

SEAN T HOWARD
STRUCTURAL EMPHASIS
ADVISOR: DR. LINDA HANAGAN

æ CLASS OF 2006

(ROOF OF THE FEDERAL BUILDING, CHICAGO 2004)

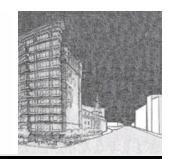
PRESENTATION OUTLINE

Building Information

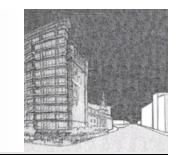
Existing Building

Problem Statement/Solution

Mechanical Breadth


Architectural Breadth

Post Tension Depth Study


Conclusions

Questions

BUILDING INFORMATION

PROJECT TEAM

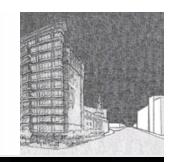
Owner

Managing Group

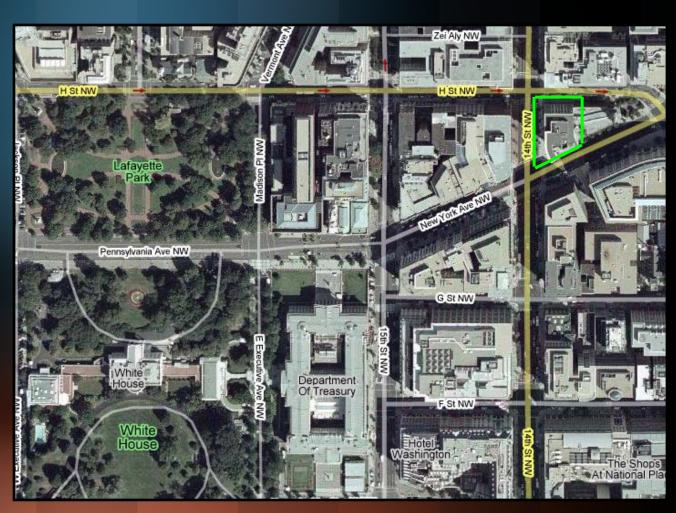
Architects

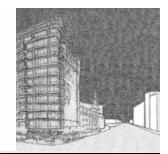
Structural Eng.

MEP Eng.

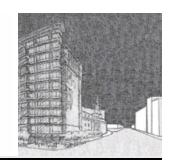

1399 New York Ave Asso.

Kaempfer Company

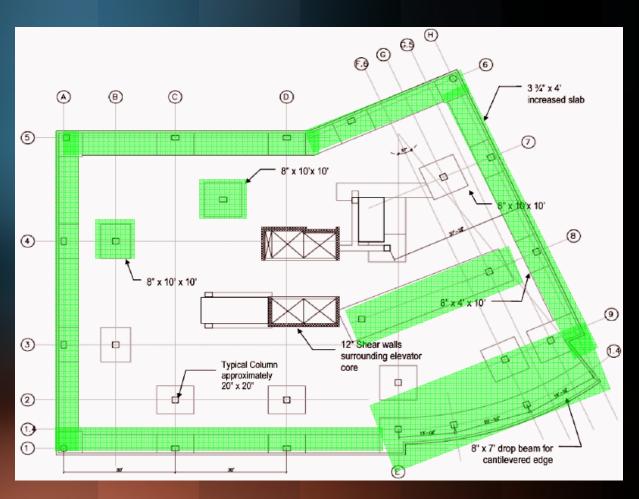

HOK

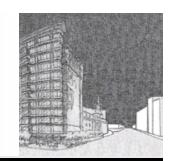

Tadger, Cohen, & Edelson

GHT, LTD.



- -2 blocks from white house
- -Class A office building
- -One of highest rents in DC; office, \$47 per sf-month & retail \$38 per sf-month
- -132,000 sqft
- -11 story



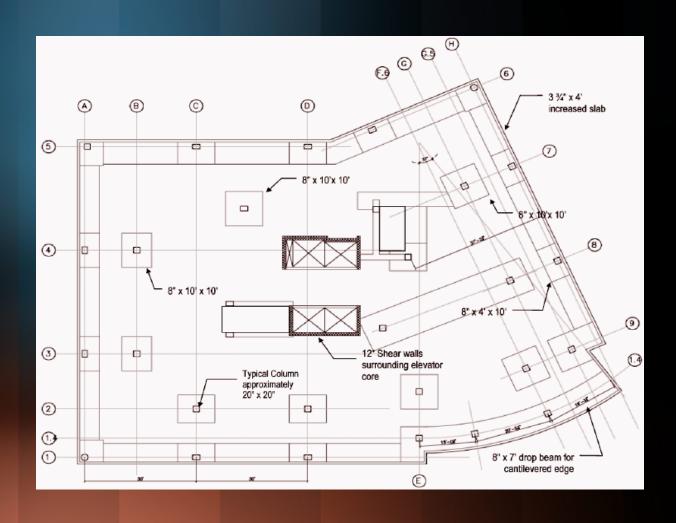


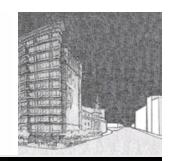
EXISTING BUILDING

- -8" flat slab with 8" drop panels
- -3 ¾ perimeter beams
- -8" drops at column line 8 and at the curved section with a 19' cantilever

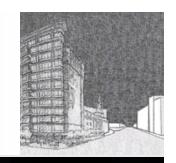
-Concrete flat slab w/ drops, F'c=4000psi

-Shears walls extend full height of building

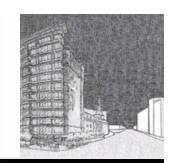

-F'c for Columns and shear walls:


Levels

1-4 8000 psi

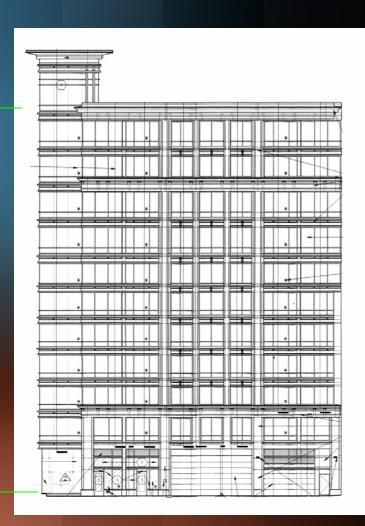

5-7 6000 psi

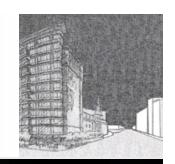
8-11 4000 psi


PROBLEM STATEMENT AND SOLUTION

DC HEIGHT RESTRICTIONS

- -Based on width of adjacent road
- -New York Ave ~ 100'
- -Height is width of road plus 30'
- -Max. height = 130'
- -Building under restriction by 1' 4"

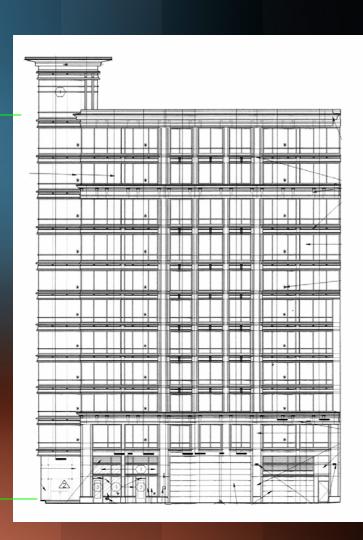


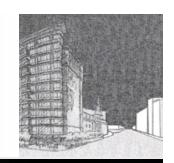

PROBLEM

Owners request the maximum number of floors obtainable

Rent for building:
Office \$47/sqft
Retail \$38/sqft

128' - 8"


PROPOSAL


Add a 12th floor typical to levels 3-9

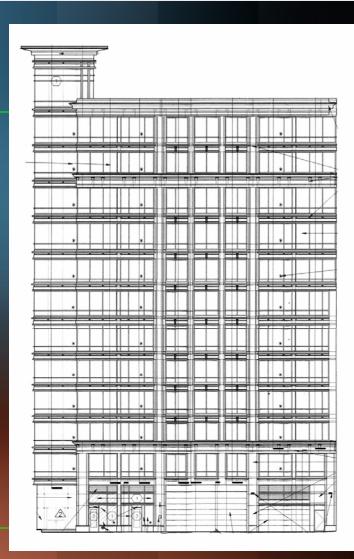
ADVANTAGE

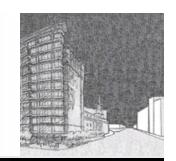
Added rentable floor area to building equivalent to 11750sqft

128' - 8"

PROPOSAL

Add a 12th floor typical to levels 3-9

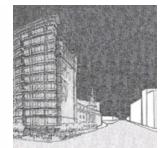

ADVANTAGE


Added rentable floor area to building equivalent to 11750sqft

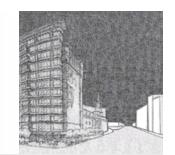
REQUIREMENTS

A reduction of at least 11' - 0"

Under 130'


SOLUTION

Mechanical Breadth Rerouting of MEP ducts per floor

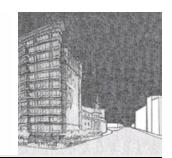

Architectural Breadth
Design of new
entrance into
Retail 2

Structural Depth
Conversion of flat
slab to a post
tension system

MECHANICAL BREADTH

