

Executive Summary:

Pro-Con Structural Study of Alternate Floor Systems is an investigation into possible alternative structural systems for Lexington II in Washington, D.C. For this report, several structural systems were designed and analyzed for the existing conditions in Lexington II. The results of the system designs were then compared with various criteria to determine which system is structurally the most feasible redesign for Lexington II.

The existing system for Lexington II is a two-way flat plate slab system. This system is structural the thinnest possible floor slab, an important consideration in Washington, D.C. where zoning requirements restrict height.

Other systems evaluated and designed as alternatives for Lexington II include;

- One-Way Flat Slab
- One-Way Joist System
- Concrete Slab on Steel Deck and Steel Framing
- Composite Slab
- Pre-cast Floor Slab

The first issue to arise was the need to regulate the existing column grid. To design the alternative systems, a new column grid was assumed with larger spans. Other issues looked at were effects of each system on foundation, lateral design, vibrations, and fireproofing. All designs proved to be either lighter or similar to the existing two-way slab in weight, creating no dramatic change in foundation. Also, all of the alternative designs can work well with the existing shear walls as lateral support. Some systems may be able economize the lateral system by redesigning the framing system as either moment or braced frames. Fireproofing and vibrations caused no major issues among any of the floor system analyzed.

The controlling factor in determining feasibility of a new structural system was floor sandwich depth. This found that either a one-way joist system or a composite system were the best choices for a building redesign.

Introduction:

Lexington II at Market Square North is a residential tower located in the historic quarter of Washington, D.C. With a floor area of 72,000 square feet, Lexington II is 12 stories high with three below grade levels of parking and retail.

Although a larger metropolis building, Lexington II is primarily residential and therefore has residential loads most of its levels. The only large loads on Lexington II are those of the public areas such as lobbies and retail spaces. There is also one loading dock for trucks which would carry a larger load.

From ASCE7-02

Dead Load:

Substructure Slab (10")	125psf
Superstructure Slab (8")	100psf
Mechanical/ Lighting	5psf
Finishes	15psf
Partitions	included in live load, see below

Live Load:

Roof	20psf	
Public Levels/ Stairs	.100psf	(ASCE7-02)
Mechanical	.150psf	(Common assumption)
Lobbies	.100psf	(ASCE&-02)
Residential Levels	40psf+	20psf (for partitions)

Washington DC has strict height requirements on all of the buildings constructed there. In the downtown district where Lexington II is located, a height cap of 130' has been placed on all buildings. Because of this restriction, concrete structural systems which reduce the total amount of floor sandwich in a building are commonly used.

In keeping with DC practice, Lexington II currently uses a two-way flat plate slab across small sized bay to minimize the depth of its floor sandwiches.

3

Existing Lexington II column plan

Existing Structural System:

The basic structural system of Lexington II is two-way flat plate slab supported by columns. The existing system of Lexington is complicated by offset columns in many locations. Other irregularities of the structural system are the presence of edge beams along the flat-plate slab in a very limited number of locations and drop panels located beneath the truck bay.

FOUNDATON:

The foundation of Lexington II is a MAT foundation with thickness of 3'-6". This foundation is constructed of 5000psi compressive strength concrete and reinforced with grade 60 reinforcing bars. The reinforcing bars are #8 bars located every 9" o.c. with #11 top bars placed where needed. The MAT foundation sits on original soil and structural fill of 8000psf except for the southern wall which on HP 14 x 89 piles every 5' on center. These piles are to avoid costly controls which would be needed to prevent undermining the preexisting building to which Lexington II abuts.

GRAVITY SYSTEM:

The floors of Lexington II are two-way flat plate slab, and in most cases, unsupported by edge beams. The flat plate slab is 8" thick for all residential floors and is increased to 10" where greater loads occur on the lobby and parking levels. All slabs are constructed of 4000psi strength concrete. Typical slab reinforcement is a continuous bottom mat of grade 60 #4 bars every 12" with top reinforcement placed where needed.

LATERAL SYSTEM:

The primary component of the lateral system is a core of shear walls located around the elevator and stair shafts. All shear walls are 12" thick and constructed of 4000psi concrete. Shear wall reinforcement includes #4 bars every 12" on center.

However, the shear wall system alone is not enough to provide for the lateral loads Lexington II sees. The additional lateral strength in Lexington II comes from the framing system of monolithically poured columns connecting into the floor slabs.

ADVANTAGES:

The current gravity system in Lexington II is a sensible choice for many reasons. Due to the small spans and light loads present, the existing floor system can be relatively very thin compared to most common structural systems. Two-way slab can also be made thinner than other systems because beams are not needed to support the floor. The concrete system also eliminates the need for additional fireproofing added to the system.

DISADVANTAGES:

Although two-way slab is thin, it does not provide space for any MEP systems to run in, therefore a suspended ceiling must be run throughout the building adding additional depth to the floor sandwich. Another disadvantage of the current systems of Lexington II is the irregular placement of columns and beams to try and ensure a small floor sandwich. This irregular system prevents future changes in the floor layout. Twoway slab also has a slow construction time. Form work must be placed throughout the building and the concrete must be poured, cured, and finished on time. Many alternative methods provide members produced offsite which must only be fastened together on site.

Design of Alternative Systems:

The following is an investigation into other possible building systems which may have been used in Lexington II. Each system has been evaluated and compared with the existing system and the other alternative systems.

Systems Evaluated:

- One-Way Flat Slab
- One-Way Joist System
- Concrete Slab on Steel Deck and Steel Framing
- Composite Slab
- Pre-cast Floor Slab

The above systems were designed for a common floor with residential loading. The several systems, which could easily be designed for multiple loads, were also designed for the lobby as a brief comparison in the size and weight of members needed to carry the additional live load of the lobby.

Criteria for determining feasible structural systems were based primarily on member size and weight and their effect on the floor sandwich. Due to the Washington, D.C. zoning restrictions, systems which greatly increased the buildings total height are impractical to consider. Other criteria the floor systems were compared with included ease and time of construction, effect on floor vibration, if fireproofing is required, and if the system works well with the existing foundation and lateral systems. Material cost can be estimated based on the weight of each system, remembering that in general steel costs more per pound than concrete. Construction cost can be thought of as greater for concrete due to the need for formwork and additional labor.

One-way slab:

The first system analyzed for the Lexington II redesign was a monolithically poured one way concrete slab. One way slab was chosen for its ability to work with an irregular column grid and short span ranges. Other concrete systems such as one-way joist and waffle slabs were deemed unreasonable for the short span lengths in Lexington II.

Before starting the analysis, the only argument against one way slab was the almost square bays of Lexington II which are usually more characteristic of two-way slabs.

In order to design a one way slab, design aids from the CRSI handbook (2002) were utilized.

LOADS:

Loads were determined in technical assignment #1 using ASCE 7-02. For designing one way slab using the CRSI handbook, loads were adjusted so that self weight was not included. Self weight was already taken into account by CRSI. The values in the CRSI tables are 'total factored load was calculated, and reduced by the prescribed φ -factors, from which 1.4 times the slab weight was deducted using a unit weight of 150 pounds per cubic foot (pcf).'¹

Live load:60psf for residential floorsDead load:20psf for finishes and MEP

 $W_u = 1.2^*(20) + 1.6^*(60) = 120psf$ $W_u = 1.4^*(20) + 1.7^*(60) = 130psf$ (old LRFD factors)

SPANS:

Spans for each bay were determined based on the largest span caused by offset beams. The one way slab was then taken to span the shorter direction in bay. Two spans seemed to prevail in almost every bay, 13' to 13'-9" and 16'-1" to 16'-6". As a conservation measure, I took the lengths which the one way slab spanned to be 13'-9" or 16'-4". To account for bearing, 4" was added to both of these values.

DESIGN:

Repetitiveness is a key to economical one way slab design. For practicality, it was decided that a uniform slab thickness should be used for each floor slab. Using design aids from the CRSI, the minimum slab thickness for the largest span in an exterior bay of Lexington II was found. The results of this design were a 6 $\frac{1}{2}$ " slab with ρ = .005. The

¹ CRSI Design Handbook 2002, Chapter 7- One Way Slabs: scope of load table, page 7-1

other bays were then designed for a 6 $\frac{1}{2}$ " slab with the minimum possible amount of steel reinforcement. The final design was as follows:

Exterior Bay, 17' $6 \frac{1}{2}$ " slab $\rho=.005$ Top bars = #5 at 11" Bottom bars= #5 at 12" Temperature/ Shrinkage bars= #4 at 17" Wu= 155 > 130psf	(CRSI p. 7-12)
Exterior Bay, 14', 6 $\frac{1}{2}$ " slab $\rho=.005$ Top bars = #5 at 11" Bottom bars= #5 at 12" Temperature/ Shrinkage bars= #4 at 17" Wu= 282 > 130psf	(CRSI p. 7-17)
Interior Bay, 17', 6 $\frac{1}{2}$ " slab $\rho=.005$ Top bars = #5 at 11" Bottom bars= #4 at 10" Temperature/ Shrinkage bars= #4 at 17" Wu= 182> 130psf	(CRSI p. 7-12)
Interior Bay, 114', 6 $\frac{1}{2}$ " slab ρ = minimum Top bars = #4 at 12" Bottom bars= #3 at 9" Temperature/ Shrinkage bars= #4 at 17" Wu= 154> 130psf	(CRSI p. 7-14)

Deflections and ultimate stresses are taken into consideration in the CRSI design aids; therefore no additional checks of these values were required.

Finally, concrete beams are needed to span in the 26' length direction of the bays and to support the floor slabs. The load the beams carry includes the weight of the slab. The design of the beam, based on ultimate moments finds that the concrete cross section must be at least $bd^2=6190in^3$. This leaves several options such as a square beam 18" x 18", or the common standard of d=2b dictating a beam of 10" x 25". The final beam design was 18" by 18". This beam was chosen to reduce the floor sandwich without creating an overly wide beam. This will add an addition 18" to the floor sandwich.

