

JEFFREY SUTTERLIN STRUCTURAL OPTION SENIOR THESIS PRESENTATION

THE PENNSLYVANIA STATE UNIVERSITY DEPARTMENT OF ARCHITECTURAL ENGINEERING

PRESENTATION OUTLINE

- INTRODUCTION
- BUILDING DESCRIPTION
- EXISTING STRUCTURAL SYSTEM
- PROPOSAL
- SOLUTION OVERVIEW
- STRUCTURAL DESIGN
- CONSTRUCTION MANAGEMENT STUDY
- MECHANICAL STUDY
- CONCLUSIONS

INTRODUCTION

JEFFREY SUTTERLIN

INTRODUCTION

- LOCATED IN SOMERSET COUNTY, NEW JERSEY
- FOUR-STORY HEALTH CARE FACILTY
 - 85,000 SQUARE FEET
 - OPENING SUMMER OF 2006
 - COSTS \$41 MILLION
- +80,000 SQ. FT. OUTPATIENT ADDITION (2009)

INTRODUCTION

BUILDING ACCOMODATES:

- 38 EXAM ROOMS
- 27 PRIVATE OFFICES
- 23 CHEMOTHERAPY BAYS
- 3 OPERATING ROOMS
- 2 LINEAR ACCELERATORS
- PHARMACY & LABORATORY

OUTPATIENT ADDITION:

- EDUCATION / PREVENTION CENTER
- PHYSICIAN PRACTICES
- DIAGNOSTIC IMAGING
- ADDITIONAL SURGICAL AREA

JEFFREY SUTTERLIN

BUILDING DESCRIPTION

JEFFREY SUTTERLIN

BUILDING DESCRIPTION

PROJECT TEAM

OWNER: SLOAN-KETTERING INSTITUTE

STRUCTURAL ENGINEER: EWING COLE

ARCHITECTURE FIRM: EWING COLE

MEP ENGINEER: AKF ENGINEERS

GENERAL CONTRACTOR: BARR & BARR BUILDERS

GEOTECHNICAL ENGINEERS: LANGAN ENGINEERING

BUILDING DESCRIPTION

ARCHITECTURE

- DESIGNED TO CREATE A SERENE ENVIRONMENT
- 25-ACRE WOODED LOT

EXTERIOR

- SOFT CURVES AND LARGE WINDOWS
- BRICK AND STONE FAÇADE

INTERIOR

- NATURAL LIGHT AND BREATHTAKING VIEWS
- OPEN FLOOR PLAN ALLOWS FOR DYNAMIC LAYOUT

JEFFREY SUTTERLIN

BUILDING DESCRIPTION

MECHANICAL

- BASEMENT MECHANICAL ROOM
- THREE LARGE ROOFTOP AIR-HANDLING UNITS
- INTERIOR SPACE VAV SYSTEM

SITE SOIL CONDITIONS

- BUILDING RESTS ON BASALT BEDROCK
 - ALLOWABLE BEARING CAPACITY = 20 KSF
- ADDITION WOULD REST ON DECOMPOSED ROCK
 - ALLOWABLE BEARING CAPACITY = 10 KSF

STRUCTURAL SYSTEM

JEFFREY SUTTERLIN

STRUCTURAL SYSTEM

OVERVIEW

• COMBINATION OF STEEL AND CONCRETE

BELOW GRADE:

- CONCRETE PIERS ON 30' x 30' GRID
- SHEARS WALLS NEAR EXTERIOR

ABOVE GRADE:

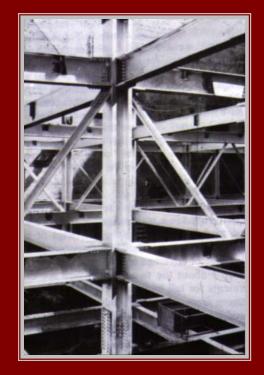
- CONVERTS TO STEEL INFASTRUCTURE
- W12 COLUMNS BEAR ON TOP OF PIERS
- CROSS-BRACING RESISTS LATERAL FORCES

STRUCTURAL SYSTEM

FLOOR FRAMING

- FLOORS ABOVE GRADE: COMPOSITE SYSTEM
 - 4 ¹/₂" SLAB ON 2" GALVANIZED METAL DECKING
 - 4" LONG SHEAR STUDS
- **TYPICAL BAY:** 30' x 30'
- **SOUTH SIDE BAYS:** 30' x 45'

