Lourdes Diaz Structural Option Advisor: Thomas Boothby Building: Paseo Caribe Condominium and Parking Garage

Technical Report #2 Structural Study of Alternate Floor Systems

Building Introduction and Loading Conditions

The structure of the Condominium and Parking Garage is reinforced cast in place concrete. The building raises 14 stories above a previously constructed 10 story parking garage. There are four apartments per floor, two at each side of a 10' wide core that contain the four elevator units and 3 sets of stairs. Each apartment is approximately a square with dimensions of 80' east to west and 60' north to south. Since the building is symmetrical about both axis, the analysis of the structural floor system will be based on a typical apartment span frame.

Loads and Requirements as applicable to the design of the structural floor are:

A) Live L	oads	
a.	Roof	40psf
b.	Floor	40psf

	c. d. e. f. g. h.	Stairs Corridors Terrace Parking Storage Pool Deck		100psf 100psf 60psf 50psf 125psf 100psf
B)	Dead l	Loads		
	a.	Slab – 8" thick		100psf
	b.	Non – Bearing Concrete Block Walls		20 psf
	с.	Superimposed MEP		25 psf
	d.	Shear walls - 9' 2" High (per longitudinal area of w	vall)	1375 psf
C)	Streng	th Requirements		
	a.	Concrete (28 day strength)		
		- Structural Slabs:	4,500p	si
		– Beams:	4,500p	si
		- Columns:	5,000p	si
		– Walls:	4,000p	si
		– Stairs:	4,000p	si
	b.	Steel (Yield Strength, F_y)		
		 Reinforcement bars: 	60,000	psi
		 Welded Wire Fabric: 	50,000	psi
		- W Shapes – A992	50,000	psi
		- Plates, Channels, Angles, M, S Shapes	36,000	psi
		- Welding – E70xx	70,000	psi
		- Bolts – ASTM A 325	90,000	psi
D)	Steel (Cover Requirements		
	c.	Slab on Grade/Mat Foundation	1"	
	d.	Slab/Joist		
		- Up to #11	3⁄4"	
		– #14 or larger	1-1/2"	
	e.	Beams/Columns	1-1/2"	
E)	Post-T	ensioning		
, .	f.	Concrete		
		- Compressive strength at transfer		2.500psi
	g.	Steel		_,por
	5.	- Yield strength		270.000nsi
		- Effective stress after losses		171.000psi
		 Preliminary long term losses 		15.000nsi
		remaining rong term robbed		10,000P51

Existing Structural Floor System

The current floor system consists of a one way cast in place post tensioned 8" concrete slab on each floor. The floor slab in supported in the interior bays by 12" wide interior shear walls spanning north to south and by 16 columns around the perimeter. There are 2 columns and 4 shear walls per apartment. The slab spans east to west between shear wall supports. The typical column size is 16" x 36". The shear walls run parallel to each other. The largest interior span in between shear walls is 26'; other interior spans are 22' and 14'. The largest exterior span between column and shear wall is 14.5'.

Frame Layout of Existing System:

Drawing specifications shows that the slab is designed for a post tensioned effective compressive stress of 12k/ft in both directions. This design value is increased to 20 k/ft at

the location of the largest 26' span. Post-tensioning tendons for this slab are 7 wire. There is post-tensioning of the concrete on both directions, N-S and E-W. However, the primary action of this one way slab is from East to West, which coincides with the short direction between shear wall supports. There is also regular reinforcement in this directions further suggesting the one way action of the slab. In the transverse N-S direction, the tendons are located directly over the shear walls and are used for deflection and crack control.

The slab is reinforced in the east to west direction with regular reinforcing bars. The typical bottom reinforcement is #5 bars. Typically:

-	Spans < 15'	#5@18"
-	15'-22' Spans	#5@16"
-	Spans $> 22'$	#5@14"
_	Middle core	#5@12"
-	North-South core perimeter	#5@10"

Top positive reinforcement is provided over the shear wall supports. Reinforcement extends 1/3 times the span on each side of the span from the centerline of the support.

For the largest span, Lmax = 26', the typical layout of the reinforcements is: negative reinforcement extends 8.5' from the centerline of the shear wall support. Typical reinforcement is #5 bars. For spans < 17', use #5@18''. Larger spans use #5 @ 12.

Critical Reinforcement Layout:

An analysis of this system was performed by hand. The calculations are based on one

foot strip. Calculation includes:

Three permissible stress checks:

- 1. Stresses at transfer due to self weight
 - Extreme fiber compression: fc < 0.6fci'
 - Extreme fiber in tension: $ft < 6^{\circ}$ fci'
- 2. Stresses at service unfactored loads
 - Sustained loads (Dead loads only)
 - § Extreme fiber compression: fc<0.45fc'
 - § Extreme fiber tension for Class U assumes un
 - cracked under full service loads: ft<0.75fc'
 - Total Loads (Dead loads and live loads)
- 3. Flexural Strength check
 - Extreme fiber compression: fc<0.6fc'
 - Extreme fiber tension < 0.75fc'

A summary is provided here, detailed calculations can be found in Appendix B

1. Permissible Stresses at Transfer

```
Dp = 6.75"
Lmax = 26'
S = 12*8^{2}/6 = 128 in 3
Po=12 \text{ k/ft}
A = 12*8 = 96in2
e = 3"
fci' = 2500 psi
Assume 5% initial losses
Initial Stress:
       Md=25^{2}(100)/11 = 6.15'-k
       Md/S = 576 psi tension top
               -576 psi compression bottom
Prestress Effect: Po/A \pm Po(e)/S
               = -406.25 top compression
                 156.25 bottom tension
Net Stresses at transfer:
       Top: 576 – 406.25 = 169.75 psi < 6• fci' = 300psi
                                                                                    Good
       Bottom: -576 + 156.25 = <u>-419,75 < 0.6*fci' = -1500psi</u>
                                                                                    Good
```

2. Service Stress Check Summary

	Exterior	1st Int.	2nd Int.	3rd Int.
fc = 4500 psi	Span	Span	Span	Span
Length	14.500	12.000	26.000	21.500
P (kip/ft)	12.000	12.000	20.000	12.000
A (in2)	96.000	96.000	96.000	96.000
S(in3)	128.000	128.000	128.000	128.000
P/A (psi)	125.000	125.000	208.333	125.000
e(in)	3.000	3.000	3.000	3.000
P(e)/S	281.250	281.250	468.750	281.250
Sustained Check	fc-allow (psi)	-2025.000	ft-allow (psi)	402.492
Wsus (psf)	125.000	125.000	125.000	125.000
Msus ('k)	2.628	1.636	7.682	5.253
Msus/S	246.387	153.409	720.170	492.454
fc-actual (psi)	-90.137	2.841	-459.754	-336.204
ft(psi)	-159.863	-252.841	43.087	86.204
Service Check	fc-allow (psi)	-2700	ft-allow (psi)	402.492
Wser (psf)	185.000	185.000	185.000	185.000
Mser ('k)	3.890	2.422	11.369	7.774
Mser/S	364.652	227.045	1065.852	728.832
fc-actual (psi)	-208.402	-70.795	-805.436	-572.582
ft(psi)	-41.598	-179.205	388.769	322.582