Typical large bays spanned by beams

The beams were then checked with a deflection criteria of 1/240.

1/240 = (26.6*12)/240 = 1.27 in.

Actual deflection= 1.244 in < 1.27

This deflection is very close to the allowable, and therefore the beam will be redesigned to 15° x 20°, deflection = 1.08 inches.

ADVANTAGES:

Works well on the smaller sized bays in Lexington II Simple construction and formwork No additional fireproofing No change in foundation or lateral system necessary

DISADVANTAGES:

A suspended ceiling is needed to hide MEP systems Thin slab means vibration could become a problem Floor sandwich= 6.5"slab plus 20" beam Total weight=112psf

One-way Joist Floor:

Another concrete system to consider is a one way joist floor system. One way joist floors are known for their ability to reduce dead weight and reinforcement. However, one way joist construction is usually more efficient for longer spans. To remedy this, the column gird of Lexington II was changed for this analysis. Every other row of columns was eliminated, and the remaining columns were moved into an exact grid formation.²

New Bay Lay Out

LOADS:

Loads were determined in technical assignment #1 using ASCE 7-02. For designing one way joist floors using the CRSI handbook, loads were adjusted so that self weight was not included. Self weight was already taken into account by CRSI. An additional 2psf is added to the final self weight to account for bridging.

Live load:60psf for residential floorsDead load:20psf for finishes and MEP

² All subsequent systems are designed using this column grid

10

 $W_u = 1.2^*(20) + 1.6^*(60) = 120 \text{psf}$ $W_u = 1.4^*(20+69) + 1.7^*(60) = 227 \text{psf}$ (old LRFD factors)

SPANS:

As determined above. Although the bays are 16.17' and 16.7', each bay was approximated so that the joists would span 16'. This reduction in span can be accounted for when the area of the columns is subtracted from the center to center distance, thus leaving a face to face span of 16' for each bay.

DESIGN:

Design for the one way joist floor was determined from design aids provided in the CRSI handbook. The main criteria while designing the one way joist floor was the depth of the floor sandwich. The current system, two way flat plate, has a very small floor sandwich of 8". Lexington II is located in Washington D.C. where there is a height restriction on buildings. The smallest floor depth in the CSRI handbook is 3" slab + 8" joists, this is the system chosen for the following analysis.

Try 3" slab with 8" deep ribs= 11" total depth 30" forms + 5" Rib @ 35" c-c Concrete strength= 4000psi Steel strength= 60,000psi End Span: (CRSI p. 8-20) Clear span=16' W = 180 psf > Wu = 130 psfTop Steel= #4 bars at 12" Bottom Steel = two #4 bars Interior Span: (CRSI p. 8-20) Clear span=16' W = 131 psf > Wu = 120 psfTop Steel= #4 bars at 12" Bottom Steel = one #3 bar and one #3 bar

Joist Section for end span

Finally the girders to support the joist system had to be designed. To do this, the previous load plus the weight of the one-way joist system had to be factored. The girder was designed to meet the flexural strength required to support the loads. The girder was designed with a depth equal to that of the joists in order to prevent additional depth to the floor sandwich. The final girder design was 26" base and 8" deep.

Deflection for the girder was checked and compared to 1/240.

1/240 = (26.6*12)/240 = 1.27 in. Actual deflection= .8 in < 1.27 in

Therefore a 16" x 8" girder will work.

ADVANTAGES:

Reduces vibration Is fire rated Additional stiffness Additional weight (Total weight = 75.0psf) Works well with current shear wall system

DISADVANTAGES:

3" slab + 8" rib is deeper then the current floor system (however MEP system can be easily integrated into the joist system without the need for additional space provided by a suspended ceiling)

New column grid may change foundation. Reduction in number of columns results in each column carrying more weight and an increase in punching shear.

Steel Beams with Metal Deck and Concrete Slab:

Wide flange steel beams with metal form deck and reinforced concrete slab was another system analyzed for Lexington II. A non-composite system was analyzed to provide incite into how other materials besides concrete would perform in Lexington II. Steel had many benefits such as its strength in tension, its strength to weight ratio, and its long life time. Steel is also easy to fabricate off site and then erect quickly saving on time and labor. Steel, however requires thicker floor sandwiches then the existing flat plate system.

To economize the steel system, the larger bay span option (eliminating every other row of columns) was used. This is done to utilize the strength of the steel. A steel beam system was decided on in place of a steel joist system to help reduce the floor sandwich depth as much as possible. The floor sandwich depth is especially important in Lexington II because of the Washington D.C. building height requirements.

LOADS:

Loads were determined in technical assignment #1 using ASCE 7-02. To design using steel decking catalogs, a self weight for the slab had to be assumed and added to the design weight from technical assignment 1.

Live load:	60psf for residential floors	
Dead load:	20psf for finishes and MEP	
Slab Weight:	Slab + Deck with concrete weight	
	$(4.5^{"}/12)^{*}(150\text{pcf}) + (2^{"}/12)^{*}(150)$	(pcf)/2 = 69psf
$W_u = I$.2*(20+69) + 1.6*(60) = 203 psf	(current LRFD factors)
$W_{u} = 1$.4*(20+69) + 1.7*(60) = 227 psf	(old LRFD factors)

SPANS:

Spans for a typical bay of 26.6' by 16.7 were assumed to be divided by two steel beams. An average span of 9' for the steel decking was used.

13

Beam Spacing in Bays

DESIGN:

The first step in designing the steel beam system was to determine the steel decking. This was done using the Design Manual and Catalog of Products by United Steel Deck (USD), Inc. USD accounts for deflections due to live load and stresses, therefore no checks were used on the deck. The above load, including the assumed slab and deck weight, was used at a span of 9', in a triple span condition.

Decking: 18 gauge, UF2X 282psf > 200psf

Next the slab was designed. The slab design was also determined from the USD manual.

Slab: 6" Mesh: 44- W4.0 x 4.0

Before the steel beams could be designed, the weight of the slab and deck had to be compared to the assumed weight of 69psf. According to the USD manual, the weight of the concrete slab and deck system is 60psf. This makes the assumed 69psf conservative and the design can continue.

14

The last item to be designed for this system is the steel beams. The design for the steel beams was completed in RAM . RAM is written to include sizing members for allowable deflection and stress, therefore no deflection or stress checks of the members were necessary. Results are below.

Lobby Beam Sizes *Lobby was designed with a live load of 100psf

15

Floor Map

10/25/05 20:26:57

Floor Type: Residental

Residential Beam Sizes

ADVANTAGES:

Fabricated offsite Rapid erection Ductile Good strength in both tension and compression Long life time Weight= 67.5psf Designing a new foundation and lateral systems rather then 3'-6" MAT and

concrete shear walls may prove to be more economical

DISADVANTAGES:

Floor sandwich was greatly increased. This can be demonstrated by looking at the depth of almost any steel member. For example, a W16 x 26 is 15.7" deep plus there is a 8" slab and deck assembly on top.

Requires fireproofing Requires lateral bracing

ALTERNATIVE SPAN:

In an attempt to try and reduce the beam depth, an alternate beam layout was also analyzed, the results are below.

Lobby Beam Sizes

Residential Beam Sizes

As you can see, while most of the beams were reduced to W 12 shapes, the girders increased in size to W21's. This will not help reduce the depth of the floor sandwich as wanted.

Composite Beams and Deck:

Composite wide flange steel beams with composite metal deck and a concrete slab was another investigated system. Using a composite system will hopefully achieve all the benefits of a steel system as well as the strength and stiffness of a concrete system and help to reduce the floor sandwich size.

The spans used to analyze the composite system were the same as used in the steel beam non-composite system design. The only analysis done for the composite system was preformed on the beam spacing which worked the best for the non-composite system.

LOADS:

Loads were determined in technical assignment #1 using ASCE 7-02. To design using steel decking catalogs for composite deck, only the uniform live load must be considered.

Live load: 60psf for residential floors

 $W_u = 1.6*(60) = 96psf$

SPANS:

Spans for a typical bay of 26.6' by 16.7 were assumed to be divided by two steel beams. An average span of 9' for the steel decking was used.

19

Beam Spacing in Bays

DESIGN:

To design the composite system, first the composite deck was picked from the USD catalog. USD accounts for deflection and stresses, therefore no checks were run on this system. To keep shallow floor sandwiches, the 1.5" loc-floor was used with normal weight concrete and a compressive strength of 3ksi.

Before a slab depth was picked, the fire proofing tables were reviewed and it was determined that with many assemblies, 1.5'' + 2.5'' of cover would be needed to ensure that additional fireproofing on the system was not necessary

Decking: 22 gauge, 1.5" loc, slab=4", one stud per foot 165psf>60psf

The required area of reinforcing steel was A=.023. Therefore 6x6 W4.0x4.0 welded wire mesh was used in the design. The total weight of the composite deck was 31psf, significantly less then non-composite deck.

The composite beams were designed using RAM. Ram designed the beams with shear studs varying in number per beam from 8 to 22. RAM is written to include sizing members for allowable deflection and stress, therefore no deflection or stress checks of the members were necessary. The RAM results are below.

RAM Steel v8.1 DataBase: composite Building Code: IBC

Floor Map

10/26/05 18:18:08

Floor Type: Lobby

Floor Map

10/26/05 18:18:08

Floor Type: Residental

22

ADVANTAGES:

Smaller floor sandwich then the non-composite steel system Lighter slab weight then existing system No shoring is needed A more economical foundation and lateral system may be possible

DISADVANTAGES:

Additional cost and labor of shear studs

Pre-cast Concrete:

The last structural system considered for Lexington II was pre-cast concrete floor slab and beams. Pre-cast systems can be manufactured to the exact specs needed for the building. For this analysis, common pre-cast shapes as found in the PCI handbook were used.

LOADS:

The PCI handbook directs that 'load tables for stemmed deck member, flat deck members, and beams show the allowable uniform superimposed service load'.