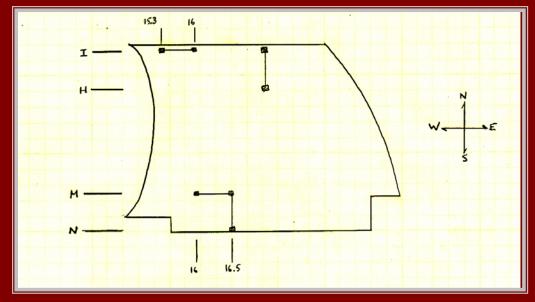
JEFFREY SUTTERLIN



STRUCTURAL SYSTEM

GRAVITY COLUMNS

- SIZE VARIES DEPENDING ON LOCATION
- TYPICAL INTERIOR COLUMN
 - TRIBUTARY AREA = 900 SQ. FT.
 - RANGE BETWEEN W12x87 AND W12x96
- TYPICAL EXTERIOR COLUMN
 - TRIBUTARY AREA = 675 SQ. FT.
 - RANGE BETWEEN W12x45 AND W12x72
- CONCRETE PIERS 24" x 24" IN DIMENSION



STRUCTURAL SYSTEM

LATERAL SYSTEM

- VERTICAL COMBINATION OF SHEAR WALLS AND BRACED FRAMES
- POSITIONED AROUND STAIRWELLS AND ELEVATOR SHAFTS
 - MINIMIZES INTERFERENCE WITH THE FLOOR PLAN
- TWO BRACED FRAMES IN EACH DIRECTION

JEFFREY SUTTERLIN

STRUCTURAL SYSTEM

BRACED FRAMES

- W12x79 COLUMNS AND W18x35 BEAMS
 - BEAMS TYPICALLY SPAN 14'
- HSS DIAGONAL BRACES
 - Range From $6x6x^{1/2}$ to $8x8x^{1/2}$
- SUPPORTED BY SHEAR WALLS BELOW GRADE

SHEAR WALLS

- 12" THICK AND 14' LONG
- REINFORCED VERTICALLY WITH #5 BARS AT 12" O.C. BOTH FACES
- LARGE FOOTINGS TO COUNTERACT OVERTURNING MOMENTS

STRUCTURAL SYSTEM

FOUNDATION

- SHALLOW FOUNDATION THAT RESTS ON BEDROCK
- SHEAR WALL FOOTINGS:
 - TYPICALLY 8' WIDE BY 30' LONG
 - EXTEND 4' BELOW BASEMENT FLOOR
- CONCRETE PIER FOOTINGS:
 - TYPICALLY 6' WIDE BY 6' LONG
 - ALSO EXTEND 4' BELOW BASEMENT FLOOR

JEFFREY SUTTERLIN

PROPOSAL

- AFTER ANALYZING STRUCTURAL SYSTEM, DETERMINED:
 - VERY WELL-DESIGNED
 - MEMBERS EFFECTIVELY SIZED AND POSITIONED
 - EFFICIENT FROM A FINANCIAL STANDPOINT
- DECIDED TO INVESTIGATE <u>PLACEMENT</u> PROPOSED OUTPATIENT ADDITION

OUTPATIENT ADDITION REVIEW:

- STILL IN DESIGN STAGE
- BREAK GROUND IN 2009
- CONSTRUCTED TO THE NORTH SIDE
 - EXTEND SIGNATURE CURVED FAÇADE AN ADDITIONAL 120'
 - DOUBLE SIZE OF HEALTHCARE FACILITY

PROPOSAL

DESIGN DRAWBACKS:

- REPRODUCTION OF ORIGINAL DESIGN
 - SAME FOUNDATION
 - ADDITIONAL EXCAVATION
 - LARGER REQUIRED FOOTINGS
 - WHAT IF ADDITION WAS ERECTED <u>VERTICALLY</u>?

