Shawn Jones Structural Option Advisor: Dr. Hanagan Hershey Academic Support Center 10/31/05

Technical Report 2 – Alternate Floor Systems

Executive Summary

This report is an analysis of possible alternate floor systems for The Hershey Academic Support Center found in Hershey, PA. After analyzing the existing system, feasible alternate systems were chosen and considered for the building's floor system. Advantages and disadvantages were contrived and studied to determine if each system was worth further investigation.

Existing Floor System – Composite Steel Beams and Girders

~Advantages: Quick Erection with Lightweight Construction ~Disadvantages: Needs Fireproofing and Possible Vibration Issues

Floor System #1 – Composite Steel Beams and Girders (No Camber)

~Advantages: Existing System Advantages and Easier to Fabricate ~Disadvantages: Existing System Disadvantages and a Possibly Higher Cost

Floor System #2 – Non-Composite Steel Beams and Girders

~Advantages: Cheaper System with a Shorter Construction Time ~Disadvantages: Increased System Weight and Possible Lateral Effects ~Further Investigation: YES

Floor System #3 – One-way Multiple Span Concrete Joists

~Advantages: Decreased Overall Depth and Less Vibration Issues ~Disadvantages: Longer Construction Time and a Heavier System ~Further Investigation: YES

Floor System #4 – Two-way Flat Slab with Drop Panels

~Advantages: No Fireproofing or Vibration Concerns ~Disadvantages: Thick Slab with Drops and Very Heavy Weight

Floor System #5 – Two-way Waffle Flat Slab

~Advantages: Very Thin Floor System with Little Vibration Effects

~Disadvantages: More Expensive System and Longer Construction Time ~Further Investigation: YES

Floor System #6 – Open Web Steel Joists

~Advantages: Lightweight System with a Faster Build Time ~Disadvantages: Increased Floor Depth with Difficult Fireproofing

General Introduction

The Hershey Academic Support Center is part of the Hershey Medical Center complex and is owned by The Pennsylvania State University. Constructed from March 1999 to August 2000, The Penn State Geisinger Health System was designed as the primary occupant, but was dissolved before the building was occupied. Currently the building is used for auxiliary purposes of the Hershey Medical Center and accommodates 680 people. The building itself can be considered in two sections, an East and a West wing. The wings are structurally identical with the only difference between them found in the center section. The building footprint encompasses a total area of 150,000 square feet. The total height of the building over 5 stories is measured as 56'-0" with the height to top of the roof including the Mechanical Penthouse being 69'-0". The building consists of a conventional structural steel system with composite beam floor framing and a precast concrete and glass facade. Moment connections placed at the columns as well as braced steel frames help to resist the wind and lateral loads throughout the building.

Dead Load (Office Floor): ~Decking = 2 psf ~2.5" Lightweight Concrete = 40 psf ~Steel = 5 psf ~MEP = 10 psf ~Plenum Air System = 10 psf ~Finishing = 3 psf ~Total Office Dead Load = 70 psf

Live Load: Main Floor = 100 psf (with corridors and partitions)

Existing Floor System – Composite Steel Beams and Girders

The floor system at the Hershey Academic Support Center utilizes a composite beam floor framing system with 3" 20 gage Vulcraft galvanized steel metal decking and 6x6 W1.4XW1.4 Welded Wire Fabric between the steel members and the concrete. The 2.5" Lightweight concrete along with the decking give an overall slab thickness of 5.5" and a total system depth at the girder of 26.5". To hold together the decking and concrete slab, 0.75" ϕ x 4.5" long headed steel studs were used. The most common connection used in a typical bay between the beams and columns is a L6 x 4 x 7/8 x 0'7" steel angle moment connection with 4 bolts to a beam and 2 bolts to a column. Each typical bay is 28' by 32'-8" and consists of W21x50 and W21x44 girders with W16x31 interior beams that have a ³/4" camber. Material strength is given as 4000 psi for the concrete slab and Fy = 50 ksi ASTM A-572 steel in the beams and girders. Spray on cementitious fireproofing was used to meet the fire rating required for the building. The floor framing plan and a typical interior bay are shown below in blue.

One inherent advantages of the current system are that it can be quickly erected and at a generally low cost. Another advantage of the existing system is that the floor depth is comparatively shallow and can accommodate most building height restrictions. The structure for this system is lightweight, allowing smaller column sizes as well as a smaller foundation. One disadvantage of the system is that it requires fireproofing to meet the 2 hour fire-rating necessary. Another disadvantage is the labor required to weld the shear studs, which can slow down time and be costly. Vibration issues may come into play with such a light system, but overall, this system works well for the Hershey Academic Support Center.

System #1 – Composite Steel Beams and Girders (No Camber)

Using my existing system and the RAM steel software, I changed the design to pin connections at the columns with no camber allowed on the beams. The spacing of 28' by 32'-8" was kept the same as well as the 4000 psi concrete strength and A-572 beam and girder steel. The input RAM data was a 2.5" Lightweight slab (115 pcf), 4.5" long 3/4"ø studs, Fy = 50 ksi, and Vulcraft 20 gage 3" steel decking. With the camber removed and the new connections, the beams changed from a W16x31 with ³/₄" camber to a W18x35 without camber. This new beam would be enough to support the pre-construction weight of the building without needing the ³/₄" camber previously used.

The new beam would make the floor system 2" deeper and 4 psf heavier, but would save the camber in the system. In terms of a cost comparison, the transportation of beams that are 16" is a lot easier than 18", so it would increase the cost. If the camber is performed

in shop, it is not that expensive to have it done. The extra weight from the change in system would have to be factored into the foundation, but an increase of only 4 psf is not likely to make major changes. Overall, this system is still a valid option, but the existing system is probably more cost efficient.

Beams: W18x35 øMn = 249'k Mu = 198.6'k

Girders: W21x50 øMn = 413'k Mu = 408.1'k

System #2 – Non-Composite Steel Beams and Girders

The next system used for the floor is a non-composite floor system that was analyzed for my building with RAM Steel. The new dead load on the floor system was recalculated to be 47 psf for the 28' by 32'-8" bay. The decking stayed at Vulcraft 20 gage 3" galvanized steel decking at Fy = 50 ksi strength steel. The RAM results yielded larger girders and larger beams for each typical bay. The girder size increased to W24x76 in both directions and W21x44 interior beams.

This new system will increase the total weight in the building, so this might impact both the column sizes as well as the foundation. The depth of the overall system increased by 3" but the 2.5" of slab was removed so there should not be any problems with increased building height. The main advantage to this system is the cost saved on the labor and materials from the shear studs. Building time will also be decreased as a result of the lower labor necessary which is another advantage of this system. The loss of the composite system may have a negative effect on the lateral building system, but with all

System #3 – One-way Multiple Span Concrete Joists

The next system I chose to analyze is a one-way multiple span joist system that was compiled from the 2002 CRSI Handbook Tables. The total load calculated for the system was 161.82 psf over a span of 33'. Using page 8-25 from CRSI, I obtained a design of 20" Deep Ribs with a 3" Top Slab giving my system a total depth of 23". The system would contain 30" forms with 6" ribs @ 36" center to center for the interior span.