- compression + tension

3. Flexural Strength – Factor Loads

A) Without Rebar

According to UBC 97 and given live and dead loads: Wu = 1.4(Wdl) + 1.7(Wll) $Wdl = 150pcf^*(8/12) + 25psf$ superimposed Wll = 40psf typ floor + 20psf partitions Wu = 277 psf

Capacity for unbonded tendons fsu = fse + 1.0f'c/100p + 10ksi p = Aps/bdp = (12/24.8)(.153)/(12*6.75") = .000914 fse = 171 ksi fsu = 230 ksi Fult = (230/171)*12 = 16.14 k/ft $Mu^1 = 0.9(16.14 k/ft)*(6.57"/12"/ft) = 8.1'k < 11.5 'k$ à Rebar is needed B) Strength Calculations including Rebar As provided at Lmax = #5 @ 14" = 0.265 in2/ft Fu-reb = 0.265 * 60 = 15.94 ka = (15.94 + 16.14)/(3.83*12) = 0.7"jd-p = 8" - 0.35" - 1.25" = 6.4"jd-r = 8" - 0.35" - 1.0" = 6.65"Mu = (.9)(16.14'k(6.4"/12) + 15.94'k(6.65"/12)) = 15.84'k

By limit design:
$$Wu(1^2)/8 = 15.84 \text{ ft-k} + 8.1 \text{ ft-k} = 23.94 \text{ ft-k}$$

For Lmax = 26' à $Wu = 8(23.94 \text{ ft-k})/26^2 = 283 \text{ psf} > 277 \text{ psf}$ Good

Check minimum reinforcement:
As,min =
$$0.0015 * 8 * 12 = 0.144 \text{ in } 2/\text{ft} < 5 @ 18'' = 0.2 \text{ in } 2/\text{ft}$$
 Good

Reinforcement was found adequate. The regular reinforcement was found necessary for strength requirements.

Reinforcement Layout Cross Section:

Existing Typical Reinforcement Layout

Summary:

Total Weight	100 psf
Reinforcement	1.61 psf + Post Tensioning tendons both directions
Advantages	Code does not limit the depth of the slab
	Slab depth is only 8" even with a maximum span length of 26'
	Rebar placement needed only in one direction
	Formwork is modular and reusable
Disadvantages	Equipment intensive
	Post-tensioning is expensive
	Requires specialized knowledge to fabricate, assemble and install

Study of Alternate Floor Systems

The analysis of the existing floor system was performed and found adequate. This shows that live load of 60 psf and dead loads of 125 psf and all other assumptions made previously about the system span and supports are adequate for analysis and design. The rest of the report will concentrate on the design requirements for alternate floor systems of this multi-story residential building under gravity loads.

The four alternate systems that I will look at are:

- 1. Two-way flat plate on columns
- 2. Two-way slab with interior beams
- 3. One way hollow core pre-cast slab
- 4. Composite Steel Deck & Smart Beam System

<u>1. Two Way Flat Plate on Columns</u>

Upon examination of the existing structure, it was observed that the shear walls that make the lateral system of the building are an extension of the columns layout of the parking garage. Sections through the building show that the shear walls (12" wide) have a bearing effective area (labeled BE) at each end of 36" wide. This is the same location and dimensions as the layout of the columns frame forming the parking garage structure: 12" x 36" columns @ 15' c/c north to south.

The spacing in the east-west direction is the same as that of the existing span dimensions for the typical apartment layout outlined earlier, typically 15'-25'. Since span length/width ratio < 2, I wanted to analyze what the effect will be on the structural slab by having the 12" x 36" columns with a two way flat plate. The two-way action could possible eliminate the need for specialized post-tensioning. The limiting factor in this or any other non presstressed system is that the ACI code limits the slab thickness. For a two-way flat plate the slab thickness is restricted by the ACI code (9.5.3.2) to be Ln/33 without drop panels.

Lmax = 26' à Ln-max = 25' à hmin = (25'*12)/33 = <u>9" > 8" current slab thickness.</u>

Analysis for this system was done both by hand and using the PCI program ADOSS. Since this is the first time I learned and used ADOSS, I preformed the hand calculations which can be found in Appendix A for both the exterior and critical interior spans in the long direction to verify the programs output. Calculations include:

§ Minimum area of reinforcement

- § Strength required reinforcement including unbalanced moments
- § Shear checks around effective column perimeter.

Results from hand calculations differ slightly from those obtained by the program. This difference results in the software's ability to redistribute the moments more accurately across spans because it uses the Equivalent Frame Method, adjusting for joint stiffness. My hand calculations where limited to the ACI Table 8.3.3 coefficients as an estimate and the Direct Design Method for analysis. Also, the software calculates worst moment envelopes of 75% partial live loading on alternate spans. Other than the moments and shears used for the design being slightly different, the required reinforcement does not vary greatly. Analysis in ADOSS was also performed on the short span direction. They are not included in the report because they were not found to be critical. In this direction reinforcement was governed by minimum required reinforcement for temperature and shrinkage = 0.0018Ag = 0.19 in2/ft for a 9" slab or #4 @ 12. Because of the lower strength requirements in this direction, this layer was specified to be the inner layer for strength calculations à d=7.0"

Layout:

Results ADOSS: Input - LONG SPAN

UNITS Code		U.S. in-1b ACI 318-89							
SLAB SYS Frame lo	TEM Cation	FLAT PLATE Interior	FLAT PLATE Interior						
DESIGN METHOD STRENGTH DESIGN MOMENTS AND SHEARS NOT PROPORTIONED									
NUMBER O	F SPANS 6								
CONCRETE	FACTORS	SLABS	BEAMS	COLUMNS					
DENSIT	Y(pcf)	150.0	150.0	150.0					
TYPE		NORMAL WGT	NORMAL WGT	NORMAL WGT					
f'c	(ksi)	4.5	4.5	4.5					
fct	(psi)	449.4	449.4	449.4					
fr	(psi)	503.1	503.1	503.1					
REINFORC	EMENT DETA	ILS: NON-PRES	TRESSED						
YIELD	STRENGTH F	y = 60.00 k	si						
DISTAN	ICE TO RF C	ENTER FROM TE	NSION FACE:						
A	T SLAB TOP	= 1.00	in OUTER LAYEI	R					
A	T SLAB BOT	TOM = 1.00	in OUTER LAYEI	R					
MINIMU	M FLEXURAL	BAR SIZE:							
A	T SLAB TOP	- # 4							
A	T SLAB BOT	TOM = #4							
MINIMU	M SPACING:								
I	n slab =	6.00 in							
∎10-30-*	* ADOSS(tm) 6.01 Propr	ietary Softward	e of PORTLAND					
10:45:52	AM Licens	ed to: ae, un	iversity park,	PA					