PROPOSED DESIGN:

- INVESTIGATE THE STRUCTURAL EFFECTS FOR VERTICAL EXPANSION
- ADDITION WILL ADD FIVE STORIES TO MSK
 - INCREASE BUILDING HEIGHT FROM 58' TO 126'
- AMPLIFY LOADS ACTING ON BUILDING
- EFFECT BOTH EXISTING STRUCTURE AND ADDITION

PROPOSAL

SOLUTION OVERVIEW

- GRAVITY SYSTEM:
 - GRAVITY COLUMNS AND CONCRETE PIERS
- LATERAL SYSTEM:
 - DETERMINE CONTROLLING FORCES (ASCE 7-02)
 - DESIGN LATERAL SYSTEM
 - RAM STRUCTURAL SYSTEM
- FOUNDATION:
 - CHECK ALLOWABLE BEARING STRESSES
 - BASE SHEAR AND OVERTURNING MOMENTS
 - RESIZE FOOTINGS IF NECESSARY

PROPOSAL

SOLUTION OVERVIEW CONT'D

- CONSTRUCTION MANAGEMENT STUDY:
 - COST ANALYSIS AND COMPARISON
- MECHANICAL STUDY:
 - AIR-HANDLING UNIT ISSUES
 - MECHANICAL FLOOR
 - LOUVERS

STRUCTURAL DESIGN

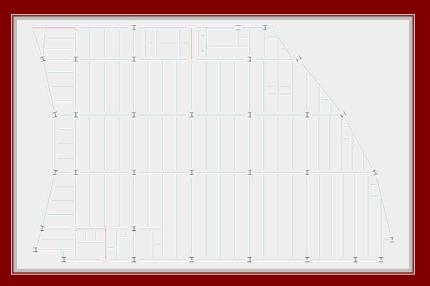
JEFFREY SUTTERLIN

STRUCTURAL DESIGN

GRAVITY COLUMN DESIGN

- FIVE ADDITIONAL FLOORS
 - INCREASED AXIAL LOAD ON LOWER COLUMNS

•HAND CALCULATIONS


- TRIBUTARY AREAS AND LLR VALUES DETERMINED
- AXIAL LOADS FOUND W12 SIZES ASSIGNED
- RAM MODEL CREATED FOR COMPARISON
 - APPROPRIATE LOADINGS ASSIGNED
 - COLUMNS DESIGNED THROUGH PROGRAM
- RESULTS COMPARED PRODUCED SIMILAR SIZES

STRUCTURAL DESIGN

GRAVITY COLUMN RESULTS

Gravity Column Redesign Comparison					
Hand Calcuations vs. RAM Design					
	Column Location		Hand Calculations		
			Size	Size Given	
Design A	Typical Interior Column	1455.74	W12x152	W12x152	
Design B	Atypical Interior Column (South Side)		W12x190	W12x190	
Design C	Typical Exterior Column (South Side)	1326.75	W12x136	W12x136	
Design D	Typical Exterior Column (North Side)		W12x72	W12x79	
Design E	Atypical Interior Column (North Side)	1120.48	W12x120	W12x120	

JEFFREY SUTTERLIN

STRUCTURAL DESIGN

LATERAL SYSTEM DESIGN

- LATERAL DESIGN CRITERIA ASCE 7-02
 - WIND LOADS ANALYTICAL APPROACH
 - CASE 1 CONTROLLED
 - N-S BASE SHEAR = 646 KIPS ; OVERTURNING = 45,000 FT-KIPS
 - **E-W** BASE SHEAR = 394 KIPS ; OVERTURNING = 27,500 FT-KIPS

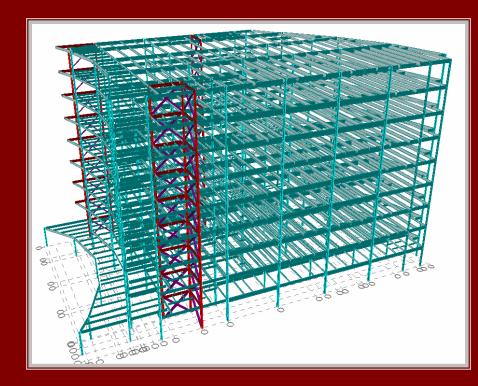
• SEISMIC LOADS – EQUIVALENT LATERAL FORCE METHOD

- BOTH DIRECTIONS EXPERIENCED SAME LOADS
 - BASE SHEAR = 442 KIPS ; OVERTURNING = 39,000 FT-KIPS
- CONTROLLING FORCES:
 - N-S WIND
 - **E-W** SEISMIC

STRUCTURAL DESIGN

LIMITING FACTORS AND DESIGN GOALS:

- LIMITING FACTORS:
 - WIND CONTROLS N-S DESIGN
 - SEISMIC CONTROLS E-W DESIGN
 - MAINTAIN W12 COLUMNS
- DESIGN GOALS:
 - KEEP BRACES, COLUMNS AS LIGHT AS POSSIBLE
 - REDUCE DRIFT TO L/480 DESIGN CRITERIA
 - MINIMIZE IMPACT ON INTERIOR SPACES AND EXTERIOR FAÇADE
 - AVOID MOMENT CONNECTIONS IF POSSIBLE


STRUCTURAL DESIGN

PROPOSED DESIGN ONE:

- EXTENDED EXISTING FRAMES TO ROOF
- INCREASED COLUMN AND BRACE SIZES

BENFITS OF PROPOSAL:

- KEEP EXISTING LAYOUT
- ONLY USED BRACED FRAMES

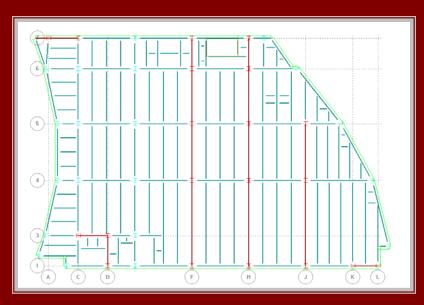
STRUCTURAL DESIGN

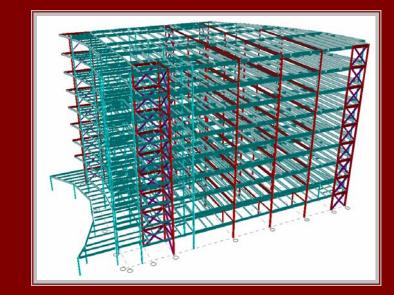
PROPOSED DESIGN ONE RESULTS:

- SIGNIFICANTLY INCREASED COLUMN SIZES
 - UP TO W12x336
- BUILDING DRIFT EXCEEDED LIMIT
 - DRIFT AT CENTER OF RIGIDITY = 7.11"
 - SOUTHEAST CORNER DRIFTED 14.71"
 - LACK OF STIFFNESS IN EAST SIDE

NECESSARY MODIFICATIONS:

- MORE FRAMES IN EACH DIRECTION
- INCREASE STIFFNESS OF SOUTHEAST CORNER



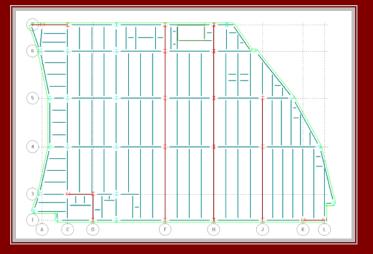

STRUCTURAL DESIGN

PROPOSED DESIGN TWO:

- ADDED BRACED FRAME IN EACH DIRECTION
- MOMENT FRAMES INTRODUCED
- **BENFITS OF PROPOSAL:**
- REDUCE AMOUNT OF FORCE ON EACH BRACE
- PROVIDES STIFFNESS IN THE EAST HALF OF MSK

JEFFREY SUTTERLIN

STRUCTURAL DESIGN

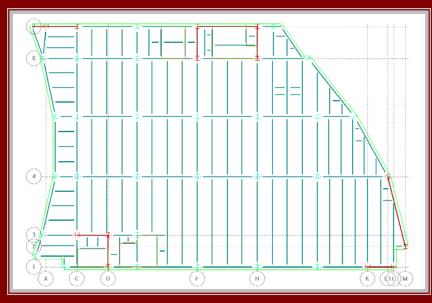

PROPOSED DESIGN TWO RESULTS:

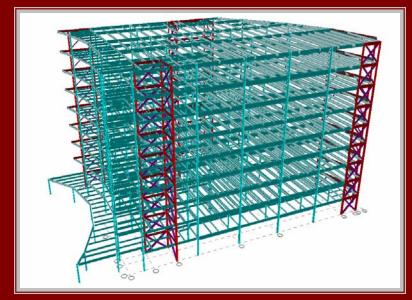
- COLUMN SIZES REDUCED
 - UP TO W12x210
- DRIFT REDUCED STILL EXCEEDS DRIFT LIMIT
 - CENTER OF RIGIDITY DRIFTED 5.82"
 - EAST EXTERIOR WALL DRIFTED 7.8"
- MOMENT CONNECTION ISSUES
 - REQUIRES LARGE COLUMNS
 - PROVIDE INADEQUATE STIFFNESS

