could be used reducing the amount of steel used throughout the building. Smaller beams could also reduce the amount of space wasted between floors. This system's performance will be evaluated as both composite and non-composite. This system will also be designed using repetitive members with no changes in beams. A 2", 18 gauge, unshored LOK floor, topped with 3" light weight concrete providing a 2 hour fire rating will be used in the design.

Service Loads

- Dead load (excluding self weight of floor system) 25 psf
- Live Load (For Northern most bays, i.e. Bay 1) 125 psf
- Live Load (For Southern most bays, i.e. Bay 2) 80 psf

Material Properties

 $f'_c = 3 \text{ ksi}$ $f_v = 50 \text{ ksi}$

Composite Design

 $w_u = 1.2(25 \text{ psf}) + 1.6(80 \text{ psf}) = 158 \text{ psf}$ $M_u = (.158 \text{ ksf})(10 \text{ ft})(30.5 \text{ ft})^2/8 = 183.7 \text{ ft-k}$

Assume a = 1.0" $Y_2 = 5$ " – (1.0"/2) = 4.5 " Using Table 5-14 from AISC Manual for Steel Construction with $Y_2 = 4.5$ "

Try W14 x 22 with Y₁ @ location 6 b_{eff} = lesser of spacing or L/4, 120" and 91.5" respectively b_{eff} = 91.5"

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Check assumption: a = 119 k/.85(3 ksi)(91.5") = .51" $Y_2 = 5" - (.51"/2) = 4.74 \text{ "} => \text{O.K.}$ Check for efficiency:

Beam Size	Φ M _p (ft-k)	ФМ _n (ft-k)	∑ Q _n (k)	*# of Studs	Total Weight (lbs)
W14x22	125	191	119	12.0	780
W14x26	151	208	96.1	10.0	880
W12x30	162	219	110	12.0	1020
W12x26	140	189	95.6	10.0	880
W12x22	110	187	153	16.0	820
W12x19	92.6	186	208	20.0	770
W10x26	117	197	190	18.0	960

*Based on shear capacity of studs = 21 k per stud

The most efficient beam size for this design would be the W14 x 22. It may not be the lightest selection, but the 12 shear studs for the W14 x 22, as opposed to the 20 shear studs for the W12 x 19, would take less time and money to connect. The W14 x 22 would also provide a little more bending strength than the W12 x 19.

Check deflection criteria:

 Δ LL = 5(.8 klf)(30.5 ft)⁴(1728)/384(29,000 ksi)(423 in⁴) = 1.27 " > L/360 = 1.02 " < L/180 = 2.03"

Will work!

 $\Delta DL = 5(.43 \text{ klf})(30.5 \text{ ft})^4(1728)/384(29,000 \text{ ksi})(199 \text{ in}^4) = 1.45 \text{``} > L/360 = 1.02 \text{``} < L/180 = 2.03\text{''}$

Will work!

Note: The inertia values for deflection were taken form Table 5-15 in the AISC Manual.

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option

Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Non-Composite Design

The beam no longer has composite action from slab and must take into account an added dead load from the slab when using the AISC beam design tables.

 M_u = 214 ft-k Assume unbraced length L_b = 30.5 ft

From Beam Selection Table pg. 5-97 of the AISC Manual Use a W12 x 65

The use of a non-composite system would not be a good choice here. To obtain the same amount of strength as the composite system a much heavier beam would need to be used. When comparing the amount of steel alone of the W14 x 22 with 12 shear studs to that of the W12 x 65, it can be seen the disadvantage of this system. The W12 x 65 would be almost twice as heavy as its composite counterpart. This large amount of steel would increase the price of erection and fabrication costs. Therefore only the Composite 50 ksi system will be considered as an alternative to the existing system.

A secondary analysis was done in RAM to calculate further member sizes. A typical layout can be seen below. Column sizes can be found in the summary located in Appendix B. Column sizes are W10 x 33, which did not change from the RAM selection for the existing system.