SPAN/LOADING DATA

-										
	SPAN	LENGTH	Tslab	WIDTH	L2***	SLAB	DESIGN	COLUMN	UNIFORM	1 LOADS
	NUMBER	L1		LEFT	RIGHT	SYSTEM	STRIP	STRIP**	S. DL	LIVE
	i i	(ft)	(in)	(ft)	(ft)		j (ft)	(ft)	(psf)	(psf)
	İİ				İ		İ			·i
	i i						ĺ		ĺ	i
	1*	.5	9.0	7.5	7.5	1	15.0	. 0	j .0	.0 j
	2	21.5	9.0	7.5	7.5	1	15.0	7.5	25.0	60.0
	j 3 j	26.0	9.0	7.5	7.5	1	15.0	7.5	25.0	60.0
	4	12.0	9.0	7.5	7.5	1	15.0	6.0	25.0	60.0 j
	j 5 j	14.5	9.0	7.5	7.5	1	15.0	7.3	25.0	60.0 j
	6*	7.0	9.0	7.5	7.5	1	15.0	. 0	25.0	60.0 j
	ii			İ			l		l	i

* -Indicates cantilever span information.
 ** -Strip width used for positive flexure.
 ***-L2 widths are 1/2 dist. to transverse column.
 "E"-Indicates exterior strip.

PARTIAL LOADING DATA

PARTIAL LOADINGS ARE NOT SPECIFIED ■10-30-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 4 11:32:32 AM Licensed to: ae, university park, PA

COLUMN/TORSIONAL DATA

ī	COLUMN		COLUMN	ADDIE	SI 60	1	COLUMN	DELON	SI 60		**		MIDDLEI
	COLOUNN		COLOUNN	HDUVE	SCHD		COLOUNN	DELUW	SLHD		**	LOCOLULIN	HIDDLE
	NUMBER	L	C1	C2	HGT	L	C1	C2	HGT	EXTEN.	DEPTH	STRIP*	STRIP*
I		L	(in)	(in)	(ft)	L	(in)	(in)	(ft)	(in)	(in)	(ft)	(ft)
I		ŀ				1-				I			
Ì		ĺ				Ĺ				Í		1	Í
İ	1	ĺ	12.0	36.0	10.0	Ì	12.0	36.0	10.0	.0	.0	7.5	7.5
İ	2	Ì	12.0	36.0	10.0	Ĺ	12.0	36.0	10.0	.0	.0	7.5	7.5
İ	3	Ì	12.0	36.0	10.0	Ĺ	12.0	36.0	10.0	.0	. 0	6.0	9.0 j
İ	4	Ĺ	12.0	36.0	10.0	Ĺ	12.0	36.0	10.0	j.0	. 0	6.0	9.0
İ	5	İ	36.0	16.0	10.0	İ	36.0	16.0	10.0	j.0	. 0	7.3	7.8
i		i				i				i			i
												-	

Out	put:
-	

COL Num	CROSS Sectn	ROSS TOTAL TOTAL-VERT COLUM Sectn moment difference mo		COLUMN Mome	IMN STRIP IOMENT			BEAM Moment			MIDDLE STRIP Moment		
		(ft-k)	(ft-k) (%)		(ft-k) (%)			(ft-k) (%)			(ft-k)	(%)
1	LEFT TOP	2	.0(0)	2	(99)	.0	(0)	.0	(0)
	BOT	.0	.0 (0)	.0	(0)	.0	(0)	.0	(0)
	RGHT TOP	62.1	.0(0)	61.6	(99)	.0	(0)	.4	(0)
	BOT	. 0	.0 (0)	. 0	Ċ	0)	.0	Ċ	0)	. 0	Ċ	0)
2	LEFT TOP	-212.0	.0(0)	-159.0	(75)	.0	(0)	-53.0	(25)
	BOT	.0	.0 (0)	. 0	Ċ	0)	.0	Ċ	0)	. 0	Ċ	0)
	RGHT TOP	232.1	.0(0)	174.0	(75)	.0	(0)	58.0	(25)
	BOT	. 0	.0 (0)	. 0	Ċ	0)	. 0	Ċ	0)	.0	Ċ	0)
3	LEFT TOP	-184.9	.0(0)	-138.7	(75)	.0	(0)	-46.2	(25)
	BOT	. 0	.0 (0)	. 0	(0)	.0	(0)	.0	(0)
	RGHT TOP	133.4	.0 (0)	100.1	(75)	. 0	(0)	33.4	(25)
	BOT	. 0	.0 (0)	. 0	(0)	.0	(0)	. 0	(0)
4	LEFT TOP	-31.1	.0 (0)	-23.3	(75)	.0	(0)	-7.8	(25)
	BOT	. 0	.0 (0)	.0	(0)	.0	(0)	. 0	(0)
	RGHT TOP	40.4	.0(0)	30.3	(75)	.0	(0)	10.1	(25)
	BOT	. 0	.0 (0)	. 0	(0)	.0	(0)	. 0	(0)
5	LEFT TOP	-50.1	.0(0)	-48.4	(96)	. 0	(0)	-1.7	(3)
	BOT	. 0	.0 (0)	.0	(0)	.0	(0)	.0	(0)
	RGHT TOP	73.6	.0(0)	71.1	(96)	. 0	(0)	2.5	(3)
	BOT	.0	.0 (0)	. 0	Ċ	0)	. 0	(0)	.0	(0)

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

■10-30-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 10 11:32:32 AM Licensed to: ae, university park, PA

SPA Num	N CROSS Sectn	TOTAL Moment (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
2	9.14 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	Bot	102.4	.0(0)	61.4 (60)	.0(0)	41.0 (39)
3	13.65 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	137.8	.0(0)	82.7 (60)	.0(0)	55.1 (40)
4	7.50 TOP	-11.5	.0(0)	-6.9 (60)	.0(0)	-4.6 (39)
	Bot	10.2	.0(0)	6.1 (60)	.0(0)	4.1 (39)
5	6.16 TOP	.0	.0(0)	.0 (0)	.0(0)	.0 (0)
	BOT	44.3	.0(0)	26.6 (60)	.0(0)	17.7 (40)

DISTRIBUTION OF DESIGN MOMENTS IN SPANS *********

■10-30-** ADOSS(tm) 6.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 11 11:32:32 AM Licensed to: ae, university park, PA