FURTHER MODIFICATIONS:

- ADDITIONAL BRACED FRAMES
- MORE STIFFNESS IN SOUTH-EAST CORNER

JEFFREY SUTTERLIN

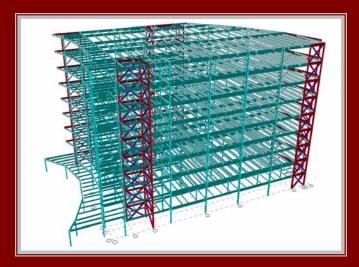



STRUCTURAL DESIGN

PROPOSED DESIGN THREE:

- ADDS BRACED FRAME IN EACH DIRECTION
- INCORPORATES BRACED FRAME IN SE CORNER
- **BENFITS OF PROPOSAL:**
- ADDITIONAL FRAMES HELP CONTROL DRIFT
- ELIMINATES MOMENT CONNECTIONS IN DESIGN

JEFFREY SUTTERLIN


STRUCTURAL DESIGN

PROPOSED DESIGN THREE RESULTS:

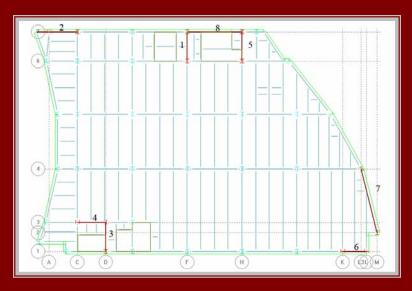
- COLUMN SIZES REMAINED SAME SIZE
 - BETWEEN W12x136 AND W12x210
- BUILDING DRIFT REACHED ACCEPTABLE LIMIT
 - CENTER OF RIGIDITY DRIFT: N-S: 2.66"; E-W: 2.77"
 - EAST EXTERIOR WALL DRIFT REDUCED TO 2.38"

FINAL DESIGN:

- FOUR BRACED FRAMES IN EACH DIRECTION
- NEW FRAMES ADDED IN EAST SIDE
- MINIMAL INTERFERENCE WITH FLOOR LAYOUT AND BUILDING FAÇADE

JEFFREY SUTTERLIN

STRUCTURAL DESIGN


FOUNDATION DESIGN

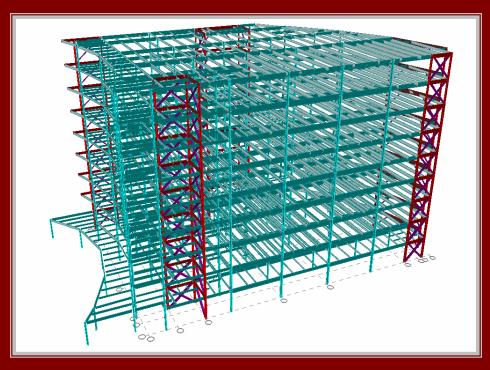
CONCRETE PIERS:

- REQUIRED (12) #11 BARS
- FOOTINGS INCREASED TO 10' x 10'

SHEAR WALLS:

CHECKED BASE SHEAR AND OVERTURNING MOMENTS

JEFFREY SUTTERLIN



STRUCTURAL DESIGN

DESIGN CONCLUSIONS

- DETERMINED THAT A VERTICAL EXPANSION IS FEASIBLE
- REQUIRES:
 - LARGER COLUMNS
 - MORE BRACED FRAMES
 - ADDITIONAL REINFORCEMENT
 - LARGER FOOTINGS

CONSTRUCTION MANAGEMENT STUDY

JEFFREY SUTTERLIN

CONSTRUCTION MANAGEMENT

ADDITION COST ANALYSIS

- ASSUMPTIONS MADE:
 - EXISTING STUCTURE AND ADJACENT ADDITION SAME PRICE
 - COMPARE COST OF STEEL AND CONCRETE
 - VERTICAL EXPANSION COST INCLUDES INCREASED MEMBER SIZE
- R.S. MEANS USED TO ESTIMATE COST OF VERTICAL ADDITON

Phase One Price			
Structural Components	Price		
Structural Steel	\$1,839,199		
Structural Concrete	\$375,000		
Total	\$2,214,199		

