

Appendix A

Uniform green roof and weight of beam: $w = 5^{\circ}P + 12 \text{ lb/ft}$

W 10 x 12 Beam 17ft in length

 $V_{max} = \underline{wL} = 8.5 \text{'w}$ Shear

 ΦV_n comes from the AISC LRFD Manual of Steel Construction, 3^{rd} Edition

$$\Phi V_n = 50.6 \text{ k} \ge V_u = 8.5$$
' w

Solving for w:

$$w \le 5.95 \text{ k/ft}$$

$$M_{\text{max}} = \frac{\text{wL}^2}{8} = 36.125$$
'w

Moment

 ΦM_{rx} comes from the AISC LRFD Manual of Steel Construction, 3^{rd} Edition

$$\Phi M_{rx} = 32.7 \text{ 'k} \ge M_u = 36.125 \text{' w}$$

Solving for w:

$$w \le 0.905 \text{ k/ft}$$

Deflection

$$\frac{L}{240} \ge \frac{5 \text{ wL}^4}{384 \text{ EI}_x}$$

Solving for w:

$$w \le 0.705 \text{ k/ft}$$

W 27 x 84 Girder 40ft in length

$$V_{\text{max}} = \frac{17w \times 7 + 84x40}{2} = 59.5w + 1680 \text{ lbs}$$

Shear

ΦV_n comes from the AISC LRFD Manual of Steel Construction, 3rd Edition

$$\Phi V_n = 332 \text{ k} \ge V_n = 59.5 \text{ w} + 1.680$$

Solving for w:

$$w \le 5.55 \text{ k/ft}$$

$$w' = 7*17w / 40 = 2.975 w$$

$$M_{\text{max}} = \frac{w'L^2}{8} + \frac{w'L^2}{8} = 595w + 16800'lb$$

Moment

 ΦM_{rx} comes from the AISC LRFD Manual of Steel Construction, 3^{rd} Edition

$$\Phi M_{rx} = 915 \text{ 'k} \ge M_u = 595w + 16800 \text{'lb}$$

Solving for w:

$$w \le 1.50 \text{ k/ft}$$

Deflection
$$\frac{L}{240} \ge \frac{5 \text{ wL}^4}{384 \text{ EI}}$$

Solving for w:

$$w \le 2.86 \text{ k/ft}$$

The limiting factor in this case is the deflection for the beam. The next step is to solve for P, the maximum load of the green roof.

$$w \le 0.705 \text{ k/ft}$$

 $705\text{lb/ft} \ge 5\text{'P} + 12 \text{ lb/ft}$
 $P \le 138.6 \text{ psf}$

From the structural steel drawings, the design loads are noted to be 30 psf for live and 19.3 for snow. With the appropriate factors applied, the following equation must be solved for the green roof load being treated as a dead load.

$$138.6 \text{ psf} \ge 1.6 (30) + .5 (19.3) + 1.2 \text{ x}$$

$$x \le 67 \text{ psf}$$

Arts & Humanities Instructional Building

Noah J. Ashbaugh **Construction Management**

Howard Community College Arts & Humanities Instructional Building Assemblies Estimate Details April 3, 2005

Noah J. Ashbaugh **Construction Management**

UNIT COST DETAILS

Roof, 4ply built up roof

3,648 sf of 4ply built up roof

	Ī	Unit Co	sts	Total Costs					
Unit	Mat.	Inst	Total		Mat.		Inst		Total
sf	0.62	1.09	1.71	\$	2,261.76	\$	3,976.32	\$	6,238.08

Cost is to supply and install includes location factor

Total \$ 2,261.76 \$ 3,976.32 \$ 6,238.08

> Tax 5% \$ 6,549.98 Overhead 7% \$ 7,008.48

Profit 3.50% \$ 7,253.78

7,253.78

Scheduling Information

2,000 sf Daily Output Duration = Total SF / Daily Output

2 days Duration

0.4 wks

UNIT COST DETAILS

Extensive Greenroof

3,648 sf of Extensive Greenroof

		Unit Co	osts	Total Costs				
Unit	Mat.	Inst	Total	Mat.	Inst	Total		
sf			14.43	\$ -	\$ -	\$ 52,640.64		

Total 52,640.64

Cost is to supply and install

includes overhead, profit, location factor and general conditions and tax

Scheduling Information

Daily Output 1,800 sf Duration = Total SF / Daily Output

Duration

0.6 wks