

Robert S. Whitaker Senior in Architectural Engineering Structural Option MAE/ BAE Pennsylvania State University

Section I: Existing Building Description

•Building Overview

a.Building Envelope
b.Type of Construction
c.Electrical System
d.Lighting System
e.Mechanical System
f.Fire Protection and Plumbing
g.Other Building Systems

•Original Structural System

a.Building Framing b.Hambro[®] Floor Framing c.Site and Foundations

•Building Parameters

a.Original Design Theoryb.Building Code Referencesc.Building and Site Restrictions

Section II: Structural Depth Analysis

•New Design Overview a.Architectural Changes b.Gravity Structural Changes c.Lateral Changes

•New Design

a.Design Criteria b.Structural Analysis c.RAM Model •Bar Joist on Steel Girders •Steel columns •Lateral Frames •Spread Footings

•Review of Design Criteria

•Vibration Analysis

Section III: Breadth Studies

•Cost Advantages

a.Footings b.Columns c.Floor System

- d.Wall System
- e.Conclusion

•EIFS Recommendations

a.Background

- b.Benefits
- c.Problems
- d.Possible Solutions
- e.Conclusion

Section I: Existing Building Description

•Building Overview

a.Building Envelope
b.Type of Construction
c.Electrical System
d.Lighting System
e.Mechanical System
f.Fire Protection and Plumbing
g.Other Building Systems

•Original Structural System

a.Building Framing b.Hambro[®] Floor Framing c.Site and Foundations

•Building Parameters

a.Original Design Theoryb.Building Code Referencesc.Building and Site Restrictions

Section II: Structural Depth Analysis

•New Design Overview

a.Architectural Changes b.Gravity Structural Changes c.Lateral Changes

•New Design

a.Design Criteria b.Structural Analysis c.RAM Model •Bar Joist on Steel Girders •Steel columns •Lateral Frames •Spread Footings

•Review of Design Criteria

Vibration Analysis

Section III: Breadth Studies

Cost Advantages

a.Footings

- b.Columns
- c.Floor System d.Wall System
- e.Conclusion

•EIFS Recommendations

- a.Background
- b.Benefits
- c.Problems
- d.Possible Solutions
- e.Conclusion

Section I: Existing Building Description

Building Overview Original Structural System

Building Overview

Precast Garage

(not included)

Lobby Unit

2 Story Drive Aisle

Project type:

Location: **Occupancy:**

R-2 (6 story residential and a parking garage) Bloomfield, NJ

197 condominium units and a 330 space garage Special Site Features: Located between Second River, Washington St, and a Midtown Line train station

Building Overview

Building Overview

Cost:

Building: \$56,936,063 Pre-cast Garage: \$8,680,018 Overall Project: \$65,616,081

Project delivery method: Oualified Design-Bid-

Qualified Design-Bid-Build

Cladding:

Exterior Insulation and Finish System (EIFS)

Original Structural System

Lightgage framing

- ~ Bearing Walls with tube steel cap
- ~ Shear Walls

38 Total Lateral Shear Walls N-S direction: 18 shear walls E-W direction: 20 shear walls

Original Structural System

Hambro[®] floor framing system

Section II: Structural Depth Analysis

New Design Overview New Design Review of Design Criteria Vibration Analysis

New Design Overview

New Design Overview

Architectural Restrictions

- ~ Retain or increase the amount of rentable space
- ~ Retain the overall appearance of the building
- ~ Maintain the architectural detailing at the 2 story drive aisle

New Design

Bar Joist Attachment

Bar Joist:

~ 20K9 w/ 3 rows of bridging

Deck:

~ 0.6C28 CSV Conform deck w/ 3¹/₂" total slab depth

New Design

Bar Joist Attachment

Unique Frames at the 2 story drive aisle

Typical Lateral Frames

Typical Sizes

Columns: W10x33 Beams: W10x22, W12x22 and W16x26 Braces: 2L 8"x4"x7/8"

Review of Design Criteria

Architectural Restrictions

- \checkmark Retained the amount of rentable space
- \checkmark Retain the overall appearance of the building
- \checkmark Maintain the architectural detailing at the 2 story drive aisle

Section III: Breadth Topics

Cost Advantages EIFS Recommendations

Cost Advantages

Comparing original and new design:

- ~ Foundation
- ~ Column
- ~ Floor System
- ~ Wall

NEW CONI	NEW CONDITIONS *All values based on RS Means Assembly Cost Data 31st ED 2006						ORIGINAL CONDITIONS *All values based on RS Means Assembly Cost Data 31st ED 2006							
NEW FOUN		to mound / t	oconibiy	oost bata	0100 200		0	RIGINAL	FOUNDA	TION	tooonnory e	Joor Data of	01 20 2000	
Spread	footing (3 ksf soil)					Spread footing (3 ksf soil)							
· · ·	costs (per spread footing) spread							_ ^	costs	(per spread f	footing)	spread		
capacity	material	installation	total	quantity	total			capacity	material	installation	total	quantity	total	
700k	4075	3100	7175	12	\$86,100			700k	4075	3100	7175	18	\$129,150	
500k	2575	2063	4638	31	\$143,778			500k	2575	2063	4638	8	\$37,104	
300k	1075	1025	2100	37	\$77,700			300k	1075	1025	2100	4	\$8,400	
200k	585	625	1210	33	\$39,930			200k	585	625	1210	1	\$1,210	
100k	214	282	496	35	\$17,360			100k	214	282	496	12	\$5,952	
50k	107	166	273	9	\$2,457			50k	107	166	273	0	\$0	on strip ftg
Total per floor \$367,325										per floor	\$181,816			
	Total for the 6 story building \$367,325					1611					<u>iji</u>	/ building	\$181,816	
NEW FOUR	NDATION						0	RIGINAL	FOUNDA	TION				
Strip	footing (3	ksf soil)						Strip	footing (3	3 ksf soil)	total length	n 2480	feet	
	costs (p	er foot of foo	oting)	strip length					costs	(per foot of f	ooting)	strip length		
capacity	material	installation	total	(feet)	total			capacity	material	installation	total	(feet)	total	
20klf	70.00	53.50	123.50	0	\$0			20klf	70.00	53.50	123.50	310	\$38,291	
15klf	45.00	40.00	85.00	0	\$0			15klf	45.00	40.00	85.00	868	\$73,792	
10klf	20.00	24.00	44.00	0	\$0			10klf	20.00	24.00	44.00	95	\$4,180	
5.1klf	12.15	18.80	30.95	232	\$7,180			5.1klf	12.15	18.80	30.95	232	\$7,180	
2.6klf	5.90	11.30	17.20	0	\$0			2.6klf	5.90	11.30	17.20	1302	\$22,398	
			Total	per floor	\$7,180					-	Total p	per floor	\$145,841	
		I otal for th	ne 6 stor	y building	\$7,180					l otal for	the 6 story	building	\$145,841	

Total for the 6 story building

assembly

EIFS

2002

0

EIFS Recommendations

Problems

- ~ Water penetration
 - ~ Wind
 - ~ Openings
 - ~ Improper assembly

EIFS Recommendations

It is recommended to use Drainable EIFS

Advantages

- A factor of safety against faulty workmanship
 - ~ Water resistant membrane
 - ~ Drainable system

~ Any color building is possible

Acknowledgements/ Credits

I would like to thank the following people for their help and support with my senior thesis:

Professor ParfittProfeProfessor MemariProfeProfessor GeschwindnerProfesAll the PSU AE Faculty and Staff

Professor Hanagan Professor Schneider Professor Bowers I Staff

Cates Engineering ~ Structural Engineers Michael Stansbury ~ Consulting Structural Engineer Toll Brothers, Inc. ~ Project Owner Minno & Wasko ~ Project Architect

AE Colleges

Lauren Whitaker ~ my wife My family Jesus

Questions

or Comments?

or

Lunch?

Vibrations in Joist on Beam System Based on AISC Steel design guide 11 ex 4.6 & 6.2

20K9)			N	/16x31
w _{self} (plf)	10.8			w _{self} (plf)	31.0
w _{total allow} (plf)	279.0	for spans of	38 feet	A (in^2)	9.13
w _{joist design} (plf)	233.1	ok		d (in)	15.70
d (in)	20.0			lx (in^4)	375.0
M _{allow} (ft-k)	49.48				
A bottom (in^2)	1.04		f _{allow} (k)	30	kip
A top (in^2)	1.30		$ ho_{ m conc}$ (pcf)	145	pcf
A _{cord} (in^2)	2.34		Es (ksi)	29000	ksi
I _{cord} (in^4)	208.9		f'c (ksi)	3	ksi
I _{comp} (in^4)	466.0				
y _c (in)	8.94		Ec	3024	ksi
			n	7.10	
t _{conc}	3.00	in	*update W	s+d value	
t _{deck}	0.50	in			
t _{tot}	3.50	in	teff =	3.25	in