Live load:	60psf for residential floors
Dead load:	20psf for finishes and MEP

Total load: 80psf

SPANS:

Pre-cast floor slabs can be adjusted for any span necessary. The shapes given in PCI are 4' wide and the spans range from 10' to 30'. Lexington's bays are 26.7' by 16.6', therefore the option exists to span the 16' direction or add beams and span a shorter direction.

DESIGN:

The design of the pre-cast concrete system was done using design aids found in the PCI handbook. Due to the building height restrictions in Washington DC, the floor sandwich depth was a critical part of design. To keep the floor sandwich as thin as possible, solid flat slab and hollow-core slabs were investigated instead of T beams.

Another way to keep thinner floor spans was to divide the 16.6' or 20'span directions with additional beams. The more beams carrying the weight, the smaller each beam can be. Another consideration was the amount of reinforcement steel needed in each piece. To reduce costs, the minimum amount of steel should be used.

less. Total depth is 4".

Possible slabs:	4HC6 with 66-S strains. Meets 80psf at spans of 20 feet and less. 6" thick.
	4HC6+2" with 66-S strains. Meets 80psf at spans of 21 feet and less. 2" topping add depth making the floor sandwich 8" deep.
	FS4 with 66-S strains. Meets 80psf at spans of 14 feet or

24

FS4+2 with 66-S strains. Meets 80psf at 15 feet or less. Total depth is 6".

To design the beams the weight of the pre-cast slab must be included. 4HC6 is 45psf and FS4 is 50psf, when topping is included, those weights increase to 74psf and 75psf. A conservative assumption is to use 75psf as the slab weight.

Live load:	60psf for residential floors
Dead load:	20psf for finishes and MEP
Slab load:	75psf
Total load:	155psf

All of the beams listed in the PCI design tables are more then adequate to meet both the load and the span requirements. Therefore a smaller, custom made pre-cast beam would be more efficient.

Using Microsoft excel, a spreadsheet was designed to find beam section dimensions (b and d) for rectangular beams ranging in spans from 3' to 20'. To help determine a feasible beam dimensions, a quick estimation of the base dimension was run with the assumption that at least 2 #4 reinforcement bars would be need.

b > Cover (with stirrup) + spacing between bars + cover (with stirrup)

b > 2.5 + 1 + 2.6b > 6in.

Span (ft)	Wu (plf)	Mu (kip-in)	bd^2 (in^3)
3	630	8.505	10.37195
4	840	20.16	24.58537
5	1050	39.375	48.01829
6	1260	68.04	82.97561
7	1470	108.045	131.7622
8	1680	161.28	196.6829
9	1890	229.635	280.0427
10	2100	315	384.1463
11	2310	419.265	511.2988
12	2520	544.32	663.8049
13	2730	692.055	843.9695
14	2940	864.36	1054.098
15	3150	1063.125	1296.494
16	3360	1290.24	1573.463

if d= 5in	if d=10in	if d=15	if d=20	if d=b	if d=6	d=7	d=8	d=9
b(in)	b(in)	b(in)	b(in)	b(in)	b(in)	b(in)	b(in)	b(in)
0.414878	0.10372	0.046098	0.02593	2.180822	0.28811	0.211672	0.162062	0.128049
0.983415	0.245854	0.109268	0.061463	2.907762	0.682927	0.501742	0.384146	0.303523
1.920732	0.480183	0.213415	0.120046	3.634703	1.333841	0.979965	0.750286	0.592818
3.319024	0.829756	0.36878	0.207439	4.361643	2.304878	1.69338	1.296494	1.02439
5.270488	1.317622	0.58561	0.329405	5.088584	3.660061	2.689024	2.058784	1.626694
7.867317	1.966829	0.874146	0.491707	5.815524	5.463415	4.013937	3.073171	2.428184
11.20171	2.800427	1.244634	0.700107	6.542465	7.778963	5.715157	4.375667	3.457317
15.36585	3.841463	1.707317	0.960366	7.269406	10.67073	7.839721	6.002287	4.742547
20.45195	5.112988	2.272439	1.278247	7.996346	14.20274	10.43467	7.989043	6.312331
26.5522	6.638049	2.950244	1.659512	8.723287	18.43902	13.54704	10.37195	8.195122
33.75878	8.439695	3.750976	2.109924	9.450227	23.4436	17.22387	13.18702	10.41938
42.1639	10.54098	4.684878	2.635244	10.17717	29.28049	21.5122	16.47027	13.01355
51.85976	12.96494	5.762195	3.241235	10.90411	36.01372	26.45906	20.25772	16.0061
62.93854	15.73463	6.993171	3.933659	11.63105	43.70732	32.1115	24.58537	19.42547

Possible beam sizes with b>6 have been highlighted

The final pre-cast design decided on was to use 4 4' pre-cast floor slab panels along the 16' bay width. The panels decided on were FS4 with 66-S strains. These panels were chosen without topping to ensure the minimum slab thickness. The span picked was the slab's maximum span of 14 feet. 14 feet was picked so that only one beam per bay would be needed. By reviewing the excel chart above, the only possible concrete shape to span the entire 16' bay weight was a d=15" by b=7". The depth of 15" increases the floor depth greatly, and by observation a base of 7" does not appear large enough to fix the reinforcement requirements.

A more feasible beam system is to use a steel beam, which would be smaller, to support the pre-cast panels. The steel beam design was done using RAM. RAM is written to include sizing members for allowable deflection and stress, therefore no deflection or stress checks of the members were necessary.

Location of Pre-Cast Slab Panels in a typical bay

Steel Beam Design for a typical residential floor

ADVANTAGES:

Fast to construct Weight of system = 54psf Lighter weight and steel beams may provide for a new foundation

DISADVANTAGES:

Steel girders require fireproofing Lighter system may cause vibration problems Difficult connections to connect concrete to steel system

27

	Floor Depth	Weight	Fireproofing	Vibration	General Comments	Feasibility
Existing System: Two-Way Flat Plate	8" floor slab with suspended ceiling for MEP space	100psf	No additional fireproofing is required			
One-Way Slab	6.5" slab + 20" beam = 26.5"	112psf	No additional fireproofing is required	Heavier then existing system, will dampen vibrations	 Works with existing column layout. Rearranging bay sizes may help to reduce beam depth, however bay sizes are already very small Simple formwork and construction 	Increased weight and floor depth make more analysis unnecessary without alternating the column gird.
One-Way Joist	3" slab + 8" ribs =11"	75psf	No additional fireproofing is required	Joists add more stiffness	 Form work is easy to erect Larger columns and punching shear will result 	Should be investigated
Steel with Non- Composite Deck	8" slab + 16" beam = 24"	67.5psf	Additional fireproofing is required	Lighter system may cause vibration issues	 Lateral Bracing required Complex connections Possible foundation and lateral system redesign 	Possible for investigating, however floor sandwich may become a problem
Composite with Composite Deck	4" slab +1.5" deck + 12" beam =17.5"	35psf	Additional fireproofing required on steel beams	Usually no vibration problems with composite	 No shoring required Extra cost and labor of shear studs Possible foundation and lateral system redesign 	Should be investigated
Pre-Cast Slab with Steel Beams	4" slab + 18" beam = 22"	54psf	Additional fireproofing is required on beams	Lighter system could cause vibration problems	 Fast to construct, all pieces fabricated offsite 	Possible for investigating

1 All weights are determined for the upper right bay.

Conclusion:

Reviewing the benefits and shortcomings of the evaluated system, it is easy to see that any further investigation into the gravity system of Lexington II should begin with the design of a new column gird. The existing column grid only works well with the exiting two-way slab system.

The existing system is also one of the heaviest systems investigated; however it has the closest column spacing. One can assume any increases in foundation size would be due to increased punching shear caused by each column, which now carries a larger floor area. The other consideration for a foundation redesign would involve a reduction in size due to the lighter structural systems.

Another system which would have to be revaluated for any further investigation is that of the lateral loads. The current system of shear walls can be used with any system, but may not be the most economically lateral system for buildings comprised of steel framing.

However, the controlling criteria for a Washington DC building is that of floor sandwich depth. By looking exclusively at floor sandwich depths, the conclusion can be reached that after the existing system the best two alternatives would be to design either a one-way joist floor or a composite system. Both alternatives are lighter in weigh then the existing two-way slab and have no major setbacks as far as fireproofing, vibrations, or other construction issues.

~	\sim
•)	u
1.	-7

SOLID ON $f'_c = 3,000$	E-WA` psi	Y SLA	BS—E	ND S	PAN Grad	de 60	Bars			Т	op Ste	el for ≈ 0.0	$-M_u$
Thickness (in.)	4	41/2	5	51/2	6	6½	7	71/2	8	81/2	9	91/2	10
Top Bars Spacing (in.)	#4 12	#4 12	#4 11	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	#6
Bottom Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 8	#4 8	#5 12	#5 11	#5 11	#5 10	#5 9	#6 12	#6 11	#6
Top Bars Free End Spacing (in.)	#4 12	#4											
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#5
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .200	.200 .218	.218 .240	.267 .300	.310 .300	.338 .310	.372 .338	.377 .338	.413 .372	.440 .413	.480 .440	.528 .480	.528
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN				FACT	ORED L	SABLE	SUPERI	MPOSE	D LOAD	(psf)			
6'-0" 6'-6"	700 586	906 761	967										
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	496 423 363 314 272 237	645 552 475 412 359 314	821 704 608 528 462 405	988 856 747 656 579	986 861 757 669	976 858 759	916						
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	207 158 138 120 105 91	276 191 167 146 127 111	357 248 218 192 169 149	513 364 323 287 256 228	593 481 429 383 343 308	674 591 528 473 426 383	814 722 647 582 524 473	890 790 708 636 574 518	957 859 774 700 634	987 890 806 731	952 865		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	79 68 58 49 42	97 84 73 62 53 45	131 115 101 88 76 66	204 182 162 145 129 115	277 249 224 202 182 163	346 312 282 256 231 209	428 388 352 320 291 264	469 426 386 351 320 291	575 523 477 435 397 363	664 605 552 505 462 423	787 719 657 602 552 507	937 857 785 721 662 610	999 914 837 769 707 651
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"			56 48 40	102 90 79 69 60 51	147 132 118 105 94 83	190 171 155 140 126 113	241 219 199 181 164 149	265 241 220 200 182 165	332 304 278 255 233 213	388 356 327 300 275 253	466 429 395 363 335 309	562 519 479 442 409 378	600 554 511 473 437 405
19'-0" 19'-6" 20'-0"				.44	73 64 56	101 90 80	135 122	149 135	195 178	232 213	284 262	350 324	374 347

Note: See Fig. 7-1 for reinforcing bar details.