Reinforcement for the system is designed as #5@11" o.c. for the top bars and 2-#5 bottom bars. The total weight of the system is calculated to be 91 psf.

One of the first advantages to this system is that the overall depth is decreased by 3.5" from the original system, so there would be more ceiling space overall. There would also not be any spray on fireproofing required with this system as another cost saver. In terms of building time, this system would likely take longer than the existing system to construct. Another issue to consider is that the overall weight in this system is more than the existing system. This could cause an increase in column size as well as in the foundation, which must be considered.

System #4 – Two-way Flat Slab with Drop Panels

Next, I chose to analyze a two-way flat slab with drop panels for extra support over the 33' span. Again, I used the 2002 CRSI Handbook Tables to solve for the system. The total calculated load is the same as the one-way system at 161.82 psf. Assume that the drop panel weight is equally distributed and that there are square spans, panels, and column sizes to use the tables conservatively. For the loading and spans given, you get a slab design of 11" thick and 11' x 11' x 11" drop panels. The reason the system is designed like this is because the drop panel fits within the distance of the column strip and that punching shear is a huge contributor to the overall design. The reinforcement in the column strip is 15-#7 top bars and 11-#7 bottom bars with the middle strip reinforcement at 11-#7 top bars and 18-#5 top bars. The overall self weight of the system was calculated to be 156.91 psf.

The main issue with this system is that the very thick slab and drop panels would cause a lot of concrete cost as well as slow down the overall building construction time. Another big issue is that my building bay is not perfectly square so the system could possibly get even bigger than it is now. The overall weight of the system is double the original weight, which does stop vibrational issues but will definitely affect the columns and foundation

negatively. The system would save space on the overall thickness (22" instead of 26.5") and there is no fireproofing necessary, but these advantages do not outweigh the disadvantages for this system, so it will not be considered.

System #5 – Two-way Waffle Flat Slab

The following selected system was a two-way waffle flat slab system to see if a two-way system could be possible for my building. Consider a load of 161.82 psf, a 33' clear span, and square interior panels and use page 11-20 from the 2002 CRSI Handbook to find the appropriate system. The specifications selected were a 30" x 30" system with 6" voids and ribs at 36". The rib depth would be 10" and the slab depth at 3" for a total system depth of only 13". Basic reinforcement is required for the column strip and middle strip as well as a #3 Stirrup at 4" that extends over two modules. The column strip would need 5 ribs with 2-#7 bars per rib on the bottom as well as 30-#6 bars for the top interior. The middle strip requires 6 ribs with both #5 long bars and #6 short bars on the bottom. The top interior uses 10-#6 bars in this system. The overall weight of the system was calculated to be 94.98 psf.

The biggest advantage of the two-way waffle system is that the overall floor depth is cut in half from 26.5" to 13". This reduction in thickness would allow more building flexibility in the ceiling area for electrical and mechanical utilities. This type of flooring system tends to be more expensive in both labor and formwork. This extra formwork also leads to a longer construction time overall. As with the other concrete systems, spray on fireproofing would not be required. The overall weight of the system provides extra vibration support at the cost of increased member sizes below. All in all, this could be a viable system depending on what factor was most important in design.

System #6 – Open Web Steel Joists

For my last system, I chose to model an open web steel joist system for the structure. This system would be modeled to obtain a 2-hour fire rating, so a 3" Normal weight concrete slab will be used. For a total superimposed dead load of 110.74 psf, the Vulcraft Decking manual suggests 3" .6C26 Decking as well as 4x4 W2.9 x W2.9 WWF. For a total slab thickness of 3.5" and a self-weight of 41 psf, the total uniform load is 469.22 plf and the total live load is 257.22 plf. The NCJ Joist Manual's Economy Table suggests the use of 26K9 Joists at 3' o.c. over the 33' span. For the Girders, LRFD specifies that for an 1112.96'k load, a W27x102 girder would be used. One of the first advantages of this system is that the overall system is lightweight so it doesn't need big columns or foundations. Large girders are needed to support the systems so the overall thickness at the girders will increase from the existing system by 4". This system can be easily erected, so it has a short building construction time as a

result. In terms of fireproofing, open web steel joist systems are known to be hard to fireproof with spray on fireproofing, so extra cost and labor can be accrued there. All in all, this system is workable for my building but provides no clear advantages to the current system, so it will not be considered.

Conclusions

Existing Floor System - Composite Steel Beams and Girders

Advantages

- ~ Quick Erection
- ~ Low Cost
- ~ Shallow Floor Depth
- ~ Lightweight

Disadvantages

- ~ Requires Fireproofing
- ~ Shear Stud Labor and Cost
- ~ Possible Vibration Issues

This system works well for the Hershey Academic Support Center. There are no major disadvantages in the system and quite a few advantages to be seen.

System #1 – Composite Steel Beams and Girders (No Camber)

Advantages	Disadvantages
~ Same Initial Advantages	~ Same Initial Disadvantages
~ Easier to Fabricate	~ Members Slightly Larger
	~ Possible Higher Cost

This system is possible for the Hershey Academic Support Building but does not provide any major advantages to the previous system. The transportation of W18x35 beams would offset the savings from a W16x31 beam with camber. Consideration: NO

System #2 - Non-Composite Steel Beams and Girders

Advantages

- ~ Cheaper Cost
- ~ Faster Build Time
- ~ Lesser Vibration Effects

The Non-Composite system shares a lot in common with the original system in terms of advantages and disadvantages. While this is true, it does have a few extra advantages and disadvantages than the original system as seen above. The heavier system requirements will have to be checked to make sure the column size and foundation size aren't greatly affected, but overall, this would be a viable system to use. Consideration: YES

System #3 – One-way Multiple Span Concrete Joists

Advantages	Disadvantages
~ Decreased Depth	~ Longer Construction Time
~ No Required Fireproofing	~ Heavier System
~ Lower Vibration Issues	

This One-way system could be considered as an option for the floor framing system in the Hershey Academic Support Center. This system contains one major advantage (decreased total depth) and one major disadvantage (heavier total weight), so it is worth the time to design and see how this system matches up. Consideration: YES

System #4 – Two-way Flat Slab with Drop Panels

Advantages	Disadvantages
~ Lower Overall Thickness	~ Thick Slab and Panels
~ No Fireproofing	~ Floor System Not Square
~ Vibration Not an Issue	~ Very Heavy System

This Two-way system should not be considered as a flooring option for my building. The disadvantages of this system are all major concerns especially that the system is twice as heavy as it was previously. This new system weight will definitely cause the columns and foundations to be increased in size, causing many cost issues. Consideration: NO