<u> </u>	g	g	g	g
۱ رې				
bay				
"				
Ī		i		
	ł	n = # 0	f bays -	
		Pla	n view	

Design Loads								
DL	17.55 psf							
LL	60 psf							
· · · · ·								

building	
n (# bays)	2 bays
h (# bays)	3 bays

LOADS		
Ws+d	39 psf	<== look
DL	4.0 psf	<== 4 psf
LL	11.0 psf	<== 11 ps

<== look up value in deck manual <== 4 psf typ office service load <== 11 psf typ office service load

	Length		
	Girder (Lg)	15	feet
	Joist (Lj)	38	feet
	Joist Spacii	2	feet
	joi	<u>st</u>	
L min =	24	182.4	
Leff =>	24	in	

	gir	der				
_ min =	72	456				
Leff =>	72 in					

Vibration Analysis

AISC Design Guide 11 criteria

Table 6.1 Vibration Criteria for Sensitive Equipment

Recom	Table 4.1 mended Values of I	Parameters in		Facility	Vibrationa	l Velocity*
Eq	uation (4.1) and a o	/g Limits	· [·····	or Use	(uin/sec)	(um/sec)
	Constant Force Po	Damping Ratio β	Acceleration Limit $a_0 / g \times 100\%$		(1.1.1.000)	(princes)
Offices, Residences, Churches	0.29 kN (65 lb)	0.02-0.05*	0.5%	Computer systems; Operating Rooms**; Surgery; Bench microscopes at up to 100x magnification;	8,000	200
Shopping Malls	0.29 kN (65 lb)	0.02	1.5%			
Footbridges—Indoor	0.41 kN (92 lb)	0.01	1.5%	Laboratory robots	4,000	100
Footbridges—Outdoor	0.41 kN (92 lb)	0.01	5.0%	Bench microscopes at up to 400x magnification; Optical	2,000	50
 * 0.02 for floors with few non-structural convolvements work areas and churches, 0.03 for floors with non-structural comporting typical of many modular office areas, 0.05 for full height partitions between floor 	omponents (ceilings, ducts onents and furnishings, bu	s, partitions, etc.) as can ut with only small demou	occur in open Intable partitions,	and other precision balances; Coordinate measuring machines; Metrology laboratories; Optical comparators; Microelectronics manufacturing equipment—Class A***		

Stiffness ana	lysis <mark>(fn< 9 Hz, r</mark>	no need to check stiffne	ess analysis)	Walking Ev	valuation	(fn= 4.30 Hz)				
using a	0.224 kip load			WPANELtot	43.9 kips					
$\Delta_{\rm j \; applied}$	0.04282 in			β	0.030 Resmic	l low damp table	4.1			
$\Delta_{\rm jpannel}$	0.00714 in			βW	1316.4 #					
Δ gPannel	0.00145 in	(fn= 4.30 Hz	z)	Po	65.0 #	table 4.1	compare	with table 4.	.1	
Δ_{total}	0.00786 in	fn ok		a _p /g =	0.01098 =	1.098% g fail	s > ().5% <mark>fail</mark> s	s	
K _{floor}	28.5 kip/in	>5.7kip/in limit ok		Fails, need	to increase joist size	or slab thickness	(delta j co	ontrols)		
MODERATE \	NALK <			SLOW WA	LK					
		-								
W person	185 #			W person	185 #					
step/min	75 step/min			step/min	50 step/min					
Em/W/	15	(table 6 2)	5500 # HzA2	Fm/\//	13	(table 6 2)	- 1500 +	+ H7A2		
Fm	277.5 #		3300 # 112 2	Fm	240.5 #		1300 #	11212		
		4				1				
f _o	2.5 hz	(figure 6.5)	044	f _o	1.4 hz	(figure 6.5)				
f _n /f _o	1.718 >>0.5	use eq 6.4b 📶		f _n /f _o	3.07 >>0.5	use eq 6.4b				
T _o =1/f _o	0.4 sec			T _o =1/f _o	0.7143 sec	1				
f _n *T _o	1.718 > 0.5		n». R in/gee	f _n *T _o	3.07 > 0.5	1				
Am	0.169			Am	0.053	1				
X max	1573 in x 10^-6]		X max	428 in x 10^-6					
V	42,862 x 10^-6 in	/sec compare with	table 6.1 values	V	11,690 x 10^-6 ir	n /sec comp	are with ta	ble 6.1 value	es	