Total Addition Price				
Stuctural Components	Price			
Structural Steel	\$2,121,136			
Structural Concrete	\$473,939			
Phase 2 Total	\$2,595,076			
Phase1 Total	\$2,214,199			
Difference	\$380,877			

• BUILDING ADDTION VERTICALLY WOULD BE 17% MORE EXPENSIVE

MECHANICAL STUDY

JEFFREY SUTTERLIN

LOUVER DESIGN

ROOFTOP AIR-HANDLING UNITS:

- UNITS SUPPLY AIR TO THE 3^{RD} and 4^{TH} Floors
- Make 5^{TH} Floor a Mechanical Space
 - ADD AHU'S FOR ADDITION
 - SUPPLY FLOOR WITH OUTDOOR AIR
 - LOUVERS INSTALLED ON EXTERIOR WALLS

WIND FROM A A A LOUVERS	

Air Handling Units on 5th Floor				
Unit	Handles	Dimension		
RAHU-1	3rd Floor	12' x 27'		
RAHU-2	Ambulatory Surgery	12' x 27'		
RAHU-3	Ambulatory Surgery	12' x 27'		
RAHU-4	6th Floor	12' x 27'		
RAHU-5	7th Floor	12' x 27'		

TABLE E-1						
ASHRAE Standard 62.1 (Ventilation for Acceptable Indoor Air Quality)						
Application	Max Occupancy Density	Outdoor Air Requirement				
	#/1000 ft ²	cmf/person				
Medical Procedure	20	15				
Operating Rooms	20	30				

LOUVER DESIGN

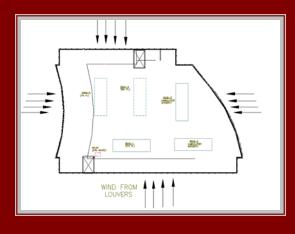
LOUVER CALCULATIONS:

Required CFM Calculations

- = $(20 \text{ people}/1000 \text{ ft}^2)(20,000 \text{ ft}^2) = 400 \text{ people}$
- = (400 people)(15 cfm/person) = 6000 cfm
- = (6000 cfm per floor)(3 floors) = <u>18,000 cfm</u>

Operating Room Floor

- = $(20 \text{ people}/1000 \text{ ft}^2)(20,000 \text{ ft}^2) = 400 \text{ people}$
- = (400 people)(30 cfm/person) = <u>12000 cfm</u>


Total Floor Required =30,000 cfn

Convert Values to Area of Louver needed (ft²)

- Wind Velocity = 4.9 mph ----> convert to ft/min = 431.2 ft/min $cfm/(ft/min) = ft^2 ----> gives area$ = (30,000 cfm)/(431.2 ft/min) = 69.57 ft² - Multiply Area by 1.43, assume that louver only provides 70% free area (1.43)*(69.57 ft²) = 100 ft² per wall
 - Also take into account louver size needed for maintanance/ repair
 - Increase louver size to 15' x 10', therefore $150\ ft^2$ per wall

• 5 AIR-HANDLING UNITS ON THE FLOOR

- 3 SUPPLY EXISTING STRUCTURE
- 2 SUPPLY ADDITION
- LOUVERS ON EXTERIOR WALLS
 - 10' x 15' IN DIMENSION

CONCLUSIONS

- VERTICAL ADDITON STRUCTURAL FEASIBLE
 - FOUR ADDITIONAL BRACED FRAMES
 - BUILDING LAYOUT NOT EFFECTED
- LESS ECONOMIC SOLUTION 17% MORE EXPENSIVE
- COMPLICATES OTHER SYSTEMS

RECOMMONDATION

- UNDER GIVEN CONDITIONS, NO REASON TO BUILD VERTICALLY
 - 25 ACRE LOT PLENTY OF ROOM
 - SPECIALIZED FACILITY NEEDS TO WORK TOGETHER
 - HORIZONTAL ADDITION CREATES INTERNAL FLOW
 - ORIGINAL DESIGN FOR OUTPATIENT ADDITION BE USED

ACKNOWLEDGEMENTS

- AE FACULTY AND STAFF
- SPECIAL THANKS TO PROFFESOR PARFITT
- OSCAR GOMES AND BRENT ELLMANN; EWING COLE
- MY FAMILY AND FRIENDS

QUESTIONS

JEFFREY SUTTERLIN