Disadvantages ~ Heavier System

~ Possible Lateral Effects

System #5 – Two-way Waffle Flat Slab

Advantages	Disadvantages
~ Half Total Floor Depth	~ More Expensive Overall
~ No Fireproofing	~ Longer Construction Time
~ Small Vibration Effects	~ Heavy System

The Waffle slab system plays off the one major advantage that the floor depth is very thin comparatively to other systems. This works particularly well for places that have a rigid height requirement or that need lots of space between floors. The Waffle system can be more expensive as well as longer to construct, which is why it is often overlooked in this kind of construction. All in all, this could be a viable system and should be analyzed further. Consideration: YES

System #6 – Open Web Steel Joists

Advantages	Disadvantages
~ Lightweight	~ Increased Floor Depth
 Short Construction Time 	~ Difficult Fireproofing

This system resembles the existing system in the Hershey Academic Support Center. The advantages and disadvantages outweigh each other over and that leaves nothing special to be found in this system. Since there are no major positive changes, there is no reason to complete further work on this problem. Consideration: NO

AE Senior Thesis Spot Check Technical Assignments
First Solve the loading for a typical Office Floor:
Dead Load = 70 psf (See Loading for specifics)
Live Load = 100 psf (Hain Floor)
Use Live Load Reduction
$$\rightarrow L = L_0 (0.25 \pm \frac{15}{V_{R_2}})$$
 where
Aror = (9.3')(32.5') = 304.8 ft², A = 2A_T = 2(304.8) = 609.7 ft²
L = (100)(0.25 \pm \frac{15}{(6027)}) = 85.74 psf
Using Load Factors: 1.2 DL + 1.6 LL = 1.2(70) + 1.6(85.74) = 221.84 psf
Pu = 221.84 psf, wu = (4.5')(221.84) = 2.06 klf
Pu = 221.84 psf, wu = (4.5')(221.84) = 2.06 klf
Mu = $\frac{\omega k^2}{8} = (200)(32.5')^2 = 274.78'k$
Assume a = 1", before $\{\frac{\lambda_{R_1}}{2\pi}, \frac{\lambda_{R_2}}{2\pi}, \frac{\lambda_{R_2}}{2\pi}, \frac{\lambda_{R_2}}{2\pi}, \frac{\lambda_{R_2}}{2\pi} = 5''$
Use LRED Table 5-14, Try WI8x40 where $\frac{\lambda_{R_2}}{2\pi}$ For Ya = 5'' + 400 so $\frac{\lambda_{R_2}}{2}$ = 400'k + $\frac{1}{2} \alpha_{R_1}$ = 148 k

 $\sum Q_n = 0.85 f'_c b a \Rightarrow a = \frac{\sum Q_n}{0.85 f'_c b} = \frac{148}{0.85(4)(98)} = 0.444$ Y = 5.5" - 0.444 = 5.28" -> \$\$ MN = 403'k by interpolation From the structural notes, Minimum stud capacity is 9.7k $\frac{2 Q_n}{H_{ud}} = \frac{148}{9.7} = 15.2c \rightarrow Use 32 shear studs$ 888 22-141 22-142 22-144 Overall Design W18×40 with 32 shear studs CAMPAD' The beam specified in the drawings is WIGX31. I believe my beam is larger because an older Code was used for factoring and there is a perscribed camber of c= 34" for the given design. Typical Girder Calculation $P = \frac{\omega l}{2} = \frac{(2.06)(32.6)}{2} = 33.6 \text{ k}$ Mu= (33.6)(9.3) = 313.6 k Assume a=1" bEFF = { (28) (10) = 84" 34.5 V (k) Y = 5.5" - = = 5", LRFD Table 5-14 -14.5 Try W21×44 where \$ Mp= 358 k 322 $\Delta_{0} = A_{5} = 13.0 \text{ in}^{9}$, $\Sigma Q_{n} = A_{5}f_{y} = (50)(13) = 650 \text{ k}$ M ('k) Find $a = \frac{20n}{0.85f_{1}^{2}h} = \frac{650}{0.85(4)(84)} = 2.28$, $Y_{2} = 5.5'' - \frac{2.28}{a} = 4.36''$

For PNA@7 + Y2=4.56" -> \$ Mp = 481 k by interpolation For shear studs : Ean=163k & capacity is given as 33k $\frac{\epsilon_{\text{an}}}{\text{stude apacity}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ $\frac{\epsilon_{\text{operator}}}{\text{operator}} = \frac{163}{33} = 4.9 \rightarrow \text{Use 10 shear studs}$ W21×50. The design I proposed is close in size and 22-141 the slight variance can be attributed from the beam load being slightly different, Typical Column Design Dead Load = 70psf + 5psf = 75psf (Office Design) Live Load = 100psf (Main Floor) Use Live Load Reduction -> L= Lo (0.25 + 15) where Column Tributary Area = (28') (325') = 914, 5 ft? $A_T = (4 floors)(914.5) = 3658.5 ft^2 , A_1 = 4A_T = 4(3658.5) = 14,634.5 ft^2$ Reduction Factor = (0.25 + 15) = 0.374 \$ 0.4 for multiple story buildings, L= (100) (0.4) = 40 psf, Factor the loading $1.20L + 1.6LL = 1.2(75) + 1.6(40) = 154 \text{ psf}, P_u = 154 \text{ psf},$ $P_{FLOOR} = (154)(3658.6) = 563.43 \text{ K}, \omega_u = 2.06 + (0.05)(1.2) = 2.12 \text{ klf}$ $M_u = \frac{\omega l^2}{12} = \frac{(2.12)(28)^2}{12} = 138.51'k$, Calculate for the wall

Wall Load = (28')(55') = 1540 ft where wall height = 69'-14'=55' Assume Wall Load of 30psf, Pw= (1540)(30) = 46.2k Pu = Pfloors + Pwall = 563.43 k = 42.6k = 606.03k Using Mu = 138.52 k + Pu= 606.03k, Try W14 shape SHEETS Perr = Pu+ ~ Mu where ~ = 24 = 24 = 1.71, Perr = 606.03 - (171)(138.51) 888 22-141 22-142 22-144 PEFF = 842.88K Assume Pinned connection, K=1 (conservative) CAMPAD' KL=14' From LRFD Table 4-2 Try WI4×90 969 K > 84288KALLOW, Overall Design is W14×90 The column specified in the drawings is listed as a W14×120. The differences can be attributed possibily to not considering a heavy enough exterior wall load or a smaller live load reduction used by the designer. 425k Lateral Force Check Use the Given member, 26×6×50 14. Ag= 425 = 8.5in Use LRFD Table 1-7 Choose L6×6×7 -> Ag= 9.75 in2 The designed member is not adequate due to the large calculated Seismic Force (Critical Force)

AE Senior Thesis ONE-WAY JOISTS Tech Assignment #2 Use CRSI Handbook 2002 to design the system Find the loading using the CRST factors Superimposed Dead Load = 25 psf (see Loading for specifics) Live Load = 100 ps f (Main Floor) Use Live Load Reduction -> L= Lo (0.25 . 15) where ATOT = (28')(32.2') = 914.6ft2, For One-way slabs ATOT = AI L = (100) (0.25 + 15) = 74.60 psf CRSI Load Factors: 1.40L+1.7LL=1.4(25)+1.7(74.6)=161.82psf The One-Way Joists-Multiple Span System will span over the long direction giving a clear span of about 33 For an Interior Span, look at page 8-25 from CRSI Try 20" Deep Rib with 3" Top slab for a 23" Total Depth For 30" forms + 6" rib @ 36" c-c, 33' Interior span Allowable Load = 166psf > 161.82psf ALLOW For Reinforcement, Use #5@ 11" o.c Top Bars 4 #5, #5 Bottom Bars Check Deflection - 21 = (33)(12) = 18.86 " < 23" ALLOW From Table 8-1 in CRSI, Total weight = 91psf TH5 @ 11" o.c.