t _{conc}			5.00 ii	n				1	1						-
t _{deck}			3.00 ii	n			n si u Si nak								
t _{tot}			8.00 iı	n											
Stiffness ana	lysis	(fn< 9 Hz, n	o need to	check sti	ffness analy	ysis)	Walki	ng Ev	aluation		(fn=	4.11	Hz)		
using a	0.224 k	ip load					W_{PANE}	Ltot	77.7	kips					
Δ j applied	0.02629 ii	n					β		0.030	Resmi	<mark>d low damp</mark> ta	able 4	.1		
Δ j pannel	0.00326 ii	n					βW		2330.9	#					
Δ_{gPannel}	0.00105 ii	n	(fn=	4.11	Hz)		Po		65.0	#	table 4.1		comp	are with ta	able 4.1
Δ_{total}	0.00378 ii	n	fn ok				a _p /g	=	0.00662	=	0.662% g	g fails	>	0.5%	fails
K _{floor}	59.2 k	(ip/in	>5.7kip/in	limit ok			Fails,	need	to increase	joist size	or slab thick	ness (delta j	controls)	
Stiffness ana	lysis	(fn< 9 Hz, n	o need to	check sti	ffness analy	ysis)	Walki	ng Ev	aluation		(fn=	4.11	Hz)		
using a	0.224 k	ip load					W_{PANE}	Ltot	77.7	kips	1				
Δ j applied	0.02629 ii	n					β		0.040	Resmic	<mark>d high damp</mark> ta	able 4	.1		
$\Delta_{\rm j pannel}$	0.00326 ii	n					βW		3107.9	#					
$\Delta_{\rm gPannel}$	0.00105 ii	n	(fn=	4.11	Hz)		Po		65.0	#	table 4.1		comp	are with ta	able 4.1
Δ total	0.00378 ii	n	fn ok				a _p /g	=	0.00496	=	0.496% g	g .	<	0.5%	ok
K _{floor}	59.2 k	ip/in	>5.7kip/in	limit ok							-				

MODERATE	WALK <				SLOW WAL	K				
W person	185 #				W person	185 #]			
step/min	75 step/mi	in			step/min	50 step/min	I			
Fm/W	1.5	(table 6.2)	Uv=	5500 # H	 Fm/W	1.3	(table 6.2)	Uv=	1500 #	Hz^2
Fm	277.5 #				Fm	240.5 #]			
f _o	2.5 hz	(figure 6.5)		f _o	1.4 hz	(figure 6.5)			
f _n /f _o	1.644 >>0.5	use eq 6.4	b		f _n /f _o	2.94 >>0.5	use eq 6.4	c		
T _o =1/f _o	0.4 sec				T _o =1/f _o	0.7143 sec	I			
f _n *T₀	1.644 > 0.5				f _n *T _o	2.94 > 0.5	T			
Am	0.185				Am	0.058	1			
X max	807 in x 10 ⁷	^-6			X max	219 in x 10^-6	I			
V	21,045 x 10^-	6 in /sec	compare with ta	able 6.1 values	v	5,740 x 10^-6 ii	n /sec	compare	e with tab	le 6.1 values

Vibration Analysis

31.0 9.13 15.70

375.0

	28k1	2			N	/16>
Wself	(plf)	17.1			w _{self} (plf)	
W total all	_{low} (plf)	461.0	for spans of	38 feet	A (in^2)	
W joist de	_{isign} (plf)	319.1	ok		d (in)	
d	(in)	28.0			lx (in^4)	
M _{allow}	(ft-k)	81.76				
A bottom	(in^2)	1.21		f _{allow} (k)	30	kip
A _{top}	(in^2)	1.51		$ ho_{ m conc}$ (pcf)	145	pcf
A _{cord}	(in^2)	2.73		Es (ksi)	29000	ksi
I _{cord}	(in^4)	490.5		fc (ksi)	3	ksi
I _{comp}	(in^4)	1570.9				
Уc	(in)	12.50		Ec	3024	ksi
			-	n	7.10	

t _{conc}	5.00 in	*update Ws+d value				
t _{deck}	3.00 <mark>in</mark>					
t _{tot}	8.00 in	teff = 6.50 in				

pullaing	
n (# bays)	2 bays
h (# bays)	3 bays

LOADS]	
Ws+d	82 psf	<== look up value in deck manual
DL	4.0 psf	<== 4 psf typ office service load
LL	11.0 psf	<== 11 psf typ office service load