NEGATIVE REINFORCEMENT *************

COLUMN*F Number*	PATT* NO.*	+LOCA1 +@COL	ION * Face* *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH (ft)	* * *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
1	3		 ∣ R	62.1		1.75	7.5		1.46	7.5
2	4	ii	R	232.1		5.12	7.5		1.64	7.5
3	4	Lİİ		-184.9		4.08	6.0		1.75	9.0
4	1	ii	R	40.4		1.17	6.0		1.75	9.0
5	4	- İİ	R	73.6		2.02	7.3		1.51	7.8

NEGATIVE REINFORCEMENT

	×		COL	UMN	S	TRI	Р		*M I	DDL	E S	TRIP
	¥	LONG	BARS		¥	SHOR	T BAF	lS	¥	LONG	BARS	S
COLUMN	∗ -B	AR -	LEN	GTH-	∗ -B	AR -	LEN	G T H-	∗ -B	AR -	LEN	GTH-
NUMBER	* N0	SIZE	LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT
	*		(ft)	(ft)	¥		(ft)	(ft)	¥		(ft)	(ft)
1	5	# 4	.50	6.65	4	# 4	.50	4.60	8	# 4	.50	5.01
2	6	# 6	8.01	8.06	6	# 6	5.50	5.50	9	# 4	8.01	8.06
3	5	# 6	8.00	8.00	5	# 6	5.50	5.50	9	# 4	6.76	6.00
4	3	# 4	4.25	4.25	3	# 4	3.00	3.00	9	# 4	3.78	3.25
5	5	# 4	5.25	7.00	5	# 4	4.00	7.00	8	# 4	4.41	7.00

SPAN *P Number*	ATT*L NO.*F	OCATION * ROM LEFT* (ft) *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH (ft)	* *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
2 3 4** 5	4 4 3 2	9.1 13.6 7.5 6.2	102.4 137.8 10.2		1.74 2.36 1.17	7.5 7.5 6.0 7 3		1.46 1.56 1.75 1.51	7.5 7.5 9.0 7.8

SPAN Number	* L * * N0 *	C O L ONG - B A SIZE	U M N BARS R LENGTH (ft)	* S * * N0 *	S T R Hort - B A Size	I P BARS R LENGTH (ft)	* * L * * N0 *	M I D ONG - B A SIZE	DLE BARS R LENGTH (ft)	* { * * N0 *	STR Short BA Size	I P BARS R LENGTH (ft)
2 3 4**	5 6 3	# 4 # 4 # 4	21.25 25.50 11.50	4 6 3 2	# 4 # 4 # 4	18.81 19.50 9.00	4 4 5	# 4 # 4 # 4	21.75 26.50 12.50	4 4 4	# 4 # 4 # 4 # 4	18.27 18.20 8.40

 A D D I T I O N A L
 I N F O R M A T I O N
 A T S U P P O R T S

COLUMN Number	* REINF. * * W/O U. * REQ'D *(sq.in)	SUMMARY* MOMENT * PROV'D* (sq.in)*	ADD'L MAX.U. MOMENT (ft-k)	R/F REQ'I *GAMMA* * -f * * *	D DUE TO U FLEXURAL TRANSFER (ft-k) *	NBALANC *PATT* *NO. * * (ED (U.) CRITICA SLABW Ft) (S	MOMENT IL SE - AREA 5q.in)	TRANSFER CTION - R/F
1	3.20	3.40	80.3	.71	57.3	3	5.3	1.63	3 # 4
2	6.76	7.08	42.5	.69	29.3	2	5.3	.82	0 # 6
3	5.83	6.20	-63.6	.69	-43.8	2	5.3	1.24	0 # 6
4	2.92	3.00	23.1	.69	15.9	2	5.3	.44	0 # 4
5	3.53	3.60	31.2	.53	16.4	3	3.6	.46	0 # 4

Deflections

* Span * Number * *	⊧	* * * * *	C O L DE DEAD (in)	U FLE * *	M N CTION LIVE (in)	S T DUE *	R I P TO: TOTAL (in)	* * * *	M I D DE DEAD (in)	D FLE *	L E CTION LIVE (in)	S T DUE *	R I P TO: TOTAL (in)	 * *
1	10935		00	4	00	12	005		00	4	00	2	005	;
2	10457		. 08	3	. 04	17	.130		. 03	9	. 02	1	. 06 0)
3	10094	-	.16	4	.12	25	.289		. 09	2	. 06	6	.158	•
4	10935		00	4	00	92	006		00	9	00	14	013	:
5	10935		. 01	7	. 00	97	.024		.00	8	. 00	13	. 011	l I
6	10935		. 04	8	. 02	21	.069		.00	3	. 00	11	. 004	ŀ

Summary Results: SHORT SPAN

NEGATIVE REINFORCEMENT **********

	¥		COL	UMN	S	TRI	Р		×M I	DDL	E S	TRIP
	¥	LONG	BARS		¥	SHORT	r baf	}S	¥	LONG	BARS	
COLUMN	∗ −B	AR -	LEN	G T H-	∗ -B	AR -	LEN	G T H-	∗ −B	AR -	LEN	GTH-
NUMBER	* NO	SIZE	LEFT	RIGHT	* N0	SIZE	LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT
	*		(ft)	(ft)	¥		(ft)	(ft)	*		(ft)	(ft)
1	4	# 4	1.00	4.75	4	# 4	1.00	3.50	15	# 4	1.00	3.75
2	5	# 4	5.25	5.25	- 4	# 4	4.00	4.00	15	# 4	4.53	4.53
3	5	#4	5.10	5.10	4	#4	3.90	3.90	15	#4	4.50	4.50
4	4	# 4	5.10	1.50	4	# 4	3.90	1.50	15	# 4	4.14	1.50

P O S I T I U E R E I N F O R C E M E N T

SPAN Number	* * * *	C L 0 	O I NG B I SIZI	- U B A R E L	IMN ARS ENGTH (ft)	* * *	SH NO	S T 10R1 - B S12	R F A ZE	I P BARS R LENGTH (ft)	* * * * *	L N0	M I D ONG - B A SIZE	DLE BARS R LENGTH (ft)	* * *	SI NO	STR HORT - BA SIZE	I P BARS R LENGTH (ft)
2 3 4		4 4 4	# 4 # 4 # 4	4 4 4	14.25 14.50 13.75		4 4 4	# # #	4 4 4	12.63 11.25 12.13		8 8 8	# 4 # 4 # 4	14.75 15.50 14.25		7 7 7	# 4 # 4 # 4	12.25 10.50 11.75

Summary Critical Span Typ. Reinforcement Layout Long-Span:

Two –	Wav	Flat	Plate	Summary:

Total Weight	112.5 psf
Reinforcement	1.35 psf long span + 0.97 psf short span = 2.32 psf
Deflection	0.3" at Lmax = 26' à 1/1040
Advantages	Formwork is modular and reusable
	Doesn't require extensive expertise – known practice
	Small deflections
	Fast Construction
Disadvantages	Increased amount of rebar
	Rebar on both directions can be a labor intensive and time consuming
	job if it is not modularized properly between C.S, M.S, short span and
	long span directions.
	Need to carefully consider punching shear around columns

A critical consideration for this system is to verify that the columns can support the load. In the first apartment floor, the factored load that the column with the largest tributary area will experience is:

A = 15' x 24' = 360 ft2 Wl = 13*0.6*60 psf = 468 psf Wd = 13*125 psf = 1625 psf Wu = 1.2(468) + 1.6(1625) = 3161 psf P = 3161psf*(360ft2) = <u>1138 kips</u> Mu = <u>21.2 ft -k</u> à Worst moment obtained from ADOSS output of the moment distribution at the joints. If the column proves to be ineffective, a higher strength concrete can be used. Alternatively, a steel column encased in concrete for fire-proofing and finishes can be evaluated.