Two-way Flat Sleb Tech Assignment #2 AE Senior Thesis with Drop Panels Use CRSI Handbook 2002 to design the system Using CRSI Load Factors: Pu = 161.82 (See One-way System) The Two-way Flot slab with Drop Panels will span over the long direction giving a clear span of about 33' For Square Interior Panels, look at page 10-27 from Cest 888 22-141 Assume Square Spans, Panels, and Column Sizes for the bay SUPAD' Also assume Prop Panel Weight is equally distributed Try a Total slab thickness of 11" with 11' × 11' + 11" Drop Panels and 19" Square Columns Allowable Load = 200psf > 161.82psf ALLOW Column Strip Reinforcement Top: 15-#7 bars + Bottom: 11-#7 bars Middle Strip Reinforcement Top: 11-#7 bars & Bottom: 18-#5 bars Find Self Weight: (1.019 5) (150 pcf) + 4.06 psf = 156.91 psf Check Deflection 3 for interior s|ab > 4'' $\frac{9}{3c} = \frac{(33)(13)}{3c} = 11'' \le 11''$ ALLOW

	TWO-WAY WAFFLE T. I A I HO
	The senior inesis FLAT SLAB SYSTEM . Iech Assignment #2
~	Use CRSI Handbook 2002 to design the system
	Using CRSI Load Factors : Pu= 161.82 (see One-Way System)
	The Two-Way Waffle Flat slab System will span over
	the long direction giving a clear span of about 33'
50 SHEETS 100 SHEETS 200 SHEETS	For Square Interior Panels, look at page 11-20 from CRSI
22-141 22-142 22-144	Try a 30"x30" System with 6" Voids and Ribs @ 36"
WPAD'	Rib Depth = 20" + slab Depth= 3" -> Total Depth = 13"
CA3	D=12.5 with the Rib on the Column Line, Steel= 3.63psf
	Allowable Load = 200psf > 161.82psf ALLOW
\frown	Column Strip Reinforcement
	5 Ribs with 2-#7 bars perrib on the bottom
	30-#6 bars for the top interior
	Middle Strip Rein forcement
	6 Ribs with #5 Long Bars & #6 Short bars on the bottom
	10 - #6 bays for the top interior
	W CCL cash in the still and the sale her
	Wattle Slab heeds atto stirrup Ci That extends two mocules
	Find Self weight: (0.609 (5) (150 pef) + 3.63 psf = 94.98 psf
	3" 1
~	10"

	AE Senior Thesis STEEL SOISTS Tech Assignment #2
~	For this system, a 2-hour fire rating will be obtained
	by increasing the concrete to 3" and normal weight
	Superimosed Dead Load = 25psf (See Loading for Specifics)
STITS STITS	Reduced Live Load = 85.74pst' (See Existing Calculations)
50 SHEE 200 SHEE	For Total Load = 110.74psf, Use 3" Vuleraft . 6626 Decking and use 4x4 Wogxwog wwF
22-141 22-142 22-144	$T = c_1 + c_1 + c_2 + c_1 + c_2 + c_1 + c_2 + c_2 + c_1 + c_2 + c_2 + c_2 + c_1 + c_2 + $
IPAD	This system will use a 2.5 Stab with a self-weight of ispar
AN AN	tind the Joist's using D o.c. for a 33 span
	$\omega_{\text{orab}} = (25 + 41)(3') + 14plf self weight = 212plf$
~	SLIVE = (03.14)(3) = 251.22plt, WTOTAL = 469.22plf
	From the NCJ Joist Manual, Use 26K9 Joists
	Check: Total -> 488 plf > 469.22 plf + Live 370 plf > 257.22 plf ALLOW
	Find the Girder with a tributary width of 33'
	WDEAD = (25+67)(33') = 3.04 klf WLIVE = (85.74)(33') = 2.83 klf
	WANTAL = 1.2(3.04) + 1.6(2.83) = 8.176 plf, Mu = (8.176)(33')2 = 1112.96 K
	Use W27×102 where \$MN= 1140 k and I = 3620 in 4
	Check deflections for $\Delta_L = \frac{L}{360} + \Delta_T = \frac{L}{240} = \frac{ L }{1 + 1 + 1 + 1 + 1 + 1}$
	$\Delta_{L} = \frac{5(2830)(33)^{4}}{384(2900)(3620)} = 0.42" < \frac{(33)(12)}{360} = 1.1" Allow$
-	$\Delta_{T} = \frac{(0.42)(3040+2830+102)}{2830} = 0.88'' < \frac{(33)(12)}{240} 33'$
	0.88" < 1.65" ALLOW W26×9 1 1 W27×102 I