One-way Slab for an end span. Used to determine thickness of one-way slab. From CRSI

7-12

CONCRETE REINFORCING STEEL INSTITUTE

-

30

SOLID ON	E-WAY	SLA	BS—IN	ITERI	OR SP Grad	AN e 60 E	Bars			To	ρ Ste	el for ≈ 0.0	-1
Thickness (in.)	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	
Top Bars Spacing (in.)	#4 12	#4 11	#4 10	#4 9	#5 12	#5 11	#5 10	#5 10	#5 9	#6 12	#6 11	#6 10	
Bottom Bars Spacing (in.)	#3 10	#3 9	#3 7	#4 12	#4 11	#4 10	#4 10	#4 9	#4 8	#5 12	#5 11	#5 10	
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .132	.218 .147	.240 .189	.267 .200	.310 .218	.338 .240	.372 .240	.372 .267	.413 .300	.440 .310	.480 .338	.528 .372	
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	
CLEAR SPAN				FACT	ORED U	SABLE	SUPERI	MPOSE	D LOAD) (psf)			
6'-0" 6'-6"	703 589	923 775											
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	498 425 365 315 273 238	657 562 485 420 367 321	907 778 673 586 513 452	988 856 747 656 579	935 822 727	894	980						
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	208 181 159 139 122 107	282 243 214 189 167 148	399 317 281 249 222 197	513 410 365 326 291 261	646 539 482 432 388 349	795 661 592 532 479 433	872 779 699 629 568 514	882 792 713 644 583	964 870 787 715	994 901 819	967		
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	94 82 71 61 53 45	131 116 102 90 79 69	176 157 139 124 110 97	234 210 188 169 151 136	315 285 257 233 210 190	392 355 322 293 266 242	465 423 384 350 319 291	529 481 438 400 365 333	650 593 541 495 453 416	746 681 623 570 523 480	882 806 739 678 623 573	959 880 809 745 688	
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"		60 51 44	86 76 66 57 49 42	121 108 96 86 76 66	172 156 140 127 114 102	220 200 182 165 150 136	265 242 221 201 184 167	305 279 255 233 213 195	381 350 322 296 272 250	442 406 374 345 318 293	528 487 450 416 384 355	635 587 543 503 467 433	
19'-0" 19'-6" 20' 0"				58 50 43	91 81 72	123 111 100	152 138	178 162 147	230 211 194	270 249 229	329 304 281	402 373 346	

Used to find minimum reinforcement needed in an interior span for the slab thickness-17 previously determined. From CRSI.

31

SOLID ONE	E-WAY	SLAB	S-IN	TERIC	Grade	AN 60 B	ars	Ree	comme	ended	Minim	um St d Bott	om
$T_c = 5,000$	4	41/2	5	51/2	6	61/2	7	71/2	8	81/2	9	91⁄2	10
THICKIESS (III.)		44	#4	#1	#4	#4	#4	#4	#4	#4	#4	#4	#4
Spacing (in.)	#4 12	12	12	12	12	12	12	12	12	12	12	11	11
Pottom Bars	#3	#3	#3	#3	#3	#3	#3	#3	#4	#4	#4	#4	#4
Spacing (in.)	12	12	12	11	10	9	8	7	12	12	12	#5	#5
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	12	18	17
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .110	.200 .110	.200 .110	.200 .120	.200 .132	.200 .147	.200 .165	.200 .189	.200 .200	.200 .200	.200 .200	.218 .218	.218 .218
Slab Wt (psf)	50	56	63	69	75	81	88	94	100	106	113	119	125
CLEAR SPAN			704	FACT	ORED U	SABLE	SUPERI	MPOSE	D LOAD	(psf)			
6'-0" 6'-6"	579 483	680 568	781 652	969 811									
7'-0"	407	479	550	686	851								1.23
7'-6"	345	407	468	585	727	903	990	024					
8'-0"	295	348	400	502	627	780	855	931	076	0/2			
8'-6"	253	299	344	434	543	678	/43	700	766	924	881	940	99
9'-0"	218	259	298	377	473	592	650	708	100	725	775	826	87
9'-6"	189	224	258	328	414	520	571	622	673	120	115	020	011
10'-0"	163	194	224	287	363	458	503	548	594	640	684	729	61
10' 6"	142	169	195	251	319	362	397	434	470	507	342	512	54
10 -0	123	147	170	220	282	320	351	383	416	448	4/9	154	18
11-0	106	128	148	193	249	283	311	340	369	398	420	404	40
12' 0"	92	111	129	169	220	251	275	301	327	353	3/0	250	38
12'-6"	79	96	112	148	194	222	244	267	290	314	330	359	50
42/ 0/	68	83	96	130	172	197	216	237	258	279	298	319	34
13-0	58	71	83	113	152	174	191	210	229	248	265	284	20
13-6	49	61	71	99	134	154	169	186	203	220	235	252	20
14'-0"	41	51	60	85	117	136	149	165	180	195	209	224	23
14'-6"	41	13	50	73	103	119	132	145	159	172	185	198	21
15'-0" 15'-6"		40	42	63	90	105	115	128	140	152	163	175	18
				53	78	91	101	112	122	133	143	154	16
16'-0"				44	67	79	87	97	107	117	125	135	14
16'-6"					57	68	75	84	92	101	108	117	12
17'-0"					47	57	64	72	79	87	93	101	10
17'-6"					-1	48	54	60	67	74	80	87	9
18'-0" 18'-6"							44	50	56	62	67	73	1
		1						41	46	51	55	61	
19'-0"										41	44	49	-
19'-6"													4

Used to find minimum reinforcement are based on practical considerations of rigidity against deplacement under normal construction and or company needed in an interior span for the slab thickness previously determined. From CRSI.

7-14

CONCRETE REINFORCING STEEL INSTITUTE

3

32

•	One-Way Slab Beam Design	
	$M_{U} = \frac{\omega^{19}}{3.48} \frac{3.48}{30.60} \frac{3.48}{8}$	
	= 307.7" ~ 3695 In-KIPS	
	=.6(.0206) =.0124	
	$R = (663 \text{ From Table A-5})$ $M_{U} = \Phi R b d^{2}$ $b d^{2} = \frac{3693 \cdot 1000}{4.663}$ $= 6190 \text{ m}^{3}$	
	Try $18'' \times 18'''$ beam $T = \frac{18 \cdot 18''}{12}$ $= 8748 \text{ in}^4$ $\Delta = \frac{5 \times 3^{4}}{384(E)(E)}$ $= 5(390)(36.6.13)^4/384(3.6.10^6)(8748)$ = 1.34''	
	Try 15" x 20" beam $T = 10,000 \text{ in}^{4}$ $\Delta = 1.08 \text{ in}$	
0		41
		7

____33

															F	10	111	SN	11 -	IEEI	TS	NC	ICII	HO:	INE	BE	E	38:	ON	00													0	2-1	B
+ICR	EFF. DEF	STEE	STEEL ARE	- ICR	EFF. DEF	а	STEEL % (L	STEEL ARE/	NEGATIVE		-Control	(4) Excl	(3) Con	(2) First	(1) For	21.7	071	26'-1		25'-(24'-(23'-0		22'-0	21'-0	20-0		19'-0	18'-0	17-0		16-0	15-0	14'-0	CLEAR S	Steel (psf)		BARS		BARC	TOP		MULTIPL	ONE-WAY	OTAN
VIGR	PTH, IN.	EL %	A (SQ. IN	/IGR	TH, IN.	APERED)	JNIFORM	A (SQ. IN	MOMEN		ned by s	usive of	21 for in	load is	Dross se	c	5	0*		9	0	9	1. 1.	9)")"		-2	-						PAN			# *	= (020	Ci70		E SPAN	JOIST	רסאר
.16	9.	.0	.3	.20	9.8	.5	1.0	.58	T	PR	iledi ud	bridgin	terior s	for star	ction p										1	0 5	20	65 0	81	0		123	150	184		.50	1 1	* # J	10	10	# 4		S	e S	8 1000 H
4 .20	.9	9 .1	4	8 .20	9,	5	1.0	.5		OPER	pacity.	ig joists	pans).	ndard s	ropertie							48	0	59 0	72	0 88	30	105	126	0	10	180	215	258		.60	1 1	# #	12.	10	# 4		100	FACT	
42. 1	8 9.	2 .1	0 .5	8 .22	8 9.	.6	3 1.1	.6.		TIES F		and ta	IS HOLD	quare jo	IS See		0	46	0	56 0	88	080	20	95	112	0		153	178*	210	247	219*	244*	274*	EN	.72		# # л		11	# 4			ORFD 30	
4 .30	7 9	5 .1	- - - -	2 .25	9.	7. 0	2 1.3	4 .7		OR DI		pered e	edniien	pist end	Table 8-	0	61 0	72	0	84	86	113	131	128*	139*	175	202	167*	184*	271	316	226*	253*	285*	D SPA	68		# # л 0	* "	0	# 1	8" Dee		Form	
	7 9	8 .2	2 .7	6 .29		4 .9	7 1.7	.9	2	ESIGN		inds. +(anove	s; seco	-	88	38		116	102*	110	151	172	131*	143*	224	257	172*	190*	339	382*	235*	263*	298*	Z	1.09		# 1 D	*	11	#л	p Rib +		1 F SU	
0	6	2	OT	8	7	4			,	(CONC		anacity	1012010	nd load it			6.22	5.349		4.572	3.884	3.210	0000	2.742	2.276	1.010	1 073	1.525	1.229	.010	078	.767	.593	.450		(3)	Coeff.	Defl.	Span	End		3.0" Top S		Rib @	
.12	. 9	.0	is	.20	9.		1.0		1	ORETE		at elasti	a mod Ver	s for spe			-	9		10	-				. 44	0	0	71	87	0	100	131	159	0	104	.50	-	# # 3	4 2	12	# 4	lab = 11.		35" cc	
		.0	io	92.20	3	5	1.0		n	.36 CH		ic defle		ickness					0	42	52	04	20	11	92	0	100	129	152	0	180	213	253	0	200	50.	00	# 4	# 2	12	# 4	.0" Total	Le la la		
12.	2 00			27. 8		0.0	13	a	0	-/SF)		ction =	- Alle	> l jo		0	55 0	65	0	76	68	0	100	121	140	0	0	188	210*	254	230*	253*	280*	410	INI EHI	01.	70	# 4	# 4	10.5	# 4	Depth	Contraction of the second	(PSF)	
103.	.8 9.1	2 .15	.51	817. 0	8.6	20.00	8 1.54	.00	00	(1)	(A)	l _n /360.		18.5- for e		0	89	102		116	132*	151	173	154*	167*	225	181*	198*	295	340	394	261*	289* 459	538	OH SPAN	1.00	3	# 5	# 4	8	# 4		1.1	f. = (Contraction of the
					-					の時のの時間は				ind spans.			3.828	3.292		2.814	2.390	P.010	2016	1.687	1.401		1 153	.939	./56		.602	.472	.365		770	(c)	(3)	Deft.	Span	Int.				4,000 psi 30,000 psi	「「「「「」」」

From CRSI. Chart used to determine One-way joist system sizing.

34

Introductor The Market	
Gurder Dasian	
United acough	
Unider Design a 17 cu , 1	
$MU = \frac{18}{27218}$ $WU \approx 31017$	
= <u>21.004.01-</u> B	
= 265.3 K == 3183.6 mk - 100 0001	
The ancestor of otor and	
La Multer (Chinese Company)	
1000 J 1000 J 1000 J	
= 0,00,0 1 /.9.663	
= 5335.34 10 ²	
ICNUS C DECENTION	
(0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	- appropriate
0= 26" GINT - 600	
Use obrabet allet a light production is appendix.	1
A= 5(250)(266 12) / 384 (3.610)(17) = . OIN	
Total server of system the land	
50 mail - 640 0 1 - 6/8 + 6/10/16 11/10/10/17	
81-244-150 00 11 11	
118. The appert = all up pit	
dl 885p = 0,06 = 1007+20,01 = 9273.3 has	1
Pequesting applies applies	
54+22 =775-91 =	
legpe + legal = typocy Lator	-
70906F=	-
	-

Calculations and deflection check for girder needed to support one-way joist system.

35

		SECT	ION PRO	PERTIE	S			ASD				
	Metal Th	ickness	Wt.	I _p	s,	S "	v	R ₁	R ₂	٥V	¢R1	¢R2
Ga	age l	inches (psf)	(in.4)	(in.3)	(in.3)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
1	24	0.0239	1.50	0.232	0.192	0.200	2360	360	836	3223	532	1156
1	22	0.0295	2.00	0.300	0.252	0.263	4205	528	1484	5477	736	1992
1	20	0.0358	2.00	0.379	0.325	0.339	6062	728	2224	8067	1004	3064
1	18	0.0474	3.00	0.523	0.468	0.485	8796	1204	3948	11182	1648	5388
	UF2X		2"	×	2" <	*	30" cover			→ Th flar acc shr	e bottom nge can cept a ¾" ear stud.	
					< <u>2</u> "	*	6" pitch			approx.s	scale: 1½" =	1'0"
EGER AN		Snon	UNIFOR	M TOTAL	LOAD /	Load tha	t Produces	I/180 Defle Span	ection, psf			
	Gage	Conditi	on 6'0	" 6'	'6''	7'0"	7'6"	8'0"	8'6"	9'0"	9'6"	10'0"
		Single	128/	94 109	/74	94 / 59	82/48	72/40	64/33	57/28	51/24	46/20
	24	Double	130/	226 111	/ 178	96/143	84 / 116	74/96	66 / 80	59/67	53/57	48/49
		Triple	162/	177 138	/ 139	120 / 112	105/91	92/75	82/62	73/52	66 / 45	59/38
		Single	168 /	122 143	/ 96	123/77	108 / 62	94 / 51	84/43	75/36	67/31	60 / 26
	22	Double	173/3	293 148	/ 230	128 / 184	111 / 150	98 / 123	87 / 103	78/87	70/74	63/63
		Triple	215/3	229 184	/ 180	159 / 144	139 / 117	122/97	108 / 81	97/68	87 / 58	78/49
Å		Single	217/	154 185	/ 121	159/97	139/79	122/65	108 / 54	96/46	86/39	78/33
	20	Double	224/3	370 191	/ 291	165 / 233	144 / 189	126 / 156	112 / 130	100/110	90/93	81/80
		Triple	279/2	289 238	/ 228	205 / 182	179 / 148	158 / 122	140 / 102	125 / 86	112/73	101/63
	40	Single	312/3	212 266	/ 167	229 / 133	200 / 109	176 / 89	155 / 75	139 / 63	124 / 53	112 / 46
	18	Double	320/	510 273	/ 401	236 / 321	206 / 261	181/215	160 / 179	143 / 151	128 / 129	116 / 110
		Triple	399/3	399 340	/ 314 2	294 / 252	256 / 204	226 / 168	200/140	179/118	160 / 101	145 / 86
	04	Single	177/	94 164	/74	149/59	130/48	114 / 40	101/33	90/28	81/24	73/20
	24	Double	154/2	226 142	/ 178	132 / 143	123/116	116/96	104 / 80	93/67	83/57	75/49
		Triple	1/5/	177 162	/ 139 1	150 / 112	140/91	131/75	124 / 62	115/52	103/45	94/38
		Single	245/	122 226	/96	195/77	170/62	150/51	133/43	118/36	106/31	96/26
	22	Double	266/1	293 233	/230	201/184	1/6/150	155/123	137/103	122/8/	110/74	99/63
L		Triple	302/1	229 279	/ 180	250/144	218/11/	192/9/	1/1/81	152/68	137/58	124/49
5	20	Single	335/	292	/ 121	202/9/	220/19	193/05	177/120	152/40	142/02	124/33
	20	Triplo	118/	300 375	1228	2007233	227 / 109	2007 100	221/102	107/86	142/93	120/00
		Single	410/	212 424	/ 167	363/122	316 / 100	249/122	246/75	220/62	107/52	178 / 46
	10	Double	505 /	510 421	/401	372/321	325/261	286/215	253/170	220/03	203/120	183/110
		Triple	627/3	399 536	/ 314	463 / 252	404 / 204	356 / 168	316 / 140	282 / 118	253 / 101	229/86

NOTES:

Vorted deck with 1.5% open area is available for use with insulating fills. Insulating fill manufacturers have determined load capacities of various combinations of fill and deck both with and without foamed plastic insulation boards. Refer to the fill manufacturer's literature for loading limitations. R₁ is the bearing capacity at an **exterior** condition. R₂ is the bearing capacity at an **interior** condition.

USD chart used to size gauge of metal decking and slab thickness needed for the form deck system.

^	1
- 4	h
	v

UIIG	ioto siano	Unio								Spar	ns, feet				
		- 4	-d	+M	-M	4'6"	5'0"	5'6"	6'0"	6'6"	7'0"	7'6"	8'0"	8'6"	9'0"
5lab 4.0"	66 - W2.0 x 2.0*	1.919 1.904	3.007 2.962	4.060 5.785	6.326 8.921	157 224	127 181	105 150	88 126	75 107	65 93	57 81	50 71	44 63	56
4.5"	66 - W4.0 x 4.0 44 - W2.9 x 2.9	2.387 2.404 2.387	3.412 3.462 3.412	9.975 10.893 14.708	14.062 15.463 20.585	386 ### ###	313 342 ###	259 282 381	217 237 320	185 202 273	160 174 235	139 152 205	122 133 180	108 118 160	97 105 142
5.0"	66 - W4.0 x 4.0* 44 - W2.9 x 2.9 44 - W4.0 x 4.0	2.887 2.904 2.887	3.912 3.962 3.912	12.135 13.242 17.948	16.222 17.812 23.825	### ### ###	381 ### ###	315 343 ###	264 289 389	225 246 332	194 212 286	169 185 249	149 162 219	132 144 194	117 128 173
5.5"	44 - W2.9 x 2.9* 44 - W4.0 x 4.0	3.404	4.462 4.412	15.591 21.188	20.161 27.065	### ###	### ###	392 ###	329 ###	281 377	242 325	211 283	185 249	164 220	14
	44 104.0 × 4.0	3 887	4 912	24.428	30.305	###	###	###	###	###	364	317	279	247	22
6.0"	44 - VV4.0 X 4.0	0.007	1.012	07.000	22 545	####	###	###	###	###	###	351	308	273	24
6 5"	44 - W4.0 x 4.0	4.387	5.412	27.668	33.545	###	****	Ann				-	0.00	200	1 2

USD chart used to determine wire mesh needed in form deck and slab.

1 International					L, Unif	orm Li	ve Ser	vice L	oads,	psf *			1.0		
Sla Dept	b ≬Mn th in.k	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	LRFD
4.00	36.40	400	400	390	330	280	240	205	180	155	140	120	105	95	
5.00	48.46	400	400	400	400	375	320	275	240	210	185	160	145	125	
6.00	54.50 60.53	400	400	400	400	400	360 400	310 345	270	235	205	185	160	145	1 STUD/FT.
6.50	66.56	400	400	400	400	400	400	380	330	290	255	225	200	175	
7.00	72.59	400	400	400	400	400	400	400	345	315	205	235	205	185	NO STUDS
4.00	43.31	400	400	400	395	340	290	250	220	190	170	150	135	120	
5.00	57.90	400	400	400	400	400	390	335	295	260	225	200	180	160	
6.00	65.19 72.49	400	400	400	400	400	400	380 400	330	290 325	255	225	200	200	* The Uniform Live Loads are based of
6.50	79.78	400	400	400	400	400	400	400	400	355	315	280	250	220	the LRFD equation $\phi M_n = (I.6L + 1.2D)I^2/2$
7.00	87.07	400	400	400	400	400	400	400	400	390	345	305	200	230	Although there are other load combina-
4.00	49.98	400	400	400	400	395 400	340	295 345	255	225	200	175	160	140	uons that may require investigation, thi will control most of the time. The
5.00	67.09	400	400	400	400	400	400	395	345	305	270	240	215	190	equation assumes there is no negative
5.50	75.65 84.20	400	400	400	400	400	400	400	390 400	345 385	305	300	240	215 240	bending reinforcement over the beams
6.50	92.76	400	400	400	400	400	400	400	400	400	375	335	295	265	and therefore each composite slab is a
7.00	101.31	400	400	400	400	400	400	400	400	400	400	365	325	290	shown; ϕM_{ef} is used to calculate the
4.00	55.70 65.38	400	400	400	400	400	380	330 390	290 340	255	225	200	180	160	uniform load when the full required
5.00	75.06	400	400	400	400	400	400	400	395	345	305	270	245	220	number of studs is present; ϕM_{no} is
5.50 6.00	84.73 94.41	400	400	400	400	400	400	400	400	<u>390</u> 400	345	310 345	275 305	245	used to calculate the load when no stud
6.50	104.09	400	400	400	400	400	400	400	400	400	400	380	340	305	can be done if the average number of
7.00	113.76	400	400	400	400	400	400	400	400	400	400	400	355	320	studs is between zero and the required
4.00	55.70	400	400	400	400	400	380	330	290	255	225	200	180	160	number needed to develop the "full"
5.00	75.06	400	400	400	400	400	400	400	395	345	305	270	245	220	are checked for shear controlling (it
6.00	94.41	400	400	400	400	400	400	400	400	<u>390</u> 400	345	310	305	245	seldom does), and also limited to a live
6.50	104.09	400	400	400	400	400	400	400	400	400	400	380	340	305	load deflection of 1/360 of the span.
7.00	113.76	400	400	400	400	400	400	400	400	400	400	400	355	335	An upper limit of 400 pet has been
4.00	27.28	400	345	285	240	200	205	145	125	110	95	85	75	65 75	applied to the tabulated loads. This has
5.00	37.79	400	400	400	335	280	240	205	180	155	135	120	105	90	been done to guard against equating
6.00	43.20	400	400	400	400	325	310	235	205	200	155	135	120	105	large concentrated to uniform loads.
6.50	54.22	400	400	400	400	400	350	300	260	225	195	175	150	135	analysis and design to take care of
7.00	59.79	400	400	400	400	400	385	330	285	250	220	190	170	150	servicibility requirements not covered
4.00	32.48	400	400	345	290	245	210	215	155	135	120	105	90	80	by simply using a uniform load value.
5.00	45.06	400	400	400	400	345	295	255	220	190	170	150	130	115	On the other hand, for any load
6.00	51.55	400	400	400	400	400	335	330	255	220	220	170	150	135	composite properties can be used in the
6.50	64.78	400	400	400	400	400	400	370	320	280	245	215	190	170	calculations.
7.00	71.48	400	400	400	400	400	400	400	355	310	270	240	210	190	Wolded wire fobria in the security d
4.00	37.46	400	400	400	340 400	290 345	245 295	215 255	185	160 195	140	125	110	100	amount is assumed for the table values.
5.00	52.10	400	400	400	400	400	345	300	260	230	200	175	155	140	If welded wire fabric is not present,
6.00	67.34	400	400	400	400	400	400	345	340	295	250	205	205	185	deduct 10% from the listed loads.
6.50	75.10	400	400	400	400	400	400	400	380	335 350	295 310	260	230	205	Refer to the example problems for the
7.00	82.92	400	400	400	400	400	400	400	400	370	325	285	255	225	use of the tables.
4.00	41.82	400	400	400	380 400	325 390	280 335	240 290	210 250	185	160 195	145 170	125 155	115	
5.00	58.27	400	400	400	400	400	390	340	295	260	230	200	180	160	
6.00	75.41	400	400	400	400	400	400	400	340	340	300	265	235	210	
6.50	84.14	400	400	400	400	400	400	400	400	380	335	295	265	235	
7.00	92.95	400	400	400	400	400	400	400	400	400	370	330	295	260	
4.00	41.82 49.93	400	400	400	380 400	325 390	280 335	240	210 250	185	160 195	145	125	115	
5.00	58.27	400	400	400	400	400	390	340	295	260	230	200	180	160	
5.50 6.00	75.41	400	400	400	400	400	400	390 400	340	300	300	235	210	210	
6.50	84.14	400	400	400	400	400	400	400	400	380	335	295	265	235	
7.00	92.95	400	400	400	400	400	400	400	400	400	370	330	295	260	

USD chart used to determine gauge size and slab thickness for composite deck.

38

	1 Desi	gnat	tion					H	IOL	LC	W	-C(OR	E						Section	n Pro	perties	
S										4'-()" x	6″								Untop	ped	Торр	be
S = .	straight	t						No	rma	I We	eigh	t Co	oncr	ete				А	=	187	in ²	-	
Diam	neter o	of stra	and	in 16	ths													1	=	763	in4	1,640	
No. c	of stran	nd (7	7)															Уь	=	3.00	in.	4.14	
							1				4'-0)″				~ "		y _t	=	3.00	in.	3.86	
fe loads show	n inclu	ide a	lead	load	of 10										-	2		Sb	=	254	in ³	396	
f for untopped	i meml	bers	and	15 p	sf for	414				- 11-11-1	a statement			-	-	*		St	=	254	in³	425	
oped members	s. Rem	naind	er is	live	load.	1 1/2	5					\sim	~		d			bw	=	16.00	in.	16.00	
ong-time camb	ers inc	clude	sup	erimp	osed	1		0.0).().().().().().(Jo	¥6	"	wt	=	195	plf	295	
ad load but do	o not in	iciuae	e live	load.																49	psf	74	
apacity of section	ions of	othe	r con	figura	a-													V/S	=	1.73	in.		
0.2 — Estimated	d camb	ber a	t erec	ction,	in.	51															4H(C6	
0.2 — Estimated 0.2 — Estimated ble of safe	d camb d long- supe	ber a -time erim	t erec cam	etion, ber, i	in. n. ervi	ce l	oad	(ps	f) ar	nd c	amb	pers	(in.	.)	2	-	bo		nhe	qua e	4H(No	С6	ir
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation	d camb d long- supe	ber a -time	t erec cam	ed s	in. n. ervi	ce l	oad	(ps	f) ar	nd c	amb	oers Spa	(in. n, ft	.)			50		nbe		4H(No	С6	in
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code	d camb d long- supe	ber a time erim	t erec cam pose	ed s	in. n. servi	ce	oad	(ps)	f) ar	nd c 21	amb	Spar 23	(in. n, ft 24	.) 25	26	27	28	29	30	qua e	4H(No	С6	in
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code	d camb d long- supe 12 306	erime 13	t erec cami pose 14 217	tion, ber, i ed s 15 184	in. n. ervi 16 157	ce 17 135	oad 18 116	(ps 19 100	f) ar 20 87	21 75	amk 22 65	Spar 23 56	(in. n, ft 24 48	.) 25 42	26 36	27 30	28	29	30		4H(No	С6	i
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code 66-S	d camb d long- supe 12 306 0.2	13 257 0.2	14 217 0.2	tion, ber, i ed s 15	in. n. ervi 16 157 0.2	ce l 17 135 0.2	oad 18 116 0.2	(ps) 19 100 0.2	f) ar	21 75 0.2	amk 22 65 0.1	Spa 23 56 0.1	(in. n, ft 24 48 0.0	25 42 -0.1	26 36 -0.2	27 30 -0.4	28	29	30		4H(No	С6	i
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code 66-S	d camb d long- supe 12 306 0.2 0.2	13 257 0.2 0.3	14 217 0.2 0.3	15 184 0.2 0.3	in. n. iervi 16 157 0.2 0.3	ce l 17 135 0.2 0.3	18 116 0.2 0.2	(ps 19 100 0.2 0.2	f) an 20 87 0.2 0.1	21 75 0.2 0.1	22 65 0.1 0.0	Spa 23 56 0.1 -0.2	(in. n, ft 24 48 0.0 -0.3	25 42 -0.1 -0.5	26 36 -0.2 -0.7	27 30 -0.4 -1.0	28	29	30		4H(No	С6	i
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code 66-S	d camb d long- supe 12 306 0.2 0.2 358	13 257 0.2 0.3 301	14 217 0.2 0.3 254	15 184 0.2 0.3 217	16 157 0.2 0.3 186	ce l 17 135 0.2 0.3 160	0ad 18 116 0.2 0.2 139	(ps) 19 100 0.2 0.2 121	f) ar 20 87 0.2 0.1 105	21 75 0.2 0.1 92	22 65 0.1 0.0 80	Spa 23 56 0.1 -0.2 70	(in. n, ft 24 48 0.0 -0.3 61	25 42 -0.1 -0.5 53	26 36 -0.2 -0.7 47	27 30 -0.4 -1.0 40	28 35	29	30		4H(No	С6 Торр	in
0.2 — Estimate(0.2 — Estimate(ble of safe Strand Designation Code 66-S 76-S	12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3	14 217 0.2 0.3 254 0.3	15 184 0.2 0.3 217 0.3	16 157 0.2 0.3 186 0.3 0.4	ce l 17 135 0.2 0.3 160 0.3 0.4	18 116 0.2 0.2 139 0.3 0.4	(ps) 19 100 0.2 0.2 121 0.3 0.3	f) ar 20 87 0.2 0.1 105 0.3 0.3	21 75 0.2 0.1 92 0.3 0.2	22 65 0.1 0.0 80 0.3 0.1	Spa 23 56 0.1 -0.2 70 0.2 0.0	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1	25 42 -0.1 -0.5 53 0.1	26 36 -0.2 -0.7 47 0.0	27 30 -0.4 -1.0 40 -0.1 -0.7	28 35 -0.3 -1.0	29	30		4H(No	С6	ir
0.2 — Estimate 0.2 — Estimate ble of safe Strand Designation Code 66-S 76-S	12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384	14 217 0.2 0.3 254 0.3 326	15 184 0.2 0.3 217 0.3 0.4 279	16 157 0.2 0.3 186 0.3 0.4 240	ce l 17 135 0.2 0.3 160 0.3 0.4 208	18 116 0.2 0.2 139 0.3 0.4 182	(ps 19 100 0.2 0.2 121 0.3 0.3 159	f) an 20 87 0.2 0.1 105 0.3 0.3 140	21 75 0.2 0.1 92 0.3 0.2	22 65 0.1 0.0 80 0.3 0.1 109	Spa 23 56 0.1 -0.2 70 0.2 0.0 97	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86	25 42 -0.1 -0.5 53 0.1 -0.3 76	26 36 -0.2 -0.7 47 0.0 -0.5 67	27 30 -0.4 -1.0 40 -0.1 -0.7 60	28 35 -0.3 -1.0 53	29	30		4H(No	C6 Topp	i
0.2 — Estimate 0.2 — Estimate ble of safe Strand Designation Code 66-S 76-S 98-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3	14 217 0.2 0.3 254 0.3 326 0.4	15 184 0.2 0.3 217 0.3 0.4 279 0.4	16 157 0.2 0.3 186 0.3 0.4 240 0.4	ce l 17 135 0.2 0.3 160 0.3 0.4 208 0.5	18 116 0.2 0.2 139 0.3 0.4 182 0.5	(ps) 19 100 0.2 0.2 121 0.3 0.3 159 0.5	f) an 20 87 0.2 0.1 105 0.3 0.3 140 0.5	21 75 0.2 0.1 92 0.3 0.2 123 0.5	22 65 0.1 0.0 80 0.3 0.1 109 0.5	Spa 23 56 0.1 -0.2 70 0.2 0.0 97 0.5	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5	25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4	26 36 -0.2 -0.7 47 0.0 -0.5 67 0.3	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3	28 35 -0.3 -1.0 53 0.1	29 46 0.0	30 41 -0.1		4H(No	С6 Торр	ir
0.2 — Estimated 0.2 — Estimated ble of safe Strand Designation Code 66-S 76-S 96-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 326 0.4 0.5	15 184 0.2 0.3 217 0.3 0.4 279 0.4 0.5	16 157 0.2 0.3 186 0.3 0.4 240 0.4 0.4 0.6	ce l 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6	18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6	(ps) 19 100 0.2 0.2 121 0.3 0.3 159 0.5 0.6	f) an 20 87 0.2 0.1 105 0.3 0.3 140 0.5 0.6	21 75 0.2 0.1 92 0.3 0.2 123 0.5 0.6	22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5	Spar 23 56 0.1 -0.2 70 0.2 0.0 97 0.5 0.5	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4) 25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2	26 36 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3 -0.1	28 35 -0.3 -1.0 53 0.1 -0.4	29 46 0.0 -0.6	30 41 -0.1 -0.9		4H(No	С6 Торр	i
0.2 — Estimate 0.2 — Estimate ble of safe Strand Designation Code 66-S 76-S 96-S	d cambi d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 326 0.4 0.5 383	15 184 0.2 0.3 217 0.3 0.4 279 0.4 0.5 331	16 157 0.2 0.3 186 0.3 0.4 240 0.4 0.4 0.6 286	17 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6 249	18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6 218	(ps 19 100 0.2 0.2 121 0.3 0.3 159 0.5 0.6 192	f) an 20 87 0.2 0.1 105 0.3 140 0.5 0.6 169	21 75 0.2 0.1 92 0.3 0.2 123 0.5 0.6 150	amk 22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5 133	Spar 23 56 0.1 -0.2 0.0 97 0.5 0.5 119	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4 106	25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2 95	26 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1 84	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3 -0.1 76	28 35 -0.3 -1.0 53 0.1 -0.4 68	29 46 0.0 -0.6 60	30 41 -0.1 -0.9 54		4H(No	C6 Topp	in
0.2 — Estimate(0.2 — Estimate(ble of safe Strand Designation Code 66-S 76-S 96-S 96-S 87-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 0.3 326 0.4 0.5 383 0.5	15 184 0.2 0.3 217 0.3 0.4 279 0.4 0.5 331 0.5	16, in. in.	17 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6 249 0.6	18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6 218 0.7	(ps 19 100 0.2 0.2 121 0.3 0.3 159 0.5 0.6 192 0.7	f) ar 20 87 0.2 0.1 105 0.3 140 0.5 0.6 169 0.7	21 75 0.2 0.1 92 0.3 0.2 123 0.5 0.6 150 0.7	22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5 133 0.8	Spa 23 56 0.1 -0.2 70 0.2 0.0 97 0.5 0.5 119 0.8	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4 106 0.7	25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2 95 0.7	26 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1 84 0.7	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3 -0.1 76 0.6	28 35 -0.3 -1.0 53 0.1 -0.4 68 0.5	29 46 0.0 -0.6 60 0.4	30 41 -0.1 -0.9 54 0.3		4H(C6 Topp	i
0.2 — Estimate(0.2 — Estimate(ble of safe Strand Designation Code 66-S 76-S 96-S 96-S 87-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 254 0.3 326 0.4 0.5 383 0.5 0.6	15 184 0.2 0.3 217 0.3 0.4 279 0.4 0.5 331 0.5 0.7	16, in. in. Servi 16 157 0.2 0.3 186 0.3 0.4 240 0.4 0.4 0.4 0.6 0.6 0.6 0.7	17 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6 249 0.6 0.8	18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6 218 0.7 0.8	(ps 19 100 0.2 0.2 121 0.3 0.3 159 0.5 0.6 192 0.7 0.9	f) an 20 87 0.2 0.1 105 0.3 140 0.5 0.6 169 0.7 0.9	21 75 0.2 0.1 92 0.3 0.5 0.6 150 0.7 0.9	22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5 133 0.8 0.8	Spa 23 56 0.1 -0.2 70 0.2 0.0 97 0.5 0.5 119 0.8 0.8	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4 106 0.7 0.7) 25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2 95 0.7 0.7 0.7	26 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1 84 0.7 0.5	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3 -0.1 76 0.6 0.6 0.4	28 35 -0.3 -1.0 53 0.1 -0.4 68 0.5 0.2	29 46 0.0 -0.6 60 0.4 0.0	30 41 -0.1 -0.9 54 0.3 -0.3		4H(No	C6 Topp	i
0.2 — Estimate 0.2 — Estimate ble of safe Strand Designation Code 66-S 76-S 96-S 87-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 326 0.4 0.5 383 0.5 0.6	15 184 0.2 0.3 217 0.3 0.4 279 0.4 0.5 3311 0.5 0.7 364	16 16 157 0.2 0.3 186 0.3 0.4 240 0.4 0.6 286 0.6 0.7 317	ce l 177 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6 249 0.6 0.8 277	0ad 18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6 218 0.7 0.8 243	(ps 19 100 0.2 0.2 121 0.3 0.3 159 0.5 0.6 192 0.7 0.9 214	f) ar 20 87 0.2 0.1 105 0.3 0.3 140 0.5 0.6 169 0.7 0.9 189	21 75 0.2 0.1 92 0.3 0.2 123 0.5 0.6 150 0.7 0.9 168	amk 22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5 133 0.8 0.8 0.8 150	Spa 23 56 0.1 -0.2 70 0.2 0.0 97 0.5 0.5 119 0.8 0.8 134	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4 106 0.7 0.7 120) 25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2 95 0.7 0.7 107	26 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1 84 0.7 0.5 96	27 30 -0.4 -1.0 40 -0.1 -0.7 60 0.3 -0.1 76 0.6 0.6 0.4 87	28 -0.3 -1.0 53 0.1 -0.4 68 0.5 0.2 78	29 46 0.0 -0.6 60 0.4 0.0 70	30 41 -0.1 -0.9 54 0.3 -0.3 62		4H(No	C6 Topp	i
0.2 — Estimate 0.2 — Estimate ble of safe Strand Designation Code 66-S 76-S 96-S 87-S 97-S	d camb d long- supe 12 306 0.2 0.2 358 0.2 0.3	13 257 0.2 0.3 301 0.2 0.3 384 0.3 0.4	14 217 0.2 0.3 254 0.3 326 0.4 0.5 383 0.5 0.6	15 184 0.2 0.3 217 0.3 217 0.3 0.4 279 0.4 0.5 0.4 0.5 0.7 331 0.5 0.7 364 0.6	16, in. in. in. iservi 157 0.2 0.3 186 0.3 0.4 240 0.4 0.4 0.6 286 0.6 0.7 317 0.7	117 135 0.2 0.3 160 0.3 0.4 208 0.5 0.6 249 0.6 0.8 277 0.7	0ad 18 116 0.2 0.2 139 0.3 0.4 182 0.5 0.6 218 0.7 0.8 243 0.8	(ps 19 100 0.2 0.2 121 0.3 0.5 0.6 192 0.7 0.9 214 0.8	f) ar 20 87 0.2 0.1 105 0.3 0.3 140 0.5 0.6 169 0.7 0.9 189 0.9	21 75 0.2 0.1 92 0.3 0.5 0.6 150 0.7 0.9 168 0.9	amk 22 65 0.1 0.0 80 0.3 0.1 109 0.5 0.5 133 0.8 0.8 0.8 150 0.9	Spa 23 56 0.1 -0.2 70 0.2 0.0 97 0.5 0.5 119 0.8 0.8 134 0.9	(in. n, ft 24 48 0.0 -0.3 61 0.1 -0.1 86 0.5 0.4 106 0.7 0.7 120 1.0) 25 42 -0.1 -0.5 53 0.1 -0.3 76 0.4 0.2 95 0.7 0.7 107 1.0	26 -0.2 -0.7 47 0.0 -0.5 67 0.3 0.1 84 0.7 0.5 96 0.9	27 30 -0.4 -1.0 40 -0.1 -0.7 60.3 -0.1 76 0.6 0.4 87 0.9	28 -0.3 -1.0 53 0.1 -0.4 68 0.5 0.2 78 0.8	46 0.0 -0.6 60 0.4 0.0 70 0.8	30 41 -0.1 -0.9 54 0.3 -0.3 62 0.7		4H(No	C6 Topp	i

4HC6+2

Table of safe superimposed	service loa	d (psf) and	cambers	(in.)
----------------------------	-------------	-------------	---------	-------

2" Normal Weight Topping

Strand								1.0	12			Spa	n, ft						Change .
Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
	305	258	220	188	162	139	119	97	78	62	47	35		-					
66-S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1							
	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.5	-0.7	-0.9							
	358	304	260	224	194	168	146	122	101	82	66	52	39			110		- N.K	
76-S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0						
	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.7	-0.9						
		390	336	291	253	221	194	170	146	123	104	87	72	58	46	35			
96-S		0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0			
		0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	-0.1	-0.3	-0.5	-0.7	-1.0	-1.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		120	398	346	302	265	234	206	182	158	136	117	100	85	71	59	47		
87-S	100		0.6	0.6	0.7	0.7	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3		
			0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.2	0.1	-0.1	-0.3	-0.5	-0.8	-1.2		
and the second		-	10	382	335	294	260	231	205	181	157	137	119	102	88	75	63	A CONTRACTOR OF	
97-S				0.7	0.8	0.8	0.9	0.9	0.9	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7		
				0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.2	0.0	-0.2	-0.5	-0.8		

Strength based on strain compatibility; bottom tension limited to $6\sqrt{t'_c}$; see pages 2-2-2-6 for explanation.

PCI chart used to determine reinforcement needed in hollow-core pre-cast slab.

39

strund i utto	rn D	esigi	allo						50	LIL	JF	LA	1 51	LAB				Sectio	on Pro	operties	3
6-S							4" Thick									Untopped Topp					pec
* *	4						Normal Weight Concrete									A	=	192	in ²		
S = straight Diameter of strand in 16ths														1	=	256	in ⁴	763	in4		
														Уь	$\dot{a} = \dot{a}$	2.00	in.	2.84	in.		
110.	51 54							-			4'	-0″	-		2"	y _t	=	2.00	in.	3.16	in.
Safe loads shown include dead load of 10 psf for untopped members and 15 psf for topped members. Remainder is live load. Long-time cambers include superimposed dead load but do not include live load.			0	1/11								4"	Sb	=	128	in ³	269	in			
			or	1/2		1		1000	-				b	-	48.00	in	48.00	in			
			d.	1							6	1	wt	-	200	plf	300	pli			
			d	Ť								t			50	psf	75	ps			
and the second	-															V/S	=	1.85	in.		38
										T _c	= :	0,000	J psi								
ey out				a de sa	load	not				T _{ci}	= ;	3,50	u psi								
0.1 - Estima	ted ca	ambe	r at e	rectio	on, in	psi															
0.1 - Estima	ted lo	ng-tir	ne ca	amber	r, in.													100		1	00
																			FS	54	
												-									
able of sat	e su	peri	mpo	osed	sei	rvice	e loa	nd (p	osf)	and	can	nber	'S	JIBCH S	o within th	DEDQ	110	ad light	No	о Тор	oin
Strand Designation					-	-	-		Line	12		Spa	n, ft	-		1				100	-
Code	10	11	12	13	14	15	16	17	18	19	20	21	22	1001	81 181		-			1020	-
66 C	196	165	132	105	83	66	52	41	31	-					Ren Ba						
00-5	0.1	0.1	0.0	0.0	-0.1	-0.3	-0.4	-0.6	-0.9						1			1000			
	230	190	151	122	98	79	63	50	40	30	-	212	-			-		102		1.00	
76-S	0.1	0.1	0.1	0.1	-0.1	-0.2	-0.1	-0.2	-0.3	-0.5											
1	253	212	180	154	127	104	86	70	57	46	37	5						1.40		1	
58-S	0.2	0.2	0.2	0.2	0.1	0.1	0.0	0.0	-0.1	-0.3	-0.4										
	300	252	214	180	152	127	105	88	73	60	50	40	32	1	-						
68-S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.0	-0.1	-0.3	-0.4	-0.7								
	0.0	0.0	0.0	0.0	Vie	U.L	U.I	0.1	0.0	0.0	0.0		110	00-0	1. 1. 1. 1.					1	
																			FS4	+2	
				osed	Se	rvice		ad (osf)	and	car	nbe	rs			2" N	lor	mal W	eiah	t Top	oin
able of sat	e su	peri	mpo									Spa	n, ft	-							
able of sat	e su	peri	mpo	-						10	20	21		1011	1 80 1	1 11		-		1000	-
able of sat	e su	iperi	12	13	14	15	16	17	18	1.27			-	100		-	-				-
able of sat Strand Designation Code	e su	11	12	13	14	15	16	17	18	19		-									
able of sat Strand Designation Code 66-S	e su 10 369 0.1	11 296 0.1	12 224 0.1	13 167 0.0	14 123 0.0	15 87 -0.1	16 57 -0.2	17 33 -0.3	18	19											
able of sat Strand Designation Code 66-S	e su 10 369 0.1 0.0	11 296 0.1 0.0	12 224 0.1 0.0	13 167 0.0 -0.1	14 123 0.0 -0.2	15 87 -0.1 -0.3	16 57 -0.2 -0.5	17 33 -0.3 -0.7	18	15			- air	No. 1				1.19		-	
able of saf Strand Designation Code 66-S 76-S	e su 10 369 0.1 0.0	11 296 0.1 0.0 346 0.1	12 224 0.1 0.0 265 0.1	13 167 0.0 -0.1 203 0.1	14 123 0.0 -0.2 153 0.0	15 87 -0.1 -0.3 113 0.0	16 57 -0.2 -0.5 80 -0.1	17 33 -0.3 -0.7 53 -0.2	18 31 -0.3	19		-								entit auto	
able of saf Strand Designation Code 66-S 76-S	e su 10 369 0.1 0.0	11 296 0.1 0.0 346 0.1 0.0	12 224 0.1 0.0 265 0.1 0.0	13 167 0.0 -0.1 203 0.1 -0.1	14 123 0.0 -0.2 153 0.0 -0.1	15 87 -0.1 -0.3 113 0.0 -0.3	16 57 -0.2 -0.5 80 -0.1 -0.4	17 33 -0.3 -0.7 53 -0.2 -0.6	18 31 -0.3 -0.9	13		16.0								647 647	
able of saf Strand Designation Code 66-S 76-S	e su 10 369 0.1 0.0	11 296 0.1 0.0 346 0.1 0.0 400	12 224 0.1 0.0 265 0.1 0.0 342 0.2	13 167 0.0 -0.1 203 0.1 -0.1 274 02	14 123 0.0 -0.2 153 0.0 -0.1 214 0.1	15 87 -0.1 -0.3 113 0.0 -0.3 166 0 1	16 57 -0.2 -0.5 80 -0.1 -0.4 127 0.0	17 33 -0.3 -0.7 53 -0.2 -0.6 95 0.0	18 31 -0.3 -0.9 67 -0.1	44 -0.3		10.03			9- <u>70-</u> 1					-	
able of sat Strand Designation Code 66-S 76-S 58-S	e su 10 369 0.1 0.0	11 296 0.1 0.0 346 0.1 0.0 400 0.2 0.1	12 224 0.1 0.0 265 0.1 0.0 342 0.2 0.1	13 167 0.0 -0.1 203 0.1 -0.1 274 0.2 0.0	14 123 0.0 -0.2 153 0.0 -0.1 214 0.1 0.0	15 87 -0.1 -0.3 113 0.0 -0.3 166 0.1 -0.1	16 57 -0.2 -0.5 80 -0.1 -0.4 127 0.0 -0.3	17 33 -0.3 -0.7 53 -0.2 -0.6 95 0.0 -0.4	18 31 -0.3 -0.9 67 -0.1 -0.7	44 -0.3 -0.9		and a second									
able of sat Strand Designation Code 66-S 76-S 58-S	e su 10 369 0.1 0.0	11 296 0.1 0.0 346 0.1 0.0 400 0.2 0.1	12 224 0.1 0.0 265 0.1 0.0 342 0.2 0.1	13 167 0.0 -0.1 203 0.1 -0.1 274 0.2 0.0 335	14 123 0.0 -0.2 153 0.0 -0.1 214 0.1 0.0 268	15 87 -0.1 -0.3 113 0.0 -0.3 166 0.1 -0.1 213	16 57 -0.2 -0.5 80 -0.1 -0.4 127 0.0 -0.3 169	17 33 -0.3 -0.7 53 -0.2 -0.6 95 0.0 -0.4 132	18 31 -0.3 -0.9 67 -0.1 -0.7 101	44 -0.3 -0.9 74	52	32								449) 8495 8495	

PCI chart used to determine reinforcement needed in pre-cast solid flat slab.