2. Two Way Slab with Longitudinal and/or Transverse Beam

Several designs were performed in ADOSS to compare the different required slab thickness for the critical span, Lmax=26' by comparing multiple options involving the use of transverse and longitudinal beams. The longitudinal beams considered are shallow beams with widths equal to that of the columns, 36". The transverse beams are located from columns to column in the north to south direction, spanning the same direction and location as the current shear wall.

Option	Transverse	Longitudinal	Req. Slab	Concrete	Foamwork
	Beam	Beam	Depth	(cub. yards)	(sq.ft)
1	None	36" x 8.5"	8.8"	32.4	1462
2	12" x 9"	36" x 9"	8.8"	33.1	1469
3	12 x 12"	36 x 9"	8.7"	33.9	1478
4	12" x 16"	36" x 9"	8.3"	30.9	1478
5	12" x 18"	36" x 9"	8"	30.9	1478
6	12" x 16"	None	8.5"	32.0	1223

A summary of the different options is listed below:

Option # 6 is the one that I will analyze further. It doesn't have the shallowest slab depth but it has the least deflections, 0.3" in 3rd span compared to 0.47" for Option #5, and it also uses the least amount of formwork. It is easier to form, construct and reuse. The transverse beams are located were the shear walls of the existing system are, therefore there is no depth restrictions other than formwork and concrete construction considerations. The system also proves to be the least use in concrete and least use in formwork within its class.

Layout:

Results:

NEGATIVE REINFORCEMENT *********

COLUMN*F	PATT	*LOCAT	ION	* TOTAL	×	COLUMN	STRIP	¥	MIDDLE	STRIP
NUMBER*	NO.	*@COL	FACE	* DESIGN	¥	AREA	WIDTH	¥	AREA	WIDTH
				* (ft-k)	¥	(sq.in)	(ft)	¥	(sq.in)	(ft)
1	4	I	R	86.1		2.55	7.5		1.38	7.5
2	4	I	R	222.7		5.27	7.5		1.68	7.5
3	4	L		-190.0		4.52	6.0		1.65	9.0
4	1	Í	R	45.0		1.10	6.0		1.65	9.0
5	4	Í	R	71.4		2.08	7.3		1.42	7.8

SPAN *I Number*	PATT NO.	*LOCATION * *FROM LEFT* (ft) *	TOTAL DESIGN (ft-k)	* * *	COLUMN AREA (sq.in)	STRIP WIDTH (ft)	* * *	MIDDLE AREA (sq.in)	STRIP WIDTH (ft)
2	 ь	9_1	 9ຄ_7		1.64	7.5		1.38	7.5
3	4	13.6	129.5		2.37	7.5		1.56	7.5
4**	3	7.5	12.6		1.10	6.0		1.65	9.0
5	4	6.9	39.6		1.33	7.3		1.42	7.8

N E G A T I V E R E I N F O R C E M E N T

COLUMN Number	* * * -B * NO *	LONG AR- Size	COL BARS LEN LEFT (ft)	UMN GTH- Right (ft)	S * * -B * NO *	TRI Short AR- Size	P T BAF LEN LEFT (ft)	S G T H- RIGHT (ft)	*M I * * -B * NO *	DDL Long AR- Size	E S BARS L E N LEFT (ft)	TRIP GTH- RIGHT (ft)
1	7	# 4	.50	6.65	6	# 4	.50	4.60	7	#4	.50	5.01
2	6	# 6	8.01	8.06	6	# 6	5.50	5.50	9	# 4	8.01	8.06
3	4	# 7	8.00	8.00	4	# 7	5.50	5.50	9	# 4	6.76	6.00
4	3	# 4	4.25	4.25	3	# 4	3.00	3.00	9	# 4	3.25	3.68
5	6	# 4	5.25	7.00	5	# 4	4.00	7.00	7	# 4	4.41	7.00

	¥	C	0	_	UMN		5	S T	R	ΙΡ	¥		MID	DLE			STR	ΙΡ
	¥	LO	NG		BARS	×	SF	IORI	Г	BARS	¥	L	ONG	BARS	×	SI	IORT	BARS
SPAN	¥		- B 1	A.	R	¥		- B	Ĥ	R	×		- B A	R	×		- B A	R
NUMBER	¥	NO	SIZ	Ξ	LENGTH	¥	NO	S17	ZΕ	LENGTH	¥	NO	SIZE	LENGTH	×	NO	SIZE	LENGTH
	¥				(ft)	¥				(ft)	¥			(ft)	¥			(ft)
2		5	# 1	ł	21.25		4	#	4	18.81		4	#4	21.75		3	#4	18.27
3		6	# 4	ł	25.50		6	#	4	19.50		4	# 4	26.50		4	# 4	18.20
4**		3	# 4	ł	11.50		3	#	4	9.00		5	# 4	12.50		4	# 4	8.40
5		4	# 4	ł	13.25		3	#	4	11.69		4	# 4	13.75		3	# 4	11.32

Deflection:

SPAN Number	* * * *	DEAD LOAD Ieff. (in^4)	* * * *	C O L DE DEAD (in)	U FLE *	M N CTION LIVE (in)	S T DUE *	R I P TO: TOTAL (in)	* * * * *	M I D DE DEAD (in)	D FLE *	L E CTION LIVE (in)	S T DUE *	R I P TO: TOTAL (in)	 * *
		 9212		 00	 3		 91	 - , AA4		 99	 3			 	
2		8849		. 08	9	. 05	52	.141		. 03	9	. 02	2	.062	
3		7945	-	.19	4	.14	4 2	.336		.10	5	. 07	4	.179	
4		9212	-	00	1	00	91	001		00	7	00	3	010	
5		9212	-	. 01	8	. 00	98	.026		.00	8	. 00	3	.011	
6		9212	-	. 05	4	. 02	25	.079		.00	4	. 00	2	. 006	

Typ. Reinforcement Layout:

3. One-way Hollow Core Pre-Cast Slabs

Analysis of the one-way hollow core system is based on Nitterhouse Product Catalog Span Tables found online at <u>www.nitterhouse.com</u>. The frame work for the analysis is based on the one way action of the existing structural slab system. As a result the same spacing and layout was used for analysis with out any modifications. The hollow core slabs would span east to west from shear wall to shear wall. There are two strength considerations for this layout:

- I. Maximum span, 26': occurs under live loads of 60psf
- II. Maximum load: for corridor, public spaces and terraces live load = 100 psf.This loading is experiences over a shorter span of 21.5'

Both combinations will be looked at for strength requirements when selecting spans from the tales.