2002 CRSI Handbook Design Table

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_		_	_	_	_			•	-		-	3.07	-	-	-	-	1022	100		-		-	_	_	_		-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 psi		Int.	Span Defi.	(3)		6.168	7.033	7.985	9.031	10.176	11.427	12.790	14.272	15.878	17.617	19.494	21.518	23.695	26.034	jus.									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	60,00		9 # 8	1.4	2.29	7	440*	510*	396*	376*	358*	341.	325	301	278	257	238	220	203	0 188 0	ads pua			2.04	1.07	89.	309	1.20	.15	21.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	fe = fy =		#5	# 6	1.88	R SPAI	433*	440	371	340	313	288	265	243	224	205	189	173	159	0 145 0	5 for	/360.		1.64	.86	55	.265	1.04	.13	21.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(FSF)	http	# 5	# 6	1.63	ITERIO	354	323	295	569	246	224	205	187	170	154	140	127	115	0 20 0	ed joist n/18	0 = 6	SF) M	1.43	.75	48,	239	88	E.	21.6
Stratubule Submetted	(2) OAD (" Total L	9.0 9	4 D	.36	4	CBC	0	232	510	061	172	155	139	125	112	80	68	18	0 89 0	ll tapen ness ≿	leflectio	CF	1.21	63	.40	209	.75	60	21.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	" cc.	0 = 23.0	12 5	2 22	1 11		010	0.06	0 2 0	1210	35	50	901	600	5.00	20	- 8 -	15	45	0	specia e (thicko	lastic d	TE .64	96	20	32	174	62	80	21.7
Matrixer Strationary and with single strating Strationary and strating Strating strating and strating and strating Strating strating and strating strating Strating strating and strating strating and strating strating Strating strating and strating strating and strating strating and strating strating strating and strating strating strating strating and strating strating strating strating and strating strating strating strating and strating strating strating strating strating and strating strating strating and strating strating and strating strating and	a @ 37 RIMPO	Top Slat	Pu	left.	(3)		003	428	975	.675	.536	6951	.784	191	.802	3.627	.678	1.967	3.505	2,305	ad is fo	city at e	NCR						_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7" Rit	b + 3.0	9 S	~ 8	8		6. 10	2 =	6 12	99 14	16	19	30 20	0 23	32 25	76 28	31	99	33 36	21 42	ve horiz	+Capa	2 Z	F.	6	57	272	39	11	298
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ABLE	Deep R	# 6	** ~ ~	33 1.8	PAN	1 37	-000	88	53 0 = 0	5000	50 O	1 22	500	1000		=	-	1	0 10	8-1. nds: se ed abo		DESIG	43	.75	48	239	20	15	263
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30° Fo	20*	* 8	**	0 1.6	END S	1 32	5 29	3 26	24	33	90 20	0 18	50	1	6 13	8 12	01	10	0 80	e Table s joist e it requir tapered		FOR	21	.63	40	600	- 10	.13	231 231
	CTOR		* 6	***	0 1.4		1 26	3 9	1 21	3 19	11	2 15	14	9 15	11	0 7 0	0.4 0	5.00	9	un	ties, se square on is no).	×	RTIES	04	55	35	86	88	=	2000
Simulation Simulation I_{i} = 4,000 pair	FA		*=	**	3 1.2		00 0	N 0 4	16	4	12	=	0 4 0	0 4 0	740	9	0	4			proper tandard leflectic spans) ing jois	capacit	ROPE	96	20	32	74 .1	75	60	73 2
SERVIDATION DECREMENTION DECREMENTION 30° Forms + 6° Rh @ 36° c (n) $f_{i}^{i} \in 4.000$ psi $I_{i}^{i} = 0.000$ ps	STS (I		e # 5	**	1.0		15	<u> </u>	Ξ	10	00	7	9	ŝ	4					_	section is for s ion of c interior of bridg	shear		IN CA	e v	(G	-	12 N		N T.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AV JOI		© Srz	**		SPAN	.0	þ þ	.0	ő	ð	.o	•0	.0	•0	0	.0	-0-	.0.	.0	r gross st load mputat /21 for clusive	olled by		E MOME	UNIFOR	TAPERE	RVIGR	EA (SO.	EL %	EPTH, IN R/IGR
STATIONAD STATIONAD MULTIC FORMAN DISTS:	STA ONE-WI MULTII		TOP BARS	BOTTOM	Steel (psf	CLEAR	20	31,	32	33	34	35	36	37	38	39	40	41	42	43	588 39 586 39	.Contr	1	NEGATIVE STEEL AR	STEEL %	0 333	0-10	POSITIVE STEEL ARI	STE	EFE DE
STATIONARD MULTIPLE SPANS MULTIPLE SPAN MULTIPLE SPANS MULTIPLE SPANS MU		_				_	_								-			Le.	10	-		_	_		_	_	_		_	
STANDARD MULTIME SPANS A fill @ 36" c. c. a $I_{c} = 40$ MULTIME SPANS ANE WAY JOISTS IN MULTIME SPANS Score and the part of the galant of the second ANE WAY JOISTS IN TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 70$ AND TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a second barrier of the galant of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a second barrier of the galant of the second and the h $I_{c} = 40$ AND TOTORIAL a set a second barrier of the galant of the second and the filter of the second barrier of the galant of the second barrier of the galant of the second and the filter of the second barrier of the galant of the galant of the second barrier of the galant of the galant of the galant of the galant of the second barrier of the galant of t	00 psi		Int.	Span Defi.	(3)		6 001	6.842	7.769	8.787	9.901	11.118	12.445	13.886	15.448	17.141	18.96	20.936	23.055	25.33(sue,									