Girder Consideration

The supporting girders for this alternate system will be taken from the RAM output file which can be found on the next page. The composite design provides smaller members than the existing system while the noncomposite suggests larger members,

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

50 Ksi Composite

50 Ksi Non-Composite

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Advantages:

- Easily connected
- Erection is fast
- Relatively light in weight, will be lighter than existing system (smaller beams/columns)
- Composite action improves strength and easy to connect
- Slab provides fire rated barrier between floors

Disadvantages:

- Deep floor system that does not provide much room for supplementary systems (i.e. mechanical, electrical), however will be more shallow than existing system
- Steel corrodes and rusts
 → Requires protective layer
- Steel fails under high temperatures
 → Needs to be fireproofed

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Al ternate Structural Floor System 2 Prestressed Hollow Core Plank

The second alternative system is a prestressed hollow core plank floor system. Hollow core planks are concrete planks fabricated off site and brought onto the job when needed. The prefabrication alone has its own disadvantages and advantages. Scheduling the delivery sequence is a major factor in the cost and efficiency of hollow core construction. However, when the planks are brought on site they are placed on girders or load bearing walls by a crane. The planks in this design will rest on steel girders that will frame into the columns. In order to keep the same bay configuration the planks have been selected to span the short direction. The same loading patterns used previously will be used in the design of this system.

Design

w_u = 1.2(25 psf) + 1.6(80 psf) = 158 psf

From PCI and Nitterhouse Tables using a span of 20' (Table can be found in Appendix B)

Use 8" x 4' Spandeck – U.L. – J917 without topping Self weight 57.5psf 4 – $\frac{1}{2}$ " Φ , 270 K, Low-Lax Strands f'_c = 5000 psi

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

8" Hollowcore planks Framing Plan

Girder Considerations

 $w_u = 1.2(82.5 \text{ psf}) + 1.6(80 \text{ psf}) = 227 \text{ psf}$ Tributary Width = 20 ft 227 psf (20') = 4.54 klf $M_u = (4.54 \text{ klf})(30.5 \text{ ft})^2/8 = 528 \text{ ft-k}$

Steel: From beam selection tables W14 x 99 – 99 plf selfweight 14" depth

Concrete Inverted T Beam from PCI Design Handbook(See Appendix E) 28IT32 – 600 plf selfweight 32" depth

Concrete Rectangular Beam from PCI Design Handbook(See Appendix E) 12RB36 – 450 plf selfweight 36" depth

Girder selected: The steel W14 x 99 will be used with this design. Its reduced size and weight make it the optimum choice for this system. It can also be constructed the quickest and easiest.

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Other Considerations

The self-weight of the planks will increase the dead load seen be the columns by about 10 psf. This change will slightly increase the size of the columns needed to support the frame.

Advantages:

- Easily erected
- Fabricated Off Site reducing lag time
- Thin Slab
- Lighter than most concrete systems
- No forming to be done
- Easier to construct supplementary systems (i.e. electrical)
- Prefabrication assures consistency in properties (i.e. strength, quality, durability)

Disadvantages:

- Scheduling issues most be worked out due to prefabrication
- Fireproofing needed
- Needs slightly larger beam sizes or bearing walls to support
- Not as cost effective

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Alternate Structural Floor System 3 One Way Pan Joist

The third alternate system is a concrete one way pan joist system. This system will be designed to span the short direction of 20 feet. This is a cast in place system that utilizes metal pans to create ribs that act as joists. Steel strands are placed to reinforce the top of the slab and in the bottom of the rib. When compared to previous systems, a pan joist system will be heavier due to the weight of the concrete. When contemplating the use of a pan joist floor system, scheduling must be taken under consideration and can create issues. Concrete becomes more difficult to pour at lower temperatures, and the pans need to be placed for any pours to be made. In addition, if a concrete plant is not located near the site, it can be difficult to continuously pour the system. A batch plant may need to be located on site. The benefits of this system will need to be weighted against the ability to work with constructability issues.

Design

 $w_u = 1.4(25 \text{ psf}) + 1.7(80 \text{ psf}) = 171 \text{ psf}$

From CRSI Tables for one way pan joists using a span of 20' (Table can be found in Appendix D)

Use pan joist with total width = 30° Forms + 6° Ribs @ 36° c.-c. Total Depth = 10° Rib + 3° slab = 13° Self weight 61.5psf $f_{c} = 4000 \text{ psi}$ $f_{y} = 60,000 \text{ psi}$ Steel reinforcing (.86 psf) 1. Top - #4's @ 9.5 " 2. Bottom - #5, #5 Provided 209 psf > 171 psf needed

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Framing Plan

Girder Considerations

Selfweight of pan joist = .41 CF/SF (610 SF) = 250.1 CF => 250.1 CF (150 PCF) = 37.52 k Selfweight (psf) = 61.5 psf w_u = 1.2(86.5 psf) + 1.6(80 psf) = 231.8 psf Tributary Width = 20 ft 231.8 psf (20') = 4.64 klf $M_u = (4.64 \text{ klf})(30.5 \text{ ft})^2/8 = 539.55 \text{ ft-k}$