Layout:

Selection:

<u>Case I: Maximum Span</u> Superimposed Loads = 25 psf dead + 20 psf partitions + 40 psf live= 85 psf Lmax = 26' From Nitterhouse span table: 8" Hollow Core Slab U.L J917 (no topping)

Will require $6 - \frac{1}{2}$ diameter strands à <u>Wallow = 96 psf @ 26' span > 85 psf</u> Good

Other design considerations that need to be accounted for when choosing this system and that are not considered in the span tables are:

- § Deflections
- § Fire Rating

- § Noise Control
- § Vibrations

The following deflection and fire rating considerations and design are based on Reference 2, Manual for the Design of Hollow Core Slabs 2nd Edition. Tables referenced are included in Appendix D.

Deflections:

Wdead = 25 psf	Ec = 4300 ksi
Whive $= 60 \text{ psf}$	Wt = 230 psf
Lmax = 26'	e = 2.39"
dp = 8'' - 1.5'' = 6.5''	I = 1543 in3

Initial Camber:

ApsFpu = 0.153(270 ksi) = 41.3 k / strandInitial Stress = 70% fpu Initial Losses = 5% Eci = 3250 ksi Po = 0.95(0.7)(6)(41.3) = 164.8 kipsCamber = P(e)L^2/(8EI) - 5wL^4/(384EI) = 0.9557 - 0.47 = 0.48"

- Erections Camber: (Factors from Table 1, Appendix D) = 0.9557*1.80 - 0.47*1.85 = 0.85"
- Final Camber: (Factors from Table 1, Appendix D without topping) = 0.9557*2.45 - 0.47*2.7 = 1.1"

Superimposed Dead Load Instant Deflection = $5(Wd)(L^4)(1728)/(384*EI) = 0.149"$ w/ creep = 0.149*(3.0 creep factor) = 0.45"

Superimposed Live Load Instant Deflection = $5(Wl)(L^4)(1728)/(384*EI) = 0.37"$

For slabs with non-strutural elements attached to the slab, Chapter 9 of the ACI Code

provisons: deflection < L/480 = 26'*12/480 = 0.65"

Change in camber: 1.1"-0.85" =	0.25"	
Sustained dead Loads:	-0.45"	
Instantaneous live Load:	-0.37	
	<u>-0.57'' < 0.65''</u>	Good

Fire Rating: Table 2, Appendix D

Effective Thickness = 180in2/(4'*12) = 3.75" à 1.25 hour rating Not Enough For the 2 hour rating required à Effective thickness = 5" Areq = 5"(4'*12) = 240in2 à **need a 10" slab**

Design Table 3 (Appendix D) allows for a 2 hour fire rating in an 8" slab if ¹/₄" sprayed mineral fiber or vermiculite cementious material is provided. However, this would be expensive, time consuming and would live a rough finish that is not desired for luxury apartments.

There is one more issue to be considered when choosing this system. The floor is not at straight angles around the entire perimeter of every floor, but at 30 - 60 degree angles from each other. This was deliberately done to maximize the glass/viewing towards the ocean. This means that the planks around this area will have to be made with special dimensions. This can considerably affect the price.

4. Composite Steel Deck and Smartbeam System

Picking a steel system is the hardest selection of all because of the usually high ceiling to floor heights that they required as compared to concrete. Aside from that steel does provide some advantages in three main aspects that affect the design of this building considerably:

- I. Weight: From previous analysis of the lateral system in Technical Assignment #1, it was clear that weight is an important aspect of the loads experienced by the building especially since earthquake loading was the controlling case for strength design. If we reduce the weight of the structure, it will help our lateral system greatly allowing for less shear wall and more open space.
- II. Open Space: The effectiveness of the steel frame is in the span. Steel is more efficient in bending in comparison to shear. As a result, it performs better on longer spans where bending stresses are larger than shear stresses. Because of this we can have larger spans, providing more space without columns or interruptions. This is very valuable in multi-use, residential and commercial space.
- III. **Modularization**: To optimize a steel system thought a reduction in cost and erection time, a modular structure is proffered. If my ceiling to height ratio must

increase using a steel floor system, I must make this system pay back by decreasing either the cost or constructions time, or both is possible. Therefore, maintaining my current framing layout was not a possibility. The spans of the current system are too random and scattered (14.5', 12', 26', 21.5') for a feasible steel constructions. Therefore, I modified the layout. By removing the second row of concrete columns between the 14.5' and 12' spans from previous design I was left with a more modular structure that consists of two 26' spans and one 22' span. This layout works out very well since the shorter span, 22', is that span that experiences the larger loading (100psf corridor and terrace), evening out the design.

Finally, to minimize the ceiling to floor height I decided to use castellated steel beam or "smart beams". Smart beams are beams that have holes perforated in the web. The advantages to this are multiple:

- § Reduce weight
- § Allow for duct work to pass thought the beams minimizing ceiling heights
- § Increased moment of inertia to weight ratio and increased stiffness

I used to programs to design my apartment floor system. I used the program provided by SMI Steel Products, a big distributor of the product and I also modeled the system in RAM. Both programs resulted in the same results.

Resu	lts:
ILCDU.	LUD.