STANDARD MULTIPLE SPAIRS III 30° Forms + 6° Fib ((a) 36° c. c. a) f_{a} MULTIPLE SPAIRS MULTIPLE SPAIRS Sam begrad a" begrad f_{a} $g = 1$ f_{a} <th< td=""><td>= 4,00</td><td></td><td>9 # C</td><td># 6</td><td>2.01</td><td>z</td><td>305-</td><td>374*</td><td>355.</td><td>337.</td><td>320.</td><td>305.</td><td>282</td><td>261</td><td>240</td><td>222</td><td>204</td><td>188</td><td>174</td><td>0 00 0</td><td>end sp</td><td></td><td></td><td>1.76</td><td>1.04</td><td>-91 C</td><td>295</td><td>1.04</td><td>.13</td><td>21.6</td></th<>	= 4,00		9 # C	# 6	2.01	z	305-	374*	355.	337.	320.	305.	282	261	240	222	204	188	174	0 00 0	end sp			1.76	1.04	-91 C	295	1.04	.13	21.6
STANDARD MULTIPLE SPAIRS MULTIPLE SPAIR	F.= 7.		# 00 #	9 #	1.66	DR SPA	376	343	314	287	263	241	221	202	185	169	155	141	128	1110	at ends.	n/360.		1.39	.82	50	250	88	Ξ.	21.6
STANDARD MULTIPLE SPANS 30° Forms + 6° Fhb ((a) 36° c. c. a) MULTIPLE SPANS $30°$ Forms + 6° Fhb ((a) 36° c. c. a) MULTIPLE SPANS MULTIPLE SPANS $30°$ Form $Fe = 30°$ for $\frac{1}{8}$ of $\frac{1}{8}$	(PSF)	Depth	a te 19.5	# 2 # 0	1.38	NTERIC	301	274 274	249	226	206	187	170	154	139	126	113	102	916	0 I8 0	red jois	ion = (SF) (4	1.17	69	42	219	.75	.10	21.6
STANDARD MULTIPLE SPAINS MULTIPLE SPAIN MULTIPLE SPAINS MULTIPLE SPAIN MULTIPLE SPAINS MULTIPLE SPAINS MULTIPLE SPAINS MULTIPLE SPAINS MULTIPLE SPAINS MULTIPLE SPAIN MULTIPLE SPAINS MULTIPLE SPAINS M	LOAD	0" Total	s==	10 10 # #	1.18	1	800	228 0 206	185	166	149	134	611	901	6	83.0	12	63	54 0	0 1 0	kness	defiect	0 CF	1.01	.60	7.10	195	62	08	21.7
STANDARD MILTIPLE SPANS 30° Forms + 6° Rb @ 3 MULTIPLE SPANS An Compare state superimeration and the maximum state state state state state state state and the maximum state stat	6" cc DSED	ab = 23	4 0	# # 4 10	93	1	185	141	130	114	001	88	92	- 59 0	530	9.60	o				or spec	elastic	ETE	.80	.47	.29	162	51	07	21.7
STANDARD MULTIPLE SPANS MULTIPLE SPANS MULTIPLE SPANS MULTIPLE SPANS MULTIPLE SPANS MULTIPLE SPANS MULTIPLE SPANS MULTIPLE M	ib @ 3 ERIMPO	0" Top SI	End	Span Defi.	(3)		0 760	1.119	2.625	4.278	6.089	8.067	0.222	2.565	5.105	7,853	0.822	14.022	\$7.464	1.162	is poor is f	acity at	ONCH							
STANDARD MULTIPLE SPANS 30° Forms NULTIPLE SPANS FACTORED USABLE MULTIPLE SPANS FACTORED USABLE MULTIPLE SPANS Son beap State State # 4 # 5 OTTOLIL # 4 # 4 # 5 # 4 # 5 ANS State # 5 # 6 # 6 # 7 # 9 # 7 ANS State # 5 # 6 # 6 # 7 # 9 # 7 </td <td>+ 6" R SUPE</td> <td>R4b + 3.</td> <td>9</td> <td></td> <td>69</td> <td>1</td> <td>- 12</td> <td>-</td> <td>63</td> <td>- 655</td> <td>1 0 0 0</td> <td>912</td> <td>197 2</td> <td>08</td> <td>10</td> <td>0.07</td> <td>35.0</td> <td>53.0</td> <td>111</td> <td>0 00 0</td> <td>econd l ove hor</td> <td>+Cap</td> <td>ON CO</td> <td>1.44</td> <td>85</td> <td>52</td> <td>254</td> <td>1.20</td> <td>.15</td> <td>21.6</td>	+ 6" R SUPE	R4b + 3.	9		69	1	- 12	-	63	- 655	1 0 0 0	912	197 2	08	10	0.07	35.0	53.0	111	0 00 0	econd l ove hor	+Cap	ON CO	1.44	85	52	254	1.20	.15	21.6
STANDARD 30° F STANDARD 30° F Stan WAY JOSTS (n) ALUTHE SPARS ALUTHE SPARS FACTORED U ALS State # 4 # 4 ALS State # 5 # 6 1 2 ALS State # 5 # 6 1 2 1 2 ALS AL # 7 # 1 # 1 2 1 2 1 ALS AL # 6 # 7 1 12 1 12 1 12 1 1 AL AL # 7 1 11 1 17 1 12 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	orms	Deep	5.0	9 1	- 14	SPAN	78	200	0 8	0 80	0 88 0	220	24	30	- in o	200		. 8 .	19	0 2 0	e 8-1. ends; s ired ab		DESI	1 24	.73	42	228	1 01	13	21.6
STANDARD MIC MAX JOSTS "I MULTIPLE SPANS FACTO MAUTIPLE SPANS FACTO MULTIPLE SPANS FACTO Jac 0 117 117 Jac 0 117 1187 2 Jac 0 117 1187 2 Jac 0 117 1187 2 Jac 0 2 2 2 2 Jac 0 2 2	30° F	20	4 1	0 0	23 1	END	C SI	80 0 19	0 12	0 89 0		1 12 1	12	9.90	16	19	0 18 0	0 15 0	- œ	000	re Joist not requ		SFOR	1 03	19	3	199	88	=	21.6
STANDARD STANDARD NULTHE SPARS 6 ALUTHE SPARS 5 ALUTHE SPARS 6	õ		7 00	10 10			1 1 2	20.00	0 5	0.0	280	9.90	11	30	3 13 1	94	0				erties. a rd squa fion is r s).	All	ERTIE	6	53	32	179	75	.10	21.6
NE STANDARD STANDARD MULTIPIE SPAN MULTIPIE SPAN AIS AIS AIS AIS AIS AIS AIS AIS	AC		-		-		1 24	0.0	0 12	0 12 0	2 13 0	2 22 0	40	2						-	an prop standa i deflect or span	ir capac	PROP	72	5	20	149	62	08	21.7
STANDO STANDO ANS MAUCHAELE ANS ANS ANS ANS ANS ANS ANS ANS ANS ANS	EAC		10	10 0	.62		1.00								_				_		ectic s for on of nteri	shea		12 2	12	-	_	- 3	-	
	DISTS (1) FAC		7 8 8 (5	* *	8	2	1		177.5												S 10 15 10 10	31		9 2	民	ED :	1	NEN.		Z
	TANDARD VAY JOISTS ⁰¹ FAC		Size # 4	11 11 14 14 11 12	-0 - 8E	R SPAN	10.0	a 0 2 -	0.5	0.0	0.1	0.0	0.0	0 2	0.0	0.6	0.0	.0.1	.0.7	0.5	or gross s inst load it omputation 21 for it xclusive o	trolled by		VE LIDAR	WINE TORI	(TAPERED	CH NUR	VE MOMEN	TEEL S.	CR KOR

