

Executive Summary:

Structural Concepts/ Existing Conditions Report is an initial investigation into the structural system of 12-story Lexington II residential tower at Market Square North in Washington D.C. For this report, a detailed look will be taken at the structural system of Lexington II, its primary features, design code, and loadings. This report will also check several members for structural integrity.

The structural system for Lexington II is cast in place concrete. The foundation is a MAT foundation resting on original soil. All floor systems throughout Lexington II are 2-way slabs which support the required gravity load. A grid of concrete columns is used to transfer the gravity loads from the floor slabs to the foundation. A typical bay size would be 13.5' by 16.6', however many columns are offset from this grid. A core of several small shear walls is located around the elevator shafts. These shear walls counteract the lateral loads on the building.

When the Lexington was designed for completion in 2002, the primary building code used was the 1996 edition of the BOCA code. For my report, loading was recalculated using a more recent code, ASCE7-02. The dead load, live load, roof live load, snow load, wind load, and seismic loads were found. The live load I calculated was very comparable to the one used in the original design of the building. I was unable to compare the other loadings to the original design load due to lack of information about the original design load.

The final part of my investigation was to spot check several structural members for gravity and lateral loading. My results were similar to the original design of the structure and often proved why there is additional top rebar added to most of the structural drawings. My spot checks also proved that the shear walls do not carry the complete lateral load, but instead the columns spaced throughout the building are strong enough to help support the building against the lateral load.

Structural System:

Lexington II is a 12-story residential tower located as part of the Market Square North complex in the historical Penn Quarter of Washington D.C. The structural system is composed of 2-way slab systems resting on columns. The columns are then sitting on a MAT foundation. All concrete is normal weight with a compressive strength at 28 days of 4000psi. The MAT foundation is made of 5000 psi concrete. The general layout of Lexington II is 3 bays by 7 bays with an average bay size of 13.4' by 16.6'. Several columns are offset changing the bay sizes slightly. All of the structural elements in Lexington II are cast in place concrete with 60psi reinforcing steel.

At the southern end of the building is additional structural support in the form of drop panels, shear caps, and edge beams along some of the bays.

The lateral load is carried by small shear walls which are located at the core of the building surrounding the elevator shaft. The shear walls span the entire height of the building.

Foundation:

The foundation of Lexington II is a 3'-6" thick MAT foundation which is reinforced with deformed #8 bars located every 9" o.c. The MAT foundation is also reinforced with #11 top bars in some locations and designed in a 2-way slab formation. Below the MAT foundation is a 3" subgrade working MAT. The foundation rests on original soil and structural fill with a compressive strength of 8000psf. Along the southern wall of Lexington II, the foundation rests on HP 14 x 89 piles every five feet on center with one inch cap plates. The piles are in place because the pre-existing building to the south of Lexington II (which Lexington II abuts) is a story lower. Rather then undermining the existing building's foundation, piles were installed as an alternative to providing control fills stepped up to the new foundation level (which is more costly).

The below grade walls are also reinforced concrete, which is 14" thick from level P1 until the concourse level where they are reduced to 12" until ground level is reached. Both the concrete walls and the MAT foundation have a compressive strength of 5000 psi. The reinforcing steel in both the MAT foundation and the below grade walls is ASTM A615, grade 60.

Floor System:

The levels of Lexington II are 2-way slab systems of concrete with a compressive strength of 4000psi. The floors of the 3 level substructure are 10" thick while the superstructure has floors that are 8" thick. The exceptions to this are 5" drop panels around the southern columns of the concourse level, and a 10" slab at the south end of the ground floor. The drop panels are bending drops which are in place to provide for the greater flexural and shear load caused by an increased live load on the concourse level. Similarly, the 10" thick slab localized to the south end of the ground floor is a loading area which will have an additional weight of trucks needing to access the retail portions of the building.

The majority of the bays have 2-way flat-plate slabs with no edge beams. However, edge beams can be found on the lower levels where the live load is increased. Edge beams are also in place along the east exterior bays.

The 2-way slab is reinforced with continuous bottom mat of #4 bars 12 inches on center. Theses bars are ASTM A216, grade 60. In addition to the #4 @ 12" mat, there is top reinforcing in some locations. Typically the top reinforcing are #4 or #5 bars, and are often found by columns and shafts cut into the slab where a stronger moment would be found.

Columns:

Supporting the 2-way slab is a grid of columns. All of the columns throughout Lexington II are 5000psi compressive strength concrete with ASTM A615 grade 60 reinforcement. Columns range in size from 14" x 14" columns reinforced by 4 #9 bars to 42" x 14" columns reinforced with 18 #11 bars. As expected, the larger columns are in the lower stories of the building which carry the building's entire weight.

Columns are located approximately every 16.2' in the west to east direction, and every 13.5' north to south. Several columns throughout the building are offset from the grid pattern. These offset columns coincide with vertical shafts (such as elevators and trash chutes) which run the length of the building and where extra support for the two-way slab is needed.

Lateral System:

The lateral loads which affect the building are counteracted by shear walls located around the elevator shafts of the building. All shear walls in Lexington II are 12" reinforced concrete with a compressive strength of 4000psi. The reinforcement in the shear walls are #4 bars placed every 12" on center.

Material Strengths:

Concrete:

MAT foundation	5000psi
Columns	5000psi
Basement Walls	5000psi
2-way floor slabs	4000psi
Shear walls	4000psi
Beams	4000psi

Reinforcing steel:

Bar reinforcing	ASTM A-615, grade 60	60psi
Welded Wire Mesh	ASTM A-185	

Existing Code:

Lexington II was designed following the **1996 edition of the BOCA** code.

Other design codes used while designing Lexington II include:

ACI 318-95	Reinforced Concrete
AISC- 9 th Ed.	Structural Steel (design, fabrication, and erection)
AWS D1.1-98	Structural Welding
NDS, 1991	Wood Construction
ACI 530-95/	Masonry
ASCE 5-96	-

Loading:

Dead Load:	(Appendix)		
Substruc	ture Slab (10")	125psf	
Superstru	icture Slab (8")	100psf	
Mechani	cal/ Lighting	5psf	
Finishes.		15psf	
Partition	5	included in live load, se	e below

Live Load:

Lexington II was designed following the loading as prescribed by the 1996 edition of the BOCA code. The engineers assumed the following live loads:

Roof	30psf
Ground, L1, and P1 level stairs	.100psf
Mechanical Rooms	150psf
Lobbies	100psf
Concourse level	.225psf
Residential Levels	60psf + 20psf (for partitions)

For my report, I will be using a more recent code, ASCE7-02. Live loads obtained from ASCE 7-02 are comparable with those used in the building's original design

· · · · · · · · · · · · · · · · · · ·		
Roof	20psf	(see calculations below)
Public Levels/ Stairs	100psf	(ASCE7-02)
Mechanical	150psf	(Common assumption)
Lobbies	100psf	(ASCE&-02)
Residential Levels	40psf +	20psf (for partitions)

Roof Live Load: (Appendix) $R_1 = .992$ $R_2 = 1$ $L_r = 20*(.992) (.1)$ = 20psf

Snow Load:	(Appendix)
$C_{e} = .9$	(Table 7.2, B-urban, partially exposed)
$C_t = 1$	(Table 7.3)
I = 1	(Table 7.4)
$P_g = 25 psf$	(Fig. 7-1)

$$P_f = .7*(.9)(1)(1)(25) = 15.75psf$$

Wind Load:

Basic Wind Speed	V=90mhp	(Fig. 6-1)
Wind Direction const.	$K_{d} = .85$	(Table 6-4)
Importance Factor	I = 1	(Table 6-1)
Topical Factor	$K_{zt}=1$	(assume not on a hill)
Wind Exposure	$K_z = varies by$	height (Table 6-3)
Velocity Pressure	$q_z = 17.6256$	Kz
Gust Factor	G = .86	(Appendix)
External Pressure Coef.	$C_p = .8$ windw	ard $C_p =5$ leeward
	-	-

Design Pressures: N/S

IN/ 5					
Height	Kz	qz	P(windward)	P(leeward)	Pnet (Psf)
0-15	0.57	10.04659	6.9120553	-8.342	15.25406
20	0.62	10.92787	7.51837594	-8.342	15.86038
25	0.66	11.6329	8.00343245	-8.342	16.34543
30	0.7	12.33792	8.48848896	-8.342	16.83049
40	0.76	13.39546	9.21607373	-8.342	17.55807
50	0.81	14.27674	9.82239437	-8.342	18.16439
60	0.85	14.98176	10.3074509	-8.342	18.64945
70	0.89	15.68678	10.7925074	-8.342	19.13451
80	0.93	16.39181	11.2775639	-8.342	19.61956
90	0.96	16.92058	11.6413563	-8.342	19.98336
100	0.99	17.44934	12.0051487	-8.342	20.34715
120	1.04	18.33062	12.6114693	-8.342	20.95347
140	1.09	19.2119	13.21779	-8.342	21.55979
160	1.13	19.91693	13.7028465	-8.342	22.04485

E/W

Height	Kz	qz	P(windward)	P(leeward)	Pnet
0-15	0.57	10.04659	10.0707	-7.29246	17.36316
20	0.62	10.92787	10.9541	-7.29246	18.24656
25	0.66	11.6329	11.66081	-7.29246	18.95327
30	0.7	12.33792	12.36753	-7.29246	19.65999
40	0.76	13.39546	13.42761	-7.29246	20.72007
50	0.81	14.27674	14.311	-7.29246	21.60346
60	0.85	14.98176	15.01772	-7.29246	22.31018
70	0.89	15.68678	15.72443	-7.29246	23.01689
80	0.93	16.39181	16.43115	-7.29246	23.72361
90	0.96	16.92058	16.96119	-7.29246	24.25365
100	0.99	17.44934	17.49122	-7.29246	24.78368
120	1.04	18.33062	18.37462	-7.29246	25.66708
140	1.09	19.2119	19.25801	-7.29246	26.55047
160	1.13	19.91693	19.96473	-7.29246	27.25719

Wind loads applied to the North-South Direction

Wind loads applied to the West-East Direction

Seismic Loading:		
Seismic Use Group	Ι	(Table 9.1.3)
Importance Factor	I=1	(Table 9.1.4)
Max Ground Motions	$S_s = .187$ $S_1 = .063$	(Fig. 9.4.1.1a) (Fig. 9.4.1.1b)
Site Class	С	(Sec. 9.4.2.4)
Site Class Factors	$F_a=1$ $F_v=1.3$	(Table 9.4.1.2.4a) (Table 9.4.1.2.4b)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Seismic Design Category	А	(Table 9.4.21a and b)
Response Mod. Factor	R=5	(Table 9.5.2.2)
	$W_0 = 2.5$	(Table 9.5.2.2)
	$C_{d}=4.5$	(Table 9.5.2.2)
Seismic Response Coef.	$C_{t} = .02$	(Table 9.5.5.3.2)
	X=.75	(Table 9.5.5.3.2)
Shear	Vx=195	

				Total load			Fx	Vx	Mx (ft
Floor	Height	Floor Load	exterior wall	(kips)	wxhx^k	Cvx	(kips)	(kips)	kips)
roof	114	373870	42750	416.62	77358	0.14	13.83		1577
12	104.5	373870	85500	459.37	77490	0.14	13.85	13.83	1448
11	95	373870	85500	459.37	69758	0.13	12.47	27.68	1185
10	85.5	373870	85500	459.37	62104	0.11	11.10	40.15	949
9	76	373870	85500	459.37	54538	0.10	9.75	51.26	741
8	66.5	373870	85500	459.37	47069	0.09	8.41	61.01	560
7	57	455492.5	85500	540.99	46765	0.09	8.36	69.42	477
6	47.5	455492.5	85500	540.99	38246	0.07	6.84	77.78	325
5	38	455492.5	85500	540.99	29901	0.05	5.35	84.62	203
4	28.5	455492.5	85500	540.99	21771	0.04	3.89	89.97	111
3	19	455492.5	85500	540.99	13921	0.03	2.49	93.86	47
2	9.5	455492.5	85500	540.99	6481	0.01	1.16	96.35	11
1		455492.5	85500	540.99	0	0.00	0.00	97.51	0
					545402				
			Total Load					N //+	

Total Load		
(kips)	6500.42	

10

Spot Checks:

For my spot checks, I have chosen to analysis the existing design for both a 2-way slab carrying gravity loads, and a shear wall carrying lateral loads.

Gravity Check:

2-way Slab:

In order to check the building system for gravity loads, I first decided to check a 2-way slab bay. In truth, there is no typical interior bay to my building; all bays are either affected by an offset column or mechanical shaft running through the building. In order to simultaneously check the majority of the building bays for gravity loads, I assumed a typical bay size of 13.4' x 16.6'. This size would be the average size of a bay, had columns been located on the column lines and not offset.

I used the direct design method to check the 2-way slab system. My 'typical' bay met all of the code requirements and therefore I was able to use ACI equation 13-3 for the static moment, rather then moment distribution. That is to say that there are 3 or more bays in each direction and that the column offsets are never greater then 10% of the span length. It also means that the length to width ratio of a bay and the length to length ratio of

continuous bays meet certain requirements. Even with the offset columns in my building, all of the criteria were met.

My gravity load check proved that an 8" slab meets the minimum thickness as set by the ACI code. I also showed that minimum steel area and spacing as set forth by the ACI code are met in the original design of #4 bars 12" on center. I then did a moment check to make sure the loads could be sustained. During this check I found that the #4 at 12" on center met all moments on the slab except for the interior moment on the column strip. To meet this moment I had to increase my bar size to #5. The original design accounts for this by adding top reinforcement in the area local to all of the column locations. This follows my calculations exactly. I did this check for both an interior and exterior bay.

Interior Column (6th and Concourse levels):

My second gravity load check was to ensure that the columns could support the loads applied to them. I calculated the loads and tributary area acting on each column of a typical bay. I then solved for the max axial load which could be applied to a 5000psi column at the dimensions designed could support. I checked both a column on the 6th floor, and a column on the concourse level which has a higher live load. Both columns were very over designed, however this is due to the fact that in reality there would not be a pure axial load on a column.

Lateral Load:

Shear Wall:

In my building, I assumed that the shear walls carry the entire lateral load; therefore my spot check was for the shear wall bearing capacity versus the critical lateral loads applied to my building.

To determine critical lateral loads on my building, I compared wind loading and seismic point loads for each floor level and chose the more critical case. In both directions, N/S and E/W, the critical case varied by floor between wind loading and seismic loading. Once the critical cases were found, I summed the shears and moments to find the base shear and overturning moment caused by the critical loading case.

To spot check the shear walls, I followed ACI 11.10 Special Provisions for Wall. Using this method, I solved the shear strength of the concrete provided by the shear walls (V_c). V_c was determined assuming the shear wall is in compression due to the gravity loads. I then subtracted V_c from the factored ultimate shear load to determine the portion of the ultimate shear load which must be carried by the reinforcing steel (V_s) in the shear wall

12

(ACI eq. 11-2). The area of shear reinforcement was checked with the area needed to achieve V_s .

My results show that the present shear wall in the north/south direction has enough strength to counteract the critical lateral loading which might be applied to it. However, I found that the shear walls running in the east/west direction needed greater reinforcement then the present design uses. This leads me to believe that the shear in the east –west direction is not solely carried by the shear walls. Some of the lateral loads must be carried by either the columns or the columns in some areas where beams are also used. Another option is that the shear walls of the entire building work as a complete entity. That is to say that because the shear walls in the e/w direction are connected to the shear wall in the n/s direction they work together as a tube resist torsion.

Column (6th floor):

My last check was that a column on the 6th floor could withstand the combined axial and lateral loads which may be applied to it. The axial load was previously determined in the gravity loading spot check. To find the moment created by the lateral loads, I first had to distribute out the critical lateral point load for the story. This load was then multiplied by the tributary area acting on the row of columns. Once this force was know, the portal method was employed to distribute the force to each column of the row. The forces acting on the columns are multiplied by the height of ½ of the story height in order to determine the moment acting on each column. I then checked the combined moment and axial load on a typical 6th floor column with a Concrete Column Strength Interaction Diagram. The column was found to be sufficient.

Appendix

Dead Loads	14
Roof Live Loads	
Snow Loads	
Wind Loads	
Seismic Loads	21
Spot Checks	
Gravity Load: 2-way Slab	
Gravity Load: Columns	
Lateral Load: Shear Wall	
Lateral Load: Column	
Column Strength Interaction Diagram	41

Dead loads slab = 150 pcf (49' × 100')= 735 1bs/ft or 150 pcf (8"/a) = 100 psf (superstitut 150 pcf (10'/a) = 135 psf (substitudur floor area	ture)
slab = 150 pcf (49'× 100')= 735 165/ft or 150 pcf (8"/12) = 100 psf (superstitut 150 pcf (10"/12) = 125 psf (substitudur floor area	ture)
or 150pcf (8"/12) = 100psf (superstitu 150pcf (10"/12) = 135psf (substitudur floor area	ture)
floor area	e)
Pl, conc, Ll, grand 49.100	
$\begin{array}{cccc} 3-7 & (49.100)-(31.4.16.135) \\ 8-12 & (49.76.3) \end{array}$	
Mechanical/Electrical: 5pot (common assumption	2)
Finishies: 15psf (Assumption, luxuary finishes	

Dead Loads are the weight of concrete (pcf) times the thickness of the slab to determine weight in psf. This weight is then multiplied by the tributary area.

An additional 5psf for mechanical equipment and 15psf for finishes were also added.

15 Roof live load: ASCE7 Section 4.6 For a flat roof Lr= 20R, Rz R1: dependent on AT Area of alypical bay = 1(0.3:13) $A_{+} = 208 \text{ ft}^{2}$ R1 = 1.2-.001 AT = 1.2-.001 (208) = .992 Ra: dependent on F Fis slope of roof For a flat roof, F=0 $R_2 = 1$ Lr = 20R,Rz = 20(.992)(1) ~ 20 psf

Roof load was found using ASCE7-2, section 4.6 A flat roof was used.

0	Smu load:	
	ASCE7 Section 7	
	Snow load on a flat roof	
	Pf = .7CeC+IDa	
	Ce (Table 7.2)	
	B - Urban areas	
	Partially Exposed	_
	$C_e = .9$	
	(+ (Table 7.3)	
	$C_t = 1.0$	
	The	
	L (Table 7.4)	
	Category II	
	L= 1.0	
	05-0	
	pg = 20pst	
	pp=. tectpg	
	= 15 75 - 0	
	is. is par	

	Excel, which is group?
0	Wind Load
	Basic Wind speed $(V) = 90$ Mph (Fig. 6-1 ASCE-7) Wind directionality $(K_{a}) = .85$ (Table 6-4)
6.5.6	Importany factors (I) = 1 (Table 6-1) Exposure Category (1) = B
	Exposure for WindResisting system
	External pressure coefficients (Cp) (Figure (-6)
	$L_{B} = \frac{50}{100} = .5$
-	
	Topical factor(KZ+) = 1 (Assume boilding is not on a hill) KZI = (1+K1KZK3) ²
	Grost Factor (G1) = 78 $G_7 = .935 \left(\frac{(1+1,7_{20}+2, Q)}{1+1,7_{20}+2} \right)$
	$I_2 = e(35)/\overline{z})^{11}b$
	z =. (ph (1150) = 40 - Zmin=30 > Soutrols
	Iz=.3 (33/90)/6 = .2538
	$Q = \sqrt{\frac{1}{14.63} \left(\frac{B+k_{c}}{L_{2}}\right)^{-6.3}}$
-	B-100 ft / Joff NS
	h= 150++
	$O = \sqrt{\frac{1+\sqrt{3}}{1+\sqrt{3}}} = 03$
U	VI . 190 X H 13(3-5)(25) / . OU

Wind loads found in accordance with ASCE7-02, section 6 All parameters were found as defined in code.

Gust factor calculations were preformed and then checked on an excel spreadsheet, the excel spreadsheet's value of G = .86 was taken to be more accurate.

0	Wind Load (2)	
	Participation Control of A	
	enclosure classifications Enclosed Internal pressure coefficient (GrCpi): ±18 -18 external pressure coefficients	(Fig 6-5)
	Velocity pressure (q.): 2. (04 (12-DD) 26 (a(K-K21 Kd V21)) =	92 15 for height 2
	$K_{2} = .85$ $K_{2} = 2.01(\frac{3}{2}) = 2.01 \frac{90}{1000} = .15$ $K_{2} = 1$	411 15 10 100 00
	92=.00256(1.15.85.90 ² .1 = 2.64	
	Design Wind Pressures p = q (rCp - q; (GrCpi)) $q = qz = 2.64$	
	qi=qn	
equations are	taken from ASCE7-02 and then used in an excel	spreadsheet.

19

Q-	Wind
	. A
	Bable wind speed - 90 Mph
	Inportance - 1
	Wind Exposure = B
	Wind duggen (windward)=
	" " (Ulward)=
	- Y UNGO XI -
	Gr 8 or . 86 (from spreadsheet) 3 - p
	Cp: Windward -> Cp=.8
	letward -> Cp=5
-0	Kz Exposure B Kz=201(1/200) - Flg. Table 6.3 Windward
	0-15
	15-20
	20-25
	35-30

Final parameter values used in Excel spreadsheet.

Results from wind loading spreadsheet are on page 7 of the report for both N/S and E/W directions.

20

26 Exp. B Speed 1 90 Importance 1 K2+ 1 Ka .85 92= .00356 K2+K2KdV3.1 9kis 100992 = 17. 6256 KZ 9n = Biggest 9z (roof) Cp= .8 windward =. - 3 (enward (1/5) -.3 (5/w) Design Pressure P = 9GrCp P=qzGCp -qn (GCpi) = qnGCp - qz (GCp) Leward Final parameter values used in Excel spreadsheet.

Results from wind loading spreadsheet are on page 7 of the report for both N/S and E/W directions.

1	
Q	Seismic Loading:
	Seismic Usegroup = I (table 9.1.3)
	Occupancy Category = II (table 1-)
_	Occupancy Importance Factor I=1 (Table 9.1.4)
	Max ground motions 35 = 18.7% (Fra 4.1.1)
	SI = (0.3% (FIG 4.1.1)
	Site class = C (9.4.24)
	Site class Fadors Fa=1 (Table 9-4124a)
	Fr=1.3 (Table 9.4.1.2.4b)
	Su= Fa. 53 = 18.7%
	5 MI = FV: 51 = 8.19%
	And the state of t
	SDS= 3 SMS= 12.5%
	Spi- 2/3 SM. = 5.460%
	Seismie Design Category = A (Table 9.4. 21206)
	Response Mod. Factor Rps = 5 (Table 9.5.2.2)
	(ord. rein. concret subarual) RE-W= 5
	Building Francisister Words = 21/2 Words = 21/2
	Caus= 41/2 Carw= 41/2
	- Folle
	$C_{t} = .02$ X= .75 (Toble 9.5530)
	the

Seismic loading done according to ASCE7-02, section 9. All parameters are defined as according to the code.

0		
	V=CoW	(Eq. 9.5.5.2-1)
	Cs = 503/R/1 =. 025	(Eq 9.5.5.2.1-1)
	$C_{5\mu\bar{\mu}\gamma} = .015$	(Eg 9.5.5.2.1-2)
	(3 MM=.044 50 I =.0055 V=.015W	(Eq 9.5.5.2.1-3)
	Wxhy K=1+(Tw-5-5)/(25-5) = 1.10	3 (Eq 9.5.3.4-2)
	Vertical Distribution	(Eq. 5. 5. 4-1)
<u> </u>	$fx = Cvx V \qquad $	(Eq. 9.5.5.4-2)
	Overturning Moment	•
	$Mx = \Sigma F_i(h_i - h_x)$	(Eq. 9.5.5.6)

All seismic parameters and equations, as taken from ASCE7-02, were used in an Excel Spreadsheet to solve for the seismic load.

Spreadsheet results for both the N/S and E/W directions can be found on page 9 of this report.

Spot-check Gravity Loads: Typical Bay 4-6 floor interior bay average size 13.4' by 16.6' 24.16 columns 16.6 :4 110 13.4 Factor Loads Dead load : Slab = 100 psf MEP = 5 psf finisks = 15 psf Total Dead = 130 psf Live load: Residential level = 60 psf (same as real) clustors/lobbes = 80 psf Total live = 60 psf Total Load WU=1.3D2+1.6LL =1.3(100)+1.6(60) = 240 psp Typical Bay diagram. Factored Gravity Loads.

Interior bay short span Determine Bay Parameters: $\begin{aligned}
&\int_{N} = |l_{0}.(g' - 8'' - 8'' = 15.37') \\
&\int_{N} = |l_{0}.g'| \\
&\int_{N} = 13.4'
\end{aligned}$ (ACI 13.0) Column Strip (ACI 13. 2.1) lesser or .25 fi = .25(16.6) = 4.15' .25 fz = .25(13.4) - 3.35' 4- controls Middustrip 16.6-(3.35) = 9.9' -l=16.6'-In= 15.27lz=13.41 Not to scale 1 45= 1-05= -Mo-9.91_ Geometries for interior bay in short span direction.

Mad debland				Lopan
LIMITATIONS		(ACT 13.6.11)
i) Miramoun of z ii) Rectangular; rat iii) Occasire spans iii) Offset columns ma v) Uniform loads	o condimous speins 110 2 2 not differ bi 15 ix of 1096 spein			
All conditions are met	.: Direct Design N	lethed co	an be used.	
Moment Mo= Wulz 8	202	(1	401 13.6.2.3	5
- <u>340ps</u>	£ • 13.4 ¹ • 15.37 ¹² 8			
= 937. ~ 94 k	35.5 16.94 up 94			
Neg. + Postive factored	s Moment J	(ACI	13.(0.3) Trib width	- MOLIENT trib width
Neg. (65%) Columistr	D 75% - 46 1K		6.7'	G. 8 1 "/H
GI.11K Middlu An	D 25% - 15.3"		10'	1.53 1×/4
Pos. (35%) Columstrin	$0.00, 0 = 90, \kappa$		6.7'	3 1×/f4
38.91 K Middy Ship	530% - 10%		10'	1 1x/t+
tations are mot allowing fo	r Direct Design	Method	to be used	ACI 13.6.2

_26

	there for t	he direct disign more	ent can l	oe used	lets	
	M	B B B B B B B B B B B B B B B B B B B	yz.			
		= 64720 10.ft = 65 KID.ft				
	Factored M	lowent		Tribwidth	Moment/ft [
	Interior Nea (5%)	Column Strip = ;	31.68	6.71	7.1 1K/t+	
	42.2512	Middle Strip . 10	2.56	6.71	1.6"= ++	
	Eloboan Dos35°/0	Column strip = 1	3.65	G.7'	3 IK/ Pt	
	20.751K	Middle Strip =	6.835	6.71	1.018	
	Cheak Min .	span thickness in = 11/35 - 11.4733 =	.345' 4.145"			
	Min, Reinford	entent Requirments Asmin = .0018 Ag Ag= (8"566 0.10%) = Ismin0018 (96) = .1	96 m2. 728 m2 /f.		(7.13)	
		$\hat{S}_{Max} = \hat{A}_{t} = 16^{\circ} \text{ C}_{1}$ $\hat{S}_{Max} = \hat{S}_{t} = 40^{\circ} \text{ or }$	critical se	ctions (ACI 13.3.2) ACI 7.12.2.2)	
		SMax = 11 Asmin =	o" .1738 mª[f	ł		
ored 1	moments for in	terior bay in the lo	ng span (direction. A	CI 13.6	

Required Steel As=.1728 112 /ft Smax - 16" . Try #4 @ 12" on center AS=. Jin? ALA=. Jin?/ft Find d $d = t - cover - 41rrop_{-}^{0} d_{0}/z$ = $8 - 3/q^{"} - 1/3^{"} - 418/z$ = $6.5^{"}$ a= Aofy .85 Fc b = <u>. a</u> . (d) .85.4.12/1 = . 29 in" 0 Mn > Mu 5.719 > ? *4 @ 12" oc is sufficient reinforcement for long-span: Interior Column Strip Interior Middle Strip Midspan Column Strip Midspan Middu Strip Short span: Interior Middu Strip Midspan Column Strip Midspan Middle Strip .: Only additional reinforcement is need is short span Interior columnations Check required steel area with actual steel area.

Determine if $\Phi M_n > M_u$

29

Reinforcement Design @ Short Span Interior Column Strip Try \$5 @ B" OC A5=. 31 in2 A/ft=. 31 in2/ft Find d d- 8-3/4"-1/2"-32 = 6.4375" a = .31(65) .85(4)(")) = .465 in OMn > Mu 8.6676.8 V .: Use a number 5 bar Every B" oc forthe short span interior edium strip

Design steel for short span interior column strips because the previously found moment did not check.

3

30

0	Typical Ba 4-6 A Exterio	l oor (readental) r Bay			
	Bay is san Same stat Short Mo	ue size as interior ic Mo as interior Span = 94 Kip - ft	bay bay	ong Span Mo= 65	Kip-ft
	Factored Mor	rient 5			
	Short Spar	N		Tribusidin	Movent Trobusidelli
	Interior Nea (15%)	Column Strip .	(J). IK	6.7	d'lldik ltt
	Col. lik	Middle Strip =	OK	10	0" 12+
	Midepan Dos 85%	Column Strip	= 201K	6.7	3.15/14
	38.9%	Middle Strip =	IOIE	10	1 1× 14
)	Be= ta	Middle Strip = 30%	= 1015 (Masowy Ly	10 la torsional r	1 18/17
	BE= ta Long Spar	Hiddly Strip = 30%	- 1012 (Masong u	10 lo torsional r Tribusidth	1 18/ft Esistance Howent
	BE= ta Long Spav Interior Nug (5%)	Middle Strip = 30% ken to equal zero	- 1012 (Macorry 13) 473.35116	10 lo torsional r Tribwidhn (0.71	1 14/17 constance troment Trionedth (6.305,12/A
	BE- ta Long Sparv Interior NG (5°60 43.35 KK	Middle Strip = 30% Len to equal zero Column Strip = 100% Middle Strip = 0%	(Masong us (Masong us 43.351K	10 lo tonsionel r Tribwidth (6.71 (6.71	1 18/ft esistance <u>Howent</u> Cr.305 ¹² /ft C.12 /ft
	BE= ta Long Spav Interior Ng (5%) 43.25 KM	Hiddly Strip = 30% Len to equal zero Column Strip = 100% Middly Strip = 0% Column Strip = (0%)	- 1012 (Massary 2) 473.3518 012 173.6612	10 lo torsional r Tribwidth (6.71 (6.71 (6.71	1 14/17 constance <u>Howenst</u> <u>Thousette</u> (4.305) × /A C.305) × /A C.10 / 124 O 10 / 124
	BE= ta Long Spav Internor Neg (50%) 43.35** Midspan Poo 35% 83.75"	Hiddly Strip = 30% ken to equal zero Column strip = 100% Middly Strip = Column strip = Column strip = Gogo Middly strip = 1 30%	- 1012 (Masonry 2) (Masonry 2)	10 lo toroional r Tribusidth (0.71 (0.71 (0.71 (0.71	1 14/11 constance <u>Howent</u> <u>Thought</u> C.305 ¹ ×1/A O 12/14 O 12/14 1.018/16/14
	BE= ta Long Spav Interior Neg (50%) 43.25*** Midspan Pos 359 00.75** Try #4 oc .: Dor	Hiddle Strip = 30% ken to equal zero i Column strip = 100% Middle Strip = Column strip = Column	- 1012 (Massary 2) (Massary 2) (43.3518 012 13.6612 (6.83512 (6.83512 (6.83512) (6.835	10 In torsional r Tribusidth (6.71 (6.71 (6.71 (6.71 (6.71 (6.71 (6.71) (6.71 (6.71) (6.71	1 "" A Howent Thought C. 305" " / A O " " A O" " A 1.018" " A 1.018" " A D (both spans)

Factor moments for exterior bays in both the long and short span directions. Assume steel sizes and check moments.

0	Reinforcement Design C Short Span (Exterior Bay) Interior Column Strip Try # 5 C (4" O. C. Mile - (2) isile	
0	Find d $d = 8 - 3/q'' - 1/2'' - 5/8/2$ $= (2.4375'')$	
	$ \begin{array}{r} $	
	PMn=(.6)(6)(6)(6,4375-91/2).9 = 201 "+1A = 16.7 1×1et	
	Conclusion: My Entire Slab has been designed for #4 8.12" oc.	
	#21@10" on center is commonly concidered the least particul amount of reinforcement. My spot checks have proved that #4@12 or works in all loctions, except by the Interior Column Strip.	
	By viewing My drawings, it can be seen that Most colours are Marked with additional reinforcements raised the around them. This additional reinforcements raised the Moment the stab can support to a good one.	
Conclusio	ns	
		0

Gravity loads on educins Tributary Floor Area for a column on atypical AT = (13.4')(16.6') = 222 ft? Loading Dead load: DL = 120 psf Live load: LL = 40 psf for residental areas Roof live: RL = 20 psf Snow load: S = 15.75psf Total load LUE 1.2D+1.6L+.5(Lror5) + Controls = 1.2(120) + 1.6(10)+.3(20) = 250 = 236 Floor 6 Floor Concourse D: 1.2(222)(120)13 Hores Dead: 12003 (togos). (Hebber) - 2014 KID2 - 2014 KID2 - 2014 KID2 - 120 KID2 Roof: 20.232-5 - 21.2 KID2 = 416 KIPS L:1.6.(222)(10).12 + 1.6(100)(222) = 291 KIPS RL: 20.000.5 = 2.2 KIPS Total = (37.3 KIPS Total = 376.2 Kips

Gravity loads on interior 6th floor and concourse level columns. Determine tributary area and loading.

Cluck columns for gravity loads, Assure no latricel load or bending Typical Gin Plan column Typical concause column 10" y 34" f = P/A 5000 psi = P/(22+10A) P = 1920,000 105 - 1920 Kips P > 376.0 x P > 637.0 x . Both of uy column spot checks work for pure anal loading caused by gravity loads Peccounting for steel n = 52kg P = 12 (Fg + (n - 1)Ach) = 10 4" * 9 As = 18.70 in³ P - 5000 (193+ (10-1)4) = 1980 Kips x = 1983.6 Kips x

Determine maximum load that column can support and compare to load that will be applied to column under full design loading.

Spot check 11.10.2 OVn > VU Vn=Vc+V5 20'-2" 11.10.3 Vn cannot be larger then Vn=10VE ha N-5 h=1' 1 w= 7.54' d=.81w- 6.03' 10= 20-2" = 20.17' d=.810-16.136' Vn=1074000(1)(16.136) = 10305.3 19/10-A2 = 1470 KIPS VIN=1017000 (1) (6.03) = 3813.7 10/112 ft2 = 550 Kips limit Nec = 2-172 hd = 2-19000 (1)(16136) = 294 KUPS Vec= 21716 hd. = 27170000 (N(6.03) = 110 KIPS Ver Assome only asial load 15 COMPRESSION readed QVC/2 (2004/2) = 110.6 KIPS OVc/2 (2010/2 = 411.25 (11.10.8) No 2 00-6 Vu Lavela 228 4 41.25 \$=.75 (9.3) .: Shear Reinforcement is needed

Lateral loading spot check on shear walls.

Assuming that shear wall is in compression due to gravity loads, calculations of the nominal shear limit and shear strength in the concrete will determine if reinforcement is need. ACI 11.10

_35

Find shear strength provided by reinforcing steel in the horizontal direction. Check that shear strength in concrete and shear strength in steel are greater then required shear on the wall.

For E-W direction Try #4 @ 6" oc. As = .4 in³/ftin meets calculated placement VS= (.4X60(2.6.03) = 290 KIPS Vn= VS+VC = 290 + 110 = 400 Kips dVn ≥ VU (.75)400 ≥ 288 300 > 288 This works! .: For N-3 direction, use #40 B" on center Br horizonal section. this is minumin pratical reinforcement. For E-S direction use #40 6" on center for horizonal section This differs from given disign. Therefore I believe the columns a some beams will take part of the laterial force. The other option is for the concrete shear walls to act as a tube and increase strength. Add additional reinforce to E/W shear walls.

_37

Check Vertical Reinforcement PVMIN=.0035+.5(2.5- huldw)(pn-.0025) (2000-1.)(20.0) - 2.6) 2+ 2600. = 0 (2000-6.)(100/ -2.6)2. + 2600. = 0 =.003112 = .4664 Pr=. Om1 A . . # 4 @ G" does not pmin Try +586" OC. #0213" #4@12" 450(0ª -_#586"0C - #41860"OC #410(01) Ratios for vertical steel in shear walls (ACI eq 11-32) were also checked. Final design of shear wall with reinforcement.

38 Shear Wall EW l=7.61 R -> 17. -> 1 -7 10 -7 9-7 6-7 7-7 6-7 5-7 4-> 3-7 2-7 Taga Kipo - 120.5 KIPS 2 Walls 2 walls = 60.25 MU- 13,968 K- ft= 6984 K- Ft HU= 7763 K-ft Zwallo Wall Huckness estimate hwmin = Use 13" already given design Wall disjon Flexure Shiar N-5 Vu= 239 Kips Mu= 7763 K-ft E-W NU= 60.35 MD MU= 6984 K-ft Chick Winmay OVN MAY =.75 (1470) = 1103 > VU OVN MAY -.75 (873) = 006.3 > VU OK! compute shear strength of concrete NUT COMPRESSION OVC=.75.55 = 41.25 4 60.35 OVc=.75 (399) = 221 <239 .: Rienforceptent is needed

Lateral loading spot check for column on the 6th floor. Ultimate shear and moment acting on each floor was found using an excel spreadsheet.

Portal method analysis to determine the lateral forces acting on each column.

Moment on an Interior Column Gth Ploor M= 0.35 KIPS . 4.31 = 30.35 A-KIPS. I need chart 14.24.5.4 instead, chicked 16.16.5.6 Using the following charl, Mycdumwas well win the acceptible area Concret Column Strength Interaction Diagram Final moment on 6th column is calculated. The combined moment and axial load were checked on a column interaction chart. Column interaction chart is on next page.

strunet.com concrete column interaction diagrams