		\rightarrow	\leftarrow			$\longrightarrow \leftarrow$				\rightarrow	
<u>~</u> 26	, /x U/	-		, DC					22'	-	
CASTELLATED E		FOR		N		LOADIN	G INFO	RN	IATION		
Job Name	Sample P	rojec	t			Uniform	Distribut	ed	Loads		
Beam Mark#	CB1				Live Load	360	plf		Pre-comp %		
Span	26.000	f	t		Dead Load	315	plf		Pre-comp %		
Spac. Left	6.000	f	t			Concen	trated Po	int	Loads		
Spac. Right	6.000	f	t		Load#	Magnitude	Dist fro	m	Percent DL		
Mat. Strength-Fy	50	۲	ksi		(#)	(kips)	Lft. End	(ft)	(%)		
Round Duct Diam.	8.866	i	n		P1	0.00	0.00		0%		
Duct W x H	5.000 ir	n İ	8.428 i	n	P2	0.00	0.00		0%		
Castellated Beam	CB15X12			•	P3	0.00	0.00		0%		
Root Beams (T/B)	W10X12	V	V10X12		P4	0.00	0.00		0%		
d	0.87	- ic	3.87			COMPOS	TE INF	OF	MATION		
bf	3.96	3	3.96		Concrete & Dec	:k:			Shear Studs:		
tf	0.21	0).21		conc. strength -	fc' (psi)	3500	•	stud dia. (in)		
tw	0.19	C	0.19		conc. wt wc (p	cf)	110	-	stud ht. (in)		
CASTELLATIC	N PARA	ME.	TERS:		conc. above dec	:k - to (in)	2 1/2		studs per rib		
е	5.000	i	n		rib height - hr (in	1)	1 1/2		composite %		
b	3.000	i	n		rib width - wr (in))	6		Stud Sp		
dt	2.500	i	n						N=14,Unifo		
S	16.000	Ĭ	n		R	RESULTS			WARN		
dg	14.740	Ĭ	n		Failure Mode	Interaction	Status	3		Deflect	in
phi	58.366	C	deg		Bending	0.945	<=1.0 0	K!!]		10
ho	9.740	i	n		Web Post	0.626	<=1.0 O	K!!			
WO	11.000	i	n		Shear	0.594	<=1.0 0	Kii			
SMICT					Concrete	0.267	<=1.0 O	K!!			
211121		_			Pre-Comp.	0.590	<=1.0 O	K!!			
B PR	ODU	JC	TS		Overall	0.945	<=1.0 O	K‼			
		~~			Pre-Composite	Deflec.	0.787	"	=L/396		
		11	ID		Live Load Defler	ction	0.360	"	=L/866		

D A		
RA	4 IV/	I۰
IVI	114	L.

	W12x14 (22)	++	W12x14 (18)		W10x12 (8)	
(10)	CB15x12 (10)	2 (8)	CB15x12 (10)	2 (6)	CB15x12 (10)	0 (6)
10x12	CB15x12 (10)	W10x1 (2)	CB15x12 (10)	W10x1 (2)	CB15x12 (10)	W8x1((2)
M	CB15x12 (10)	(8)	CB15x12 (10)	(9)	CB15x12 (10)	(9)
) (0	CB15x12 (10)	(8)	CB15x12 (10)	(9)	CB15x12 (10)	(9)
0x12 (1	CB15x12 (10)	<u>(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) </u>	CB15x12 (10)	V10x12 (2)	CB15x12 (10)	<u> </u>
W1	CB15x12 (10)	(8)	CB15x12 (10)	<u>(6)</u>	CB15x12 (10)	(9)
) (0	CB15x12 (10)	(8)	CB15x12 (10)	(9)	CB15x12 (10)	(9)
)X12 (1	CB15x12 (10)	(2)	CB15x12 (10)	/10x12 (2)	CB15x12 (10)	V8x10 (2)
	CB15x12 (10)	(8)	CB15x12 (10)	(<u>6)</u>	CB15v12(10)	V (6)
) (CB15x12 (10)	(8)	CB15x12 (10)	(9)	CB15x12(10)	(9)
x12 (1	<u>CB15x12 (10)</u>	10x12 (2)	OD15x12 (10)	10x12	CD15x12 (10)	/8x10 (2)
) W10		(8)		(9) W		M (9)
		<u>н</u> —	VV12X14 (18)	— <u> </u>	W10x12(8)	<u> </u>

The overall depth for this system would be depth of CB 15X12 = 14.75" + 1.5" deck + 2.5" concrete topping = 18.75". This is considerably higher than any other other proposed concrete systems. An advantage is that the castellated beam allows for 5" x 8.5" opening for ducts, taking away room needed in the ceiling to floor height.

Finally, deflection results obtained for the manufacturer are larger than those calculated for the concrete systems, 0.8" in the largest Lmax span = $26' \ge 1/396$

Option	Overall	Weight	Rebar	Material	Construction	Deflections	Availability
	Depth	(psf)	1à 4	Cost 1à 5		(in)	
Existing P-T	8"	100	1	4	Slow	<<	Ready
slab					Machine Intensive		
Two-way Plate	9"	112.5	2	1	Modular Foamwork	0.448"	Ready
on Columns					Labor Intesive (rebar		
					placement)		
Two-way slab	8.5"	102.5	3	5	Requires more	0.336"	Ready
on Beams					formwork than other		
					options		
					Labor Intesive (rebar		
					placement)		
					Beams require extra		
					detailing		
One-way	10"	57.5	N/A	3	Fast Construction	0.57"	Limited
Hollow Slab					Time		
Steel Beams on	18.75"	40.1	N/A	2	Ordering and	0.78"	Х
Composite					procurement of steel		
Floor					might be an issue		
					Tight site location for		
					all material handling		
					and storage		

Summary Table

References:

- 1. Manual for the Design of Hollow Core Slabs, 2nd Edition
- 2. Design Handbook for Two Way Systems, Volume 3. PCI publication

APPENDIX A

	c) Distrik	oution of M	loments											
	Spanl: F	End span												
	-Me = 0.3×91.4 'K = 27.42' K +Me = 0.5×91.4 'K = 45.7 'K -Mie = 0.7×91.4 'K = 63.98 'K													
	Intenor Spans													
3	Span #	0 2		3	4									
N.	-H= 0,651 +H=0,351	10 46.0 10 24.	2'K 18'K	237.64 K 127.96 K	1625 K 87.5 K									
	D) Consi	der whether	r columns are	adequate for	pattern loading									
	Ba=	$\frac{Wd}{Wl} = \frac{150}{60}$	=2.572 p	Patterni loading	doesn't govern									
	E) DISTU	bute momen	its to column	+ middle str	₽\$									
	-Extendence ative:													
	No Edge Beam: Bt=0 100% C.S > 17.42 K													
	- Intenor Negative moments													
	span#	1 (14)	2(14)	3(14)	4 ('K)									
(75%	-M	63.98 48	44.02	237.64 178.2	162.5									
(250	M.S	15.98	11.52	59.44	240.6									
	~ Positive	Moments												
	Span #	1(14)	2(14)	3(14)	4(1)									
	+ M (14) CS (60%) M.S(40%)) 45.7 K 17.42 18.5	24.78 14.9 9.88	127.96 74.78 51.18	87.5 52.5 35									

F) Design Required Reinforcement
(158: 9" slab
d=1.75
- Exercise negative:
$$CS = 15/2 \cdot 75^{-1}$$