2002 CRSI Handbook Design Table

			concrete	sq. ft	ANELS	0.981 0.981 1.000 1.019 1.063	0.981 1.000 1.060 1.063	1.000 1.019 1.019 1.063	1.000 1.019 1.019 1.063	1.000 1.019 1.019 1.063	1.019 1.019 1.019 1.063	
IEL		(.W.)	Total	(jsd)	ROP PA	2.53 2.58 3.51 4.23 4.91	2.64 3.08 3.91 5.28 5.28	2.63 3.30 4.04 5.75	2.69 3.46 4.39 5.35 6.19	2.93 3.70 4.70 5.81	3.07 4.06 5.30 6.08	
R PAN	0.02.00	ARS (E.	e Strip	Bottom	WEEN D	11-#5 11-#5 13-#5 11-#6 18-#5	12-#5 12-#5 15-#5 18-#5 20-#5	12.#5 13.#5 16.#5 14.#6 12.#7	12.#5 15.#5 18.#5 13.#7 13.#7	13#5 16#5 20#5 13#7	14-#5 18-#5 12-#7 11-#8	
ERIOF Panel	eams	NG B/	Middle	Top	TH BET	11-#5 13-#5 15-#5 10-#7 11-#7	12-#5 10-#6 12-#6 11-#7 10-#8	12#5 11#6 10#7 12#7 11#8	13-#5 12-#6 15-#6 18-#6 12-#8	15-#5 19-#5 13-#7 12-#8	16#5 11#7 11#8 16#7	
h Drop	No B	IFORC	n Strip	Bottom	AB DEF	13-#5 16-#5 14-#6 17-#6 12-#8	14-#5 18-#5 12-#7 11-#8 10-#9	11-#6 20-#5 10-#8 10-#9 14-#8	17.#5 22.#5 15.#7 11.#9 13.#9	19-#5 13-#7 22-#6 12-#9	11.47 11.48 11.49 13.49	
UARE		REIN	Colum	Top	DTAL SI	17-#5 15-#6 23.#5 13-#7 15-#7	13-#6 15-#6 26-#5 15-#7 13-#8	18-#5 17-#6 26-#5 22-#6 15-#8	20.#5 17.#6 15.#7 14.#8 16.#8	16-#6 26-#5 17-#7 16-#8	16-#6 15-#7 15-#8 17-#8	
SQI		(2)	Column	Size (in.)	in. = T	12 22 27	12 22 23 23	27 25 27 27	23 23 23 23	25 23 1 3	12 28 28	
		Factored	posed	(bsd)	<i>h</i> = 11	200 200 500 200 200 200	100 200 500	100 200 500 500	100 200 300 500	400 300 400	100 200 300 400	
		IS	lint	(1-k)		529.4 683.6 844.3 1002.8 1159.1	589.7 764.5 942.2 1121.1 1290.8	656.9 849.4 1046.4 1247.2 1423.4	726.5 942.8 1159.2 1370.1 1555.5	800.8 1040.4 1276.2 1500.9	883.4 1144.4 1393.1 1626.1	
		OMENI	Bot	(H-K)		393.2 507.8 627.2 744.9 861.0	438.0 567.9 699.9 832.8 958.9	488.0 631.0 777.3 926.5 1057.4	539.7 700.4 861.1 1017.8 1155.5	594.9 772.9 948.0 1115.0	656.2 850.1 1034.9 1207.9	
Panels		Ň	Edge	(f -k)		196.6 253.9 313.6 372.5 430.5	219.0 283.9 350.0 416.4 479.4	244.0 315.5 388.7 463.2 528.7	269.8 350.2 430.5 508.9 577.8	297.4 386.4 474.0 557.5	328.1 425.1 517.4 604.0	
M Drop			Total	(jsd)	s	2.77 3.42 4.07 5.76	2.94 3.64 5.28 6.17	3.03 3.81 5.72 6.64	3.20 4.08 5.21 7.23	3.38 4.34 5.51	3.61 4.68 6.04 7.02	
/STEI With		(E. W.)	e Strip	월 달	PANEL	11-#5 10-#6 12-#6 14-#6 10-#8	12-#5 15-#5 10-#7 12-#7 11-#8	13-#5 12-#6 11-#7 18-#6 12-#8	14#5 19#5 13#7 12#8 13#8	11#6 11#7 18#6 16#7	13-#6 12-#7 112-#8 11-#9	
AB S)	Beams	BARS	Middle	Bottom	N DROF	13-#5 16-#5 14-#6 10-#8 12-#8	10-#6 10-#7 12-#7 11-#8 13-#8	11-#6 20:#5 10:#9 10:#9 14:#8	12-#6 12-#7 12-#8 11-#9 13-#9	19-#5 13-#7 16-#7 12-#9	11-#7 11-#8 13-#9	
T SL/	No	RCING	(1)	e 날	BETWEE	18-#5 23-#5 18-#6 27-#5 13-#8	14.#6 23.#5 15.#7 16.#7 14.#8	14#6 18#6 15#7 14#8 16#8	16-#6 18-#6 17-#7 15-#8 15-#8	17#6 15#7 18#7 17#8	17-#6 22-#6 16-#8 18-#8	
FLA		EINFOI	umn Strip	Bottom	JEPTH E	19-#5 10-#8 16-#7 12-#9 14-#9	2#11 2#12 14#8 14#8 14#8 14#8	17-#6 16-#7 13.#9 19-#8 18-#9	11-#8 14-#8 14-#9 17-#9 20-#9	15-#7 20-#7 16-#9 23-#8	13-#8 17-#8 21-#9 21-#9	
UARE		æ	Col	+	L SLAB I	13.#5 2 13.#5 4 13.#5 1 14.#5 1 16.#5 3	13.#5 3 13.#5 3 14.#5 5 15.#5 4 17.#5 4	14-#5 1 14-#5 4 14-#5 3 17-#5 4 19-#5 5	14-#5 3 14-#5 2 16#5 3 18#5 6 15#6 4	15#5 5 15#5 3 17#5 6 20#5 4	15-#5 4 15-#5 5 19-#5 5 22-#5 5	
sç			Column	1,1	= TOTA	0.761 0.777 0.643 0.696	0.797 0.688 0.776 0.698 0.698	0.710 0.751 0.638 0.747 0.747	0.767 0.639 0.633 0.733 0.737	0.811 0.688 0.756 0.756	0.753 0.765 0.721 0.689	
		6	Square	(in)	= 11 in.	12 18 23 23 23 23	23 23 23 23 23 23 23 23 23 23 23 23 23 2	28 25 56 12	12 24 29 29	12 20 27 27	12 16 30	
. <u>S</u> . S	_	Deco	nel	(ų)	4	933 933 120	967 967 967 967 967 967	10.00 10.00 12.00 12.00	10 33 10 33 12 40 12 40	10.67 10.67 10.67 12.80	11 00 11 00 13 20	
000 p 0 Bar		Sound	Par	(iii)		7.00 11.00 11.00	0001 0001 0001 0001	00 6 00 1 00 1 00 1 1 00 1 1	00 11 00 11 00 11	00 6 00 11 00 11	0000	
= 4,1 ade 60		Factorian	presed	(Jac)		000000000000000000000000000000000000000	200 00 00 00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	888888	100 000 100 000 100 000	300 2007	
یہ D		SPAM	0.0	(II)		33333	22222	38888	333335	32 32 32 32	33.33	