Steel: From beam selection tables W21 x 101 – 101 plf selfweight 21" depth

Concrete Inverted T Beam from PCI Design Handbook(See Appendix E) 28IT32 – 600 plf selfweight 32" depth

Concrete Rectangular Beam from PCI Design Handbook(See Appendix E) 12RB36 – 450 plf selfweight 36" depth

Girder selected: The 12RB36 will be used with this floor design. A concrete beam would be the most reasonable choice with a pan joist system as it can be

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

poured and constructed along with the joists. The rectangular beam is the simpler of the two concrete beams and contributes the smaller dead load to the structural system.

Other Considerations

Columns for this system will be the largest of all the systems as they will be required the largest load of 231.8 psf.

Advantages:

- Reduced depth
- Uniform properties aid in construction
- Does not require fireproofing
- Increases resistance to shear failure
- Reusable formwork

Disadvantages:

- Takes longer to construct because it is a cast in place system
- · Self weight of system is higher
- Needs a larger framing system to support

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Alternate Structural Floor System 4 Open Web Steel Joists

The final system being considered will be open web steel joists. Steel joists are fabricated off site and are available in different truss configurations. The configuration of this design will be a K-joist. A reinforced concrete slab will be placed on the joists. The concrete will be held on a metal deck to allow it to cure. The depth of this system can vary depending on the joist selected, however in this analysis it will be chosen to remain fairly uniform. A two hour fire rating has been selected for determining slab characteristics. The joist will span the long direction of 30'-6".

Design

2" reinforced concrete topping 3" LOK Floor deck

 $w_u = 1.2(55 \text{ psf}) + 1.6(80 \text{ psf}) = 194 \text{ psf}$ *Weight of concrete and metal deck included in 55 psf dead load

w_{ji} = 194 psf /(1.65)(.9) = 130 psf

span = 31'

Using NCJ Design tables pgs. 18, 32-35 (see Appendix F)

Spacing (ft)	Load (plf)	Joist from Table	Allowable Load (plf)	Selfweight (plf)	Rows of Bridging
5	650	NA	NA	NA	NA
4	520	26K9	550	12.2	2
3	390	24K7	424	10.1	2
2	260	16K7	277	8.6	2

The most efficient joist is the 16K7 spaced at 2' on center. The 5 ft spacing does produces a load that cannot be supported by any K-joist listed in the table and is not practical to use. The 16K7 will require two rows of bridging and with the concrete slab and decking will have a total depth of 21".

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Girder Considerations

Selfweight of steel joists = 8.6 plf (30.5 ft) = 262.3 lbs 9 joists (262.3 lbs/joist) = 2360.7 lbs --- Assume uniformly distributed along beam length Selfweight (plf) = 118.035 plf Tributary Width = 30.5 ft $w_u = 1.2(118.035 \text{ plf}) + 1.2(30.5 \text{ ft})(55 \text{ psf}) + 1.6(30.5 \text{ ft})(80 \text{ psf}) = 6.06 \text{ klf}$ $M_u = (6.06 \text{ klf})(20 \text{ ft})^2/8 = 303 \text{ ft-k}$

Steel: From beam selection tables $W14 \times 61 - 61$ plf selfweight 14" depth

Concrete Inverted T Beam from PCI Design Handbook(See Appendix E) 28IT28 – 550 plf selfweight 28" depth

Concrete Rectangular Beam from PCI Design Handbook(See Appendix E) 12RB28 – 350 plf selfweight 28" depth

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option Advisor: Professor Parfitt

Technical Assignment 2 October 31, 2005

Girder selected: The steel W14 \times 61 will be used in this. The weight, depth, and constructability of this girder makes this the best selection.

Other Considerations

The columns for this system will actually be reduced in size from the existing and alternate steel designs. The steel joist system transfers the smallest loading to the framing elements than each system presented.