 $As = Hu = \frac{C3 \cdot At \ (12/177)(2000) [14] = 0.779 in 2}{4 + 5y d}$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $a = 0.741 \ (20000) \ (775) = 0.128$
 $b = 1 \ (7742) = 19.1 \ kp$
with of moment thansfer sectore $c_1 + 211.545$) = $3.472 \ (215(9)) \ (775) = 0.1374$
 $a = 0.55 \ (30000) \ (275) = 0.977 \ (275) \ (27$

ľ

cheek sheav

$$\begin{split} & \text{Wu} = 285\text{psf} \\ & \text{column} = 12." \times 36" & \text{Hn} = 187.5' \text{K} \\ & \text{d} = 7.75 \\ & \text{d} = 2.3.875 \\ & \text{bo} + (12 \pm 2(3.875)) 2 + (10 \pm 2(3.875)) 2 = (19.75 \pm 23.75) 2 = 87.11 \\ & \text{Vu} = 285(23.75 \times 15 - (19.75 \times 23.75)) = 101.5 \text{ Kips} \end{split}$$

Vn= KiVu

From Ref. # 1 (slab9) pg .73 : K1=2.75 (.5+ 1/(3)) = 2.2

$$\frac{1}{9} = 2.2(101) = \frac{222}{9}$$

allowable:

$$V_{c} = \left(2 + \frac{4}{Bc}\right) \sqrt{e^{2}} = 357$$

 $B_{c} = \frac{23.75}{19.75} = 1/2$

 $V_{CE} = 4T_{E'} = \frac{268.32}{268.32}$ $V_{C} = \left(\frac{d_{C}d}{b_{D}} + 2\right) T_{E'} \qquad d_{C} = 40 \text{ intensy columns}$ $= \left(\frac{40(7.75)}{87} + 2\right) T_{E'} = 373$

$$\frac{y_{u}}{2} = 222 psi + 268.32$$

600d

APPENDIX B

Permissible stresses at kanster @ midspan - extrome fiber stoss in compression: 0.6 fc'= 2700 psi extreme fiber stress intension : 3 VFC': 201.95 psi However, concrete shared until full strength. dp= 6.75" l= 210' 5% initial loss initial stress. Md - 262 (100)() · 6:15 K → due to self-weight II top > tension Md = (0.15 (12) = ± 576 psi < bottom > compression 027(872/6 Preskess effect: Po= 12 K/ff = 1K/in x 12"-12K A= 12×8 = 96102 e = 3" $5 = 12.8 m^3$ Presshess effect = Po ± Pore) S = 12 + 12(3) = -404.25 top (compression) 96 128 = 156.25 - bottom (dension) Net concrete shess: TOP = 5710-406.25 = 169.75 psi, 4 6 [fci'= 300" psi' BOHom = -5710+15025 = -419.75 = 0.6fci'= 0.6(2500)=1500 PS! - fc1 '= 2500 psi Obse'> also: other spans are smaller > take some of the load - 21' redistributed

	3. Flexural strength (factured loads)	
	accurate SBC 97 140+171	
(c) Sea for hyperflow of our problem in the new out of the	$1 \times 14 (185 \circ 25) = 171 (180) = 277 \circ 25$	
1944 berryan and a second second second second second second second second second second second second second s	or inf inspar it infant - clipst	
	Capacities for unbunded tendens	
Remain Property and Property Party articles and	fsu = fse + 1.0 fc + 10 ksi	
	100 10	
	$P \Rightarrow (atio of ABS = (121248)(0.153) - 0.000914$	
	Ddp 1/2 / 1075	
1979 AN 1973 AN 1974 AN 1982 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN 1974 AN	15% losses after prestressing	Agramment og manster ange mant og mant og mant og ma
111111111111111111111111111111111111111	tse = 0,7(1-0.15)(270) = 140.65 KS1	
	$f_{SU} = 160.65 + 1.0(4.5) + 10 = 220 \text{ ksi}$	
	100(0.000914)	
	Support amidenan (iniverted)	
tant baan tanat ana ay na tanan ing kananang	Support Stringsport Children.	
	120/ 400 × 100 × 100 × 1/1	,]en
	fung -sfr	
	e la	
	$-f(\mu)t=0.95(4.5)=3.83$ K/1	
	- A- 110 AZ - 0257"	
רע הרישון לאלי רישוי איז איז איז איז איז איז איז איז איז אי		ինին վերջանների գնում էի ինչներին տես էր գործությունների կուների կուներին հանցերին հանցերին հայտներին հայտների ՝
	- d = 0'' - 1.25'' - 0.357/2 = 0.57	
******	v	r - Namesan an an an Adrice an an an an an an an an an an an an an
	- Mu = 0,9 (10,43) × 6,57 = 0.1 K	
	12	
	the Repart of A	
	A TONU DIRECEU A	
		Neddanadar en ordan san an an en en er en er er er er er er er er er er er er er
		Nillendonnen Baldo ab diderar vers ann vers e avor av er ar d
Shink Charles of		

APPENDIX D

Table 2.4.1 Long term multipliers⁶

Condition	Without Composite Topping	With Composite Topping
At Erection:		
1. Deflection (downward) component - apply to the elastic deflection due to the member weight at release of prestress	1.85	1.85
2. Camber (upward) component - apply to the elastic camber due to the prestress at the time of release of prestress	1.80	1.80
Final:		
3. Deflection (downward) component - apply to the elastic deflection due to the member weight at release of prestress	2.70	2.40
4. Camber (upward) component - apply to the elastic camber due to prestress at the time of release of prestress	2.45	2.20
5. Deflection (downward) - apply to elastic deflection due to superimposed dead load only	3.00	3.00
6. Deflection (downward) - apply to elastic deflection caused by the composite topping		2.30

Table 1: Camber Multipliers

Table 2.4.2	Maximum	Permissible	Computed	Deflections ¹
-------------	---------	-------------	----------	--------------------------

Type of member	Deflection to be considered	Deflection limitat
Flat roofs not supporting or attached to non- structural elements likely to be damaged by large deflections	Immediate deflection due to live load L	$\frac{\ell^*}{180}$
Floors not supporting or attached to non- structural elements likely to be damaged by large deflections	Immediate deflection due to live load L	$\frac{\ell}{360}$
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term deflection due to all sustained	$\frac{\ell^{***}}{480}$
Roof or floor construction supporting or at- tached to nonstructural elements not likely to be damaged by large deflections	 loads and the immediate deflection due to any additional live load)** 	$\frac{\ell}{240}^{****}$
* Limit not intended to safeguard against ponding. Po water, and considering long-term effects of all sustaine ** Long-term deflection shall be determined in accordation.	Inding should be checked by suitable calculations of deflec ed loads, camber, construction tolerances, and reliability of ance with 9.5.2.5 or 9.5.4.2, but may be reduced by amour	tion, including added deflections d f provisions for drainage.

ment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics similar to those being considered.

*** Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached of

Table 2: Maximum Permissible Deflections

Figure 1: Fire Rating