CONCRETE REINFORCING STEEL INSTITUTE

10-27

20 of 21

-

2002 CRSI Handbook Design Table

M			Span Factored Squ	Columns imposed (1)	$\ell_1 = \ell_2 \qquad \begin{array}{c c} Load \\ (ft) \\ (ft) \\ (ft) \\ (psf) \\ (psf) \\ (m.) \end{array}$	Total Depth = 13 in. Rib Depth = 10 in.	I8- 0* 50 186 12 D= 6.300 100 136 12 PIE 8.04 150 136 12 COLUMA UNE 200 136 12 0.597 CFSF 300 136 12 0.597 CFSF 300 256 12	21-0* 50 134 12 D= 9,00 100 134 12 BR NOT 0N 150 134 12 COULMAIL LINE 200 219 12 COULMAIL LINE 300 219 12 0.637 OF/SF 400 3.13 12	24'-0" 50 1122 12 P= 9,500 100 1.93 12 RB M01 0M 196 2.52 12 COLUMN UNE 200 3.52 12 0.613 CF/SF 400 4.07 16	Z7. 07 50 1.96 13 D = 2.00 D = 2.01 D = 2.13 13 RBR NDT HO 2.22 13 RBR NDT HO 2.20 3.03 13 RDBR NDT 2.00 3.03 13 13 RDBR NDT 2.00 3.03 13 13 COULMALINE 2.00 3.03 13 13	30 ⁴ 0 ⁴ 50 212 15 P=12.500 100 231 15 Recont 100 231 15 Recontant 150 235 15 0.624 CHSF	33-0 50 255 16 D=12.900 100 271 16 RB 0N 100 271 16 RB 0N 150 3.42 19 0.090 CF/SF 200 4.05 25	36. 0° 50 252 18. 0=12.500 100 3.15 19. RBB 0N 119 333 27* 0.001 MM 1NF																				
AFFL			are Edge C		Ϋ́	0	0.664 0.687 0.711 0.711 0.735 0.782 0.782 0.830	0.735 0.735 0.763 0.763 0.763 0.763 0.878 0.874 0.634	0.801 0.831 0.862 0.862 0.892 0.634 0.628	0.824 0.850 0.896 0.632 0.626	0.829 0.887 0.933 0.626	0.867 0.922 0.931 0.621	0.875 0.926 0.620																				
E FLA			Column	10	Stirrups	dal Slab De						3541	3541																				
AT SLA				Top	No size +	pth = 3 in.	13-45+ 0 13-45+ 0 13-45+ 0 13-45+ 0 13-45+ 0 13-45+ 0	15-45+0 15-45+0 15-45+0 15-45+0 15-45+0	18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0 18-#5+ 0	20-85+ 0 20-85+ 0 20-85+ 0 20-85+ 0 20-85+ 1	22-#5+ 0 22-#5+ 6 22-#5+ 6 22-#5+ 3	25-#5+ 2 25-#5+ 6 25-#5+ 0 25-#5+ 0 25-#5+ 0	27-#5+ 3 27-#5+ 9 27-#5+ 5																				
BSBS			Colum		No. F		~~~~~	*****		****	- -	ഹനന	ъъъ																				
YSTEN ANELS	AINELO	Reinforcine	in Strip	ottom	Sars per Rib		2-#4 2-#4 2-#5 2-#5 -#5 and 1-#6 -#6 and 1-#6	2-#4 2-#5 2-#5 2-#5 and 1-#6 2-#7	1-#4 and 1-#5 2-#5 2-#6 -#6 and 1-#7 2-#9 2-#9	2-85 2-85 2-85 2-85 2-85 2-85 2-85 2-85	-#5 and 1-#6 2-#6 2-#7 2-#8	2-#6 2-#7 2-#8 2-#9	2-47 2-48 2-49																				
30		Bars-		Top	No		13-#5 13-#5 13-#5 13-#5 13-#5	15-85 15-85	18-#5 18-#5 18-#5 18-#5 16-#6 20-#6	20-#5 20-#5 20-#5 25-#5 25-#5	22-45 23-45 28-45 24-45	25-#5 31-#5 27-#6 32-#6	31-#5 40-#5 36-#6																				
×		Each D		Be	No. L Ribs B		~~~~~~	~~~~~	च च च च च च च	പപപംപ	ດດອອ	0000	~~~																				
30		irection	Middle	ttom	Bars E		******	****	52252525	찵봋췽훉뷶	22 S S S S	# # # #	22 FE																				
No.		_	Strip	To	ars siz		2111110 2111110 2111110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 211110 21110 21110 2110 2110 2110 2110 2110 2100 2110 2100 2100 2100 200000000	111111111 1111111111111111111111111111	2229925 222925	#4 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5	#5 9 9 475	#5 10 #5 10 #7 15	#8 #5																				
ds: (ł		-	P -	B∉ S . a		នំដូននេស ិង	សំសំសំសំសំសំ	***	*****	8888	2006	848 8000																				
			Mom	*	1 + N () () () () () () () () () () () () () (1 +N 1 +N () +1		A + 4 99 80		A + A Be K) (ft-1		A +h 3e Bo (ft-1		(B-1		A + 1 39 Boi (A-1		1980 (H-190		(1-1 (1-1		() () () () () () () () () () () () () (A + 10 (1-10 (1-10)		45 11 45 11 70 11 237 237	4287845 42593254	1231308	40 888 33 33 34 49 49 49 49 49 49 49 49 49 49 49 49 49	821738	31 4 4 33 4 4 3	6003
ibs (ents	- W	K) (H-H		2385 12 9 385 12 9 385 18 12 9 385 12 9 38	88233333 882333333 885333333	565 35 24 18 57 35 26 38 58 39 38 59 39 38	1223338	8843	62 62 62 62 62 62 62 62 62 62 62 62 62 6	261 82																				
6) -	+			5	(ps	Tot	001100	2122200	220000	-0000 -0000	9926	3399	9993																				
.9	-		Inte	-	el C.= 1	al Depth	2222222	8888888 555555	122255588	2012 2013 2013 2013 2013 2013 2013 2013	12222	06 16 07 16 18 18	16 18 52 18 18																				
IOS	nde l	Square	rior Column	107	Stirups	= 13 in.	3354	3354 355 555	5000 5000 5000 5000 5000 5000 5000 500	3541	384	3333	33311																				
IARF	AHE	1			No. Ribs	Ξ.			** ** ** ** **	****	10 10 10 10	ພາຍາຍາຍ	നനംഗ																				
INTERIO		Reinforcin	Column Strip	Bottom	Bars per Rib	b Depth = 10 in.	요구가 Duce 22가 나누고 나누고 나누고	2-#1 2-#1 2-#1 2-#5 2-#5 2-#6	2:41 2:45 2:45 1:45 and 1:46 1:45 and 1:47 2:47	871 per 271 251 per 271 871 per 871 572 172	1-1 2nd 1-1 2-2 3-2 1-4 2nd 1-1 1-4	Sec. Back Targ	1-45 and 1-46 1-41 and 1-41 1-41 and 1-43																				
S D D D	HFA	g Bars-		dol 1	110 110 Size		200000 20000 20000 2000 2000 2000 2000	******	10 10	###### 888805	的 的 的 的 的 的 的 的 的	10.850 10.8500 10.8500 10.8500 10.8500 10.8500 10.8500 10.8500 10.8500 10.8500	89.95 89.55 89.55																				
NFI		-Each			No.	Fotal S	en) en en en en en	10 (9 19 19 19 19 11 II.	** ** ** ** ** **	ininin inin	າດທາກ	00000	1-1-1-																				
e 60	0	Disectiv	Mete	Bottom	Leng Rack	lah Der	17 10 17 17 11 17	21-22-22-22-22-22	ज म क क क €	전 17 17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	11 11 45 AS	<u> </u>	<u>11</u> 12 17:																				
Bar		5	Ship		1 K	1 - 3	202004	11111111	7752644	12 47 47 47 W	17 27 69 U	297979 1	10 40 al																				
118			e.	lop	No	3.5	1241249-124	9999999 22222	State State State	いいちので	時時時間	학학원들 요리다운	二13世 (1999年)																				

11-20

CONCRETE REINFORCING STE