Advantages:

- Excess room for supplementary systems especially mechanical
- Lightweight
- Short erection time

Disadvantages:

- Deep floor system
- Hard to fireproof
- More tightly spaced
- · Lateral loads will be increased
- Need lead time for fabrication
- Produces excess vibrations

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Summary

System	Depth*	Weight (psf)	Advantages	Disadvantages	Consideration for future system
Existing Steel	22 1⁄4"	212	Easily connected Erection is fast Relatively light in weight	Deep floor system Steel corrodes and rusts Steel fails under high temperatures	N/A
50 ksi steel	21"	210	Easily connected Erection is fast Relatively light in weight ¹	Deep floor system ² Steel corrodes and rusts Steel fails under high temperatures	NO
Hollowcore Planks	10"	227	Easily erected Lighter than most concrete systems Thin Slab	Fireproofing needed Not as cost effective Needs slightly larger beam sizes or bearing walls to support Scheduling issues most be worked out due to prefabrication	YES
One Way Pan Joist	15"	231.8	Reduced depth Uniform properties aid in construction Does not require fireproofing Increases resistance to shear failure Reusable formwork	Takes longer to construct Self weight of system is higher Needs a larger framing system to support	YES
Open Web Steel Joists	24"	198.7	Excess room for supplementary systems especially mechanical Lightweight Short erection time	Deep floor system Hard to fireproof More tightly spaced Lateral loads will be increased Need lead time for fabrication Produces excess vibrations	NO
*2" tolerance a	added for	floor and cei	ling finishes		
¹ Lighter than e	existing s	ystem			
² Not as deep as existing					

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Every system has multiple advantages and disadvantages to consider. Changing the grade of steel helped reduce the size of steel used, but the effects weren't drastic and the depth was still relatively large. The alternate steel system will not be considered as a viable alternative.

The concrete systems both become viable options as a system replacement. These systems both add weight to the overall structure, but the depth of the floor is greatly reduced. The added weight should not be a limiting criterion as the structure will only be four stories. The hollow core can be efficiently erected with proper planning and does not require a minimum temperature for placement. The hollow core can also rest on both steel or concrete framing members and load bearing walls. The pan joist will require planning as well in order to prevent pouring concrete in low temperatures and having the forms ready in proper sequence. One great advantage to the pan joist is the increased resistance to shear failure. Both of these systems will be considered as alternates to the current system.

The final system considered was the open web steel joists. This system was discarded for a number of reasons. The fireproofing would be tough to apply. Lateral loads will be increased as well as additional vibrations in the floor. The fact that this system is lighter than the original system is one of its greatest advantages but this is overshadowed by its depth which is almost equivalent to the existing system.

In conclusion the existing system was a good selection for the Earth and Engineering Sciences Building. However, upon further design and consideration it may be found that the two alternate concrete systems may be as good or better than the existing system. **EARTH AND ENGINEERING SCIENCES BUILDING** Justin Strauser - Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

APPENDI X A – Floor Layout and Ram Output for existing floor system

THIRD FLOOR FRAMING PLAN - WEST WING

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

Ram Output

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

APPENDI X B – Column Summary 36 ksi and 50 ksi

		0	<u>Gravity Column Design Summary</u>											
	RAM Steel v8.1													
	tech													
INTERNATION M	DataBase: tech Building Code: IB	ec.						Sta	10/28/05 14:13:12 al Coda: ASD 0th Ed					
THE STREET	Building Code. IB							310	er Code. ASD 9til Ed.					
Column	Line 1 - C													
Leve	el 🛛	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third	1:	5.5	4.5	4.1	1	0.38 Eq H1-3	90.0	36	W10X33					
third	20	6.5	1.9	1.7	1	0.22 Eq H1-1	90.0	50	W10X33					
Column	Line 1 - B													
Leve	4	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third	2'	7.6	4.4	8.5	8	0.61 Eq H1-2	90.0	36	W10X33					
third	5:	5.1	0.8	3.7	1	0.46 Eq H1-1	90.0	50	W10X33					
Column	Line 1 - A													
Leve	el l	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third	22	2.6	6.7	6.0	1	0.51 Eq H1-2	90.0	36	W10X33					
third	3	8.0	2.8	2.5	1	0.33 Eq H1-1	90.0	50	W10X33					
Column	Line 3 - C													
Leve	1	Р	Mx	Mv	LC	Interaction Eq.	Angle	Fv	Size					
third	2	1.9	7.7	2.2	6	0.33 Eq H1-2	90.0	36	W10X33					
third	42	2.4	3.3	0.9	6	0.31 Eq H1-1	90.0	50	W10X33					
Column	Line 3 - B													
Leve	ł	Р	Mx	My	LC	Interaction Eq.	Angle	Fv	Size					
third	4	5.7	3.0	4.8	6	0.63 Eq H1-1	90.0	36	W10X33					
third	90	0.0	1.3	2.0	6	0.65 Eq H1-1	90.0	50	W10X33					
Column	Line 3 - A													
Leve	-1	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third		0.8	11.1	3.7	6	0.50 Eq H1-2	90.0	36	W10X33					
third	5	9.4	4.8	1.5	6	0.45 Eq H1-1	90.0	50	W10X33					
Column	Line 5 - C													
Leve	4	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third	2	1.9	7.7	2.2	6	0.33 Eq H1-2	90.0	36	W10X33					
third	4.	2.4	3.3	0.9	6	0.31 Eq H1-1	90.0	50	W10X33					
Column	Line 5 - B													
Leve	el.	Р	Mx	My	LC	Interaction Eq.	Angle	Fy	Size					
third	4	5.7	3.0	4.8	11	0.63 Eq H1-1	90.0	36	W10X33					
third		0.0	1.3	2.0	6	0.65 Eq H1-1	90.0	50	W10X33					
Column	Line 5 - A													
Leve	2	Р	Mx	Му	LC	Interaction Eq.	Angle	Fy	Size					

mai	y 00 n		una					
			Gravity (olum	nn Design Summ	arv		
/	RAM Steel v8.1 tech	l	<u>oranij</u> c	Jorun		<u>ur y</u>		Page 2/2
RAM	DataBase: tech							10/28/05 14:13:12
JAUCTAURSTUD	Building Code:	IBC					Ste	el Code: ASD 9th Ed.
third		30.8	11.1	3.7	6 0.50 Eq H1-2	90.0	36	W10X33
third		59.4	4.8	1.5	6 0.45 Eq H1-1	90.0	50	W10X33
Column	Line 7 - C							
Leve	1	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
third		15.5	4.5	4.1	1 0.38 Eq H1-3	90.0	36	W10X33
third		26.5	1.9	1.7	1 0.22 Eq H1-1	90.0	50	W10X33
Column	Line 7 - B							
Leve	1	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
third		27.6	4.4	8.5	8 0.61 Eq H1-2	90.0	36	W10X33
third		55.1	0.8	3.7	1 0.46 Eq H1-1	90.0	50	W10X33
Column	Line 7 - A							
Leve	1	Р	Mx	My	LC Interaction Eq.	Angle	Fy	Size
third		22.6	6.7	6.0	1 0.51 Eq H1-2	90.0	36	W10X33
third		38.0	2.8	2.5	1 0.33 Eq H1-1	90.0	50	W10X33

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

2655 MOLLY PITCHER HWY. SOUTH, BOX N

CHAMBERSBURG, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

REVISED 12/93

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

APPENDI X D – CRSI Handbook Excerpt

STAN ONE-WAY MULTIPL	IDARC JOIS E SPA	TS (1)	FACT	30 FORED)" Form DUSAE	ns + 6 BLE SU	" Rib @ JPERIM	36" c. POSE[-c. ⁽²⁾ D LOAI	D (PSF) $f_{c}^{:}$	= 4,0 = 60,0	000 psi 000 psi
					10" De	ep Rib +	3.0" Top	Slab = 1	3.0" Tota	al Depth			
TOP BARS	Size @	# 4	# 4	# 4 9.5	# 5	# 5 10	End	# 4	# 4	# 4 8.5	# 4	#5	Int.
BOTTOM	#	# 4	# 4	# 5	# 5	# 6	Span	#3	# 4	# 4	#5	# 5	Span
BARS	#	# 4	# 5	# 5	# 6	# 6	Defl.	# 4	# 4	# 5	# 5	# 6	Defl.
Steel (psf)		.58	.69	.86	1.05	1.25	(3)	.63	.74	.95	1.18	1.46	(3)
CLEAR SP	PAN			EN	ID SPA	N				INTERI	OR SPA		
17'-0"		180	251	309*	317*	328*	1.006	215	301	358*	365*	374*	.619
10' 0"		0	0	322	404	478*	1.001	0	0	404	508	570*	
10-0		1 0	214	2/8	288	425	1.264	182	259	328*	334*	342*	.778
19'-0"		127	184	241	263*	271*	1.569	155	224	301*	307*	314*	966
0.01 0.1		0	0	0	306	373	100.018	0	0	306	390	481*	
20'-0"		106	157	209	241*	248*	1.926	131	194	268	284*	289*	1.185
21'-0"		88	135	182	200	228*	2 342		1 168	235	343	429	1 1 1 1
		0	0	0	235	290	2.042	0	0	235	303	381	1.441
22'-0"		73	115	158	204*	210*	2.820	94	145	207	244*	248*	1.736
23'-0"		59	0	137	207	256	2 260	0	0	0	269	340	0.070
20 0		0	0	0	0	227	3.309	1 0	126	182	227	231	2.073
24'-0"		48	83	119	160	180*	3.995	65	108	160	212*	215*	2.458
DEL OI		0	0	0	0	202		0	0	0	0	272	
25-0			0	103	141	16/*	4.703	53	93	141	189	201*	2.894
26'-0"			58	89	124	156*	5.502	43	80	123	168	188*	3.386
071.0"			0	0	0	159		0	0	0	0	219	
27-0"			48	76	108	141	6.398	68	108	150	176*	528-	3.938
28'-0"		20		65	95	125	7.400	0	57	95	133	166*	4 554
		0		0	0	0		1.03	0	0	0	177	1.001
29'-0"			1.1.1	54	82	111	8.516	83 1	47	82	118	156*	5.240
30'-0"			151	45	71	98	9 752		0	71	105	159	6 001
			0	0	0	0	0.702	0	0.1	0	0	0	0.001
 (1) For grad (2) First lo (3) Compute ln/21 (4) Exclusi *Controlled 	oss sec bad is fourtation for interive of b d by she	tion pro or stand of defle erior spa pridging ear capa	perties lard squ ection is ans). joists a acity.	, see Ta uare jois not rec and tape	ble 8-1 st ends; quired a ered end	second bove ho ds. +Ca	l load is f prizonal li pacity at	or spec ne (thic elastic	ial tape kness ≥ deflecti	red joist $\ell_{\rm R}/18$	t ends. 5 for e	end spa	ins,
		PRO	PERTI	ES FO	R DES	GIGN (CONCR	ETE .4	1 CF/	SF) (4)			
NEGATIVE MC	MENT							1	1	1	1	1	
STEEL AREA (S	6Q. IN.)	. 60	.60	.76	.93	1.12		.60	.63	.85	1.03	1.31	
STEEL % (UNIF	ORM)	.73	.73	.92	1.14	1.37		.73	.76	1.03	1.25	1.61	1
(TAPE	RED)	.43	.43	.54	.66	.80	2000	.43	.44	.60	.73	.94	
EFF. DEPTH,	, IN.	170	11.8	11.8	11.7	11.7	2.24	11.8	11.8	11.8	11.8	11.7	1
POSITIVE MOI	MENT	.179	.179	.214	.246	.280		.179	.185	.232	.268	.314	
STEEL AREA (S	9. IN.)	.40	.51	.62	75	88	1	31	10	51	62	75	1
STEEL % .09			.12	.15	.18	.21		.07	.40	.12	15	18	
EFF. DEPTH, IN. 11.8			11.7	11.7	11.6	11.6		11.8	11.8	11.7	11.7	11.6	
+ICR/IGF	.162	.200	.239	.280	.323		.128	.162	.200	.239	.280		

Justin Strauser - Structural option **Advisor: Professor Parfitt Technical Assignment 2** October 31, 2005

Normal Weight Concrete

1/2 in. diameter low-relaxation strand

Key 6,929 — Safe superimposed service load, plf 0.3 — Estimated camber at erection, in 0.1 — Estimated long-time camber, in.

	Section Properties														
Designation	h in.	h ₁ /h ₂ in.	A in²	l in4	y₀ in.	S₅ in³	S _t in ³	wt plf							
28IT20	20	12/8	368	11,688	7.91	1,478	967	383							
28IT24	24	12/12	480	20,275	9.60	2,112	1,408	500							
28IT28	28	16/12	528	32,076	11.09	2,892	1,897	550							
28IT32	32	20/12	576	47,872	12.67	3,778	2,477	600							
28IT36	36	24/12	624	68,101	14.31	4,759	3,140	650							
28IT40	40	24/16	736	93,503	15.83	5,907	3,869	767							
28IT44	44	28/16	784	124,437	17.43	7,139	4,683	817							
28IT48	48	32/16	832	161,424	19.08	8,460	5,582	867							
28IT52	52	36/16	880	204,884	20.76	9,869	6,558	917							
28IT56	56	40/16	928	255,229	22.48	11,354	7,614	967							
28IT60	60	44/16	976	312,866	24.23	12,912	8,747	1,017							

1. Check local area for availability of other sizes.

2. Safe loads shown include 50% superimposed dead load and 50% live load. 800 ps top tension has been allowed, therefore additional top reinforcement is required.

3. Safe loads can be significantly increased by use of structural composite topping.

Desig-	No.				Span, ft															
nation	Strand	е	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
			6929	5402	4310	3502	2887	2409	2029	1723	1473	1265	1091							
28IT20	9	5.82	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.8	0.8							
			0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.1							
			9714	7580	6054	4925	4066	3398	2868	2440	2090	1799	1556	1351	1175	1024				
28IT24	11	6.77	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8				
			0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	-0.2				
					8505	6951	5768	4848	4118	3529	3047	2648	2313	2030	1788	1579	1399	1242	1103	981
28IT28	13	8.44			0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1
					0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	-0.1
						9202	7646	6435	5474	4698	4064	3538	3097	2724	2406	2132	1894	1687	1505	1345
281132	15	9.17				0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9
						0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1
								8485	7236	6227	5402	4718	4145	3660	3246	2890	2581	2311	2075	1866
28IT36	16	10.81						0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9
								0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	-0.1
001740	10	44.00							8615	7415	6433	5620	4938	4361	3868	3444	3077	2756	2475	2226
281140	19	11.28							0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	8.0	0.9
									0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
001744		10.00								9308	8092	7083	6239	5524	4913	4388	3932	3535	3186	2879
201144	20	12.89								0.4	0.5	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8
										0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
		1110									9741	8539	7532	6680	5952	5326	4783	4310	3894	3528
281148	22	14.16									0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8
											0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
001750		45.44											8935	7934	7080	6345	5707	5151	4664	4233
281152	24	15.44											0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8
													0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
		10.74												9284	8294	7442	6703	6059	5493	4994
281156	26	16.74												0.5	0.6	0.6	0.7	0.7	0.8	0.8
														0.1	0.1	0.1	0.1	0.1	0.1	0.1
001700		10.01													9590	8613	7766	7027	6379	5807
281160	28	18.04													0.6	0.6	0.6	0.7	0.7	0.8
															0.1	0.2	0.2	0.2	0.2	0.2

Table of safe superimposed service load (nlf) and cambors

2 - 44

PCI Design Handbook/Fifth Edition

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

3.344 - Safe superimposed service load, plf

0.4 — Estimated camber at erection, in. 0.1 — Estimated long-time camber, in.

Key

RECTANGULAR BEAMS

Normal Weight Concrete Section Properties Α S wt h b y₀ in. Designation in. in. in² in4 in³ plf 12RB16 192 4,096 8.00 512 16 12RB20 12 20 240 8,000 10.00 800 250 12RB24 12 24 288 13,824 12.00 1,152 300 12 21.952 14.00 1.568 350 12RB28 28 336 32.768 2.048 12RB32 12 32 384 16.00 400 12RB36 12 36 432 46.656 18.00 2.592 450 16RB24 16 24 384 18,432 12.00 1,536 400 16RB28 28 448 29,269 14.00 2,091 467 16 16RB32 16 32 512 43,691 16.00 2,731 533 16RB36 16 36 576 62,208 18.00 3,456 600 16RB40 16 40 640 85,333 20.00 4,267 667

1. Check local area for availability of other sizes.

 Safe loads shown include 50% superimposed dead load and 50% live load.
 800 psi top tension has been allowed, therefore additional top reinforcement is required.

3. Safe loads can be significantly increased by use of structural composite topping.

Table of safe superimposed service load (plf) and cambers

Desig.	No	e									Spa	n, ft								
nation	Strand	e	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
Real Property in			3344	2605	2075	1684	1386	1154	970											
12RB16	5	5.67	0.4	0.5	0.6	0.7	0.8	0.9	1.0											
			0.1	0.2	0.2	0.2	0.2	0.2	0.2											
			6101	4773	3823	3121	2585	2166	1833	1565	1345	1163	1010							
12RB20	8	6.60	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4							
			0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3							
			8884	6957	5578	4558	3782	3178	2699	2312	1996	1734	1514	1328	1170	1033				
12RB24	10	7.76	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6				
			0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4				
				9502	7630	6245	5192	4372	3721	3197	2767	2411	2113	1861	1645	1460	1299	1159	1035	
12RB28	12	8.89		0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.5	1.6	1.7	
				0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	1070
						8238	6859	5785	4933	4246	3683	3217	2826	2495	2213	1970	1760	15/6	1415	12/2
12RB32	13	10.48				0.4	0.5	0.6	0.7	0.8	0.9	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.5	1.6
						0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3
							8734	7376	6298	5428	4716	4126	3632	3214	2856	2549	2283	2050	1846	1666
12RB36	15	11.64					0.5	0.5	0.6	0.7	0.8	0.9	1.0	1.0	1.1	1.2	1.3	1.4	1.5	. 1.5
							0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4
400004	10	7.00		9278	7439	6079	5044	4239	3600	3084	2662	2313	2020	1//2	1560	1378	1220	1082	961	
16RB24	13	7.86		0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1,4	1.5	1.6	1.6	1.7	1.8	
10000			L	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.2	1000
					9022	7383	6137	5167	4397	3776	3267	2846	2493	2194	1939	1720	1530	1364	1218	1089
16RB28	13	8.89			0.4	0.4	0.5	0.6	0.6	0.7	0.8	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.3
0.215.0	80				0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	0.0
	5721						9145	7713	6577	5661	4911	4289	3768	3327	2951	2627	2346	2101	1886	1697
16RB32	18	10.29					0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.1	1.2	1.3	1.4	1.5	1.6	1.7
	8.0						0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	00000							9834	8397	7237	6288	5502	4843	4285	3809	3399	3043	2733	2461	2221
16RB36	20	11.64						0.5	0.6	0.7	0.8	0.9	1.0	1.0	1.1	1.2	1.3	1.4	1.5	1.5
								0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4
										9010	7839	6867	6054	5365	4777	4271	3832	3449	3113	2817
16RB40	22	13.00								0.6	0.7	0.8	0.9	1.0	1.0	1.1	1.2	1.3	1.4	1.4
										0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4

PCI Design Handbook/Fifth Edition

EARTH AND ENGINEERING SCIENCES BUILDING Justin Strauser - Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

APPENDI X F – SJI K-Series Selection Table

STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.) ↓																
8	550 550															
9	550 550															
10	550 480	550 550														
11	532	550 542														
12	444 288	550 455	550 550	550 550	550 550											
13	377	479	550 510	550 510	550 510											
14	324	412	500	550 463	550 463	550 550	550 550	550 550	550 550							
15	281	358	434	543	550	511	550 507	550 507	550 507							
16	246	313	380	476	550	448	550	550	550	550	550	550	550	550	550	550
17	119	277	336	420	550	395	495	550	550	512	550	550	550	550	550	550
18		246	299	374	300 507	352	404	530	443 550	488	508	550	550	550	550	550
19		134 221	268	335	454	315	395	475	408 550	409	455	490 547	490 550	490 550	490 550	490 550
20		113 199	241	207 302	269 409	230	287 356	336 428	383 525	347 368	386 410	452 493	455 550	455 550	4 <u>55</u> 550	455 550
21		97	218	177 273	230 370	197 257	246 322	287 388	347 475	297 333	330 371	386 447	426 503	426 548	426 550	426 550
22			123 199	153 249	198 337	170 234	212 293	248 353	299 432	255 303	285 337	333 406	373 458	405 498	406 550	406 550
23			106	132	172	147	184 268	215	259	222	247	289	323	351 455	385 507	385 550
20			93	116	150	128	160	188	226	194	216	252	282	307	339	363
24			81	101	132	113	141	165	199	170	189	221	248	269	298	346
25						100	124	145	334 175	234 150	260 167	313 195	353 219	238	428 263	514 311
26						166 88	209 110	251 129	308 156	216 133	240 148	289 173	326 194	355 211	395 233	474 276
27						154 79	193 98	233 115	285 139	200 119	223 132	268 155	302 173	329 188	366 208	439 246
28						143 70	180	216	265 124	186	207	249 138	281 155	306	340 186	408
29										173	193	232	261 139	285	317 167	380 198
30										161	180	216	244	266	296	355
31										151	168	203	228	249	277	332
32										142	158	190	214	233	259	311
										1	19	32	103	112	124	147

Justin Strauser – Structural option Advisor: Professor Parfitt Technical Assignment 2 October 31, 2005

APPENDIX G – References

PCI Design Handbook 5th Edition

LRFD Manual of Steel Construction 3rd Edition

ASD Applied in RAM software

IBC 2003

Nitterhouse Prestressed Hollowcore Design Tables

Steel Joist Institute Catalog

CRSI Design Handbook 2002