Length	
Girder (Lg)	15 feet
Joist (Lj)	38 feet
Joist Spaci	2 feet

	<u>joist</u>							
min =	24	182.4						
.eff =>	24 in							

	<u>girder</u>								
_ min =	72	456							
Leff =>	72 in								

Stiffness analysis (fn ok, no		o need to check stiffness analysis)			Walking Evaluation			(fn= 5.67 Hz)							
using a	0.224	kip load	_					WPANELtot	60.8	kips					
∆ _{j applied}	0.01521	in						ß	0.030	Resmid	d low damp	table 4	4.1		
∆ _{j pannel}	0.00196	in						β₩	1824.1	#					
∆ _{gPannel}	0.00105	in	(fn=	5.67	Hz)			P。	65.0	#	table 4.1		compa	are with ta	able 4.1
Δ_{total}	0.00248	in	fn ok		_			a _p /g	= 0.00490	=	0.490%	g	<	0.5%	ok
K _{floor}	90.4	kip/in	>5.7kip/in	limit ok											
MODERATE	WALK	<						SLOW W	ALK						
)0 <i>(</i>	105		1					10/	105	24	1				
vv person stop/min	105	# cton/min	{					vv person ctop/min	50	# cton/min					
step/min		step/mm]					step/mm		step/min	l				
Fm/W	1.5		(table 6.2)	Uv=		5500 #	Hz^2	Fm/W	1.3		(table 6.2)	Uv=	1500	# Hz^2	2
Fm	277.5	#						Fm	240.5	#					
-			1								1				
fo	2.5	hz	(figure 6.5)					fo	1.4	hz	(figure 6.5)				
f _n /f _o	2.269	>>0.5	use eq 6.4b)				f _n /f _o	4.05	>>0.5	use eq 6.4t	0			
T _o =1/f _o	0.4	sec						T _o =1/f _o	0.7143	sec					
f _n *T₀	2.269	> 0.5						fn*To	4.05	> 0.5					
Am	0.097]					Am	0.030						
X max	267	in x 10^6						X max	73	in x 10^6					
V	9 598	v 10^ 6 in	leac	compare	with toble l	6 1 values		V	2 6 1 8	v 104 6 i	n /sec	comna	ro with	tahla 6 1	valuas
-	3,350	× 10 -0 III		sompare .	mill tuble	0.1 901060			2,010	X 10 -0 I	1,300	compa	ie mitt	14010-0.1	101005

Whitaker

Robert S. Whitaker Structural Option Parkview at Bloomfield Station Bloomfield, NJ

Structural

- •Floor system: 16" Hambro Floor System w/ 3" slab •Interior Bearing walls: 4" light gage shear walls w/
- tube steel top plates
- •Exterior Bearing walls: 6" light gage shear walls w/ tube steel top plates
- •Columns: HSS 3x3x1/4" to HSS 7x3x3/8"

Robert

- •Beams: typical beam is a W10x12, HSS 4x4x5/16", or HSS 6x4x5/16"
- •Roof: light gage roof trusses w/ portions of flat roof
- •Foundation: continuous grade beam footing
- •Garage foundation: 100 ton H piles 42-53 ft deep

Mechanical

- •Unit temperature controls
- •Gas fired furnaces
- Air handling unit/condensing unit refrigerant loop
 Individual unit water heaters

Size

 Total:
 453,473 ft²

 Building:
 300,725 ft²

 Garage:
 152,748 ft²

<u>Use Group</u>

•Building:R2

•Garage:S-2

Fire Protection

•Wet sprinkler in main building •Dry sprinkler in garage & attic •1,500 GPM fire & jockey pump <u>Special Systems</u> •15 panel point security system

Architectural

- 6 story residential building surrounding a pre-cast parking garage
- Long irregular footprint
- 197 condominium units & a 330 space garage
- •Building is nestled between Second River, Washington St, and a Midtown Line train station
- •The exterior wall cladding is an Exterior Finish and Insulation System (EFIS)
- •Gable roof with either a 12:12 or 8:12 slope

Codes •IBC 2000 NJ

•Fair Housing •ASCE7-02

Transportation

•(2) 2,500lbs & (1) 3,500lbs elevator •Six full stair towers

General information

•Cost:

Overall Project: \$65,616,081 Building: \$56,936,063 Pre-cast Garage: \$8,680,018 •Project delivery method: Qualified Design-Bid-Build •Construction start-finish: November 10, 2005-TBD

Electrical

- •Electric baseboard
- •125A 1P3W panels
- •2 building transformers
- •(2) 3000A switchboards •250 KW 120/208 diesel fired
- emergency generator
- Dust banks for CATV/Tale u
- •Duct banks for CATV/Tele utilities

Project Team: Owners:

Structural Engineer:

Pre-cast Engineer:

Civil Engineer:

MEP Engineer:

Contractor/ CM:

Architect:

Toll Brothers, Inc. Minno and Wasko Cates Engineering Unistress Corp. PMK Group R.W. Sullivan, Inc. Bovis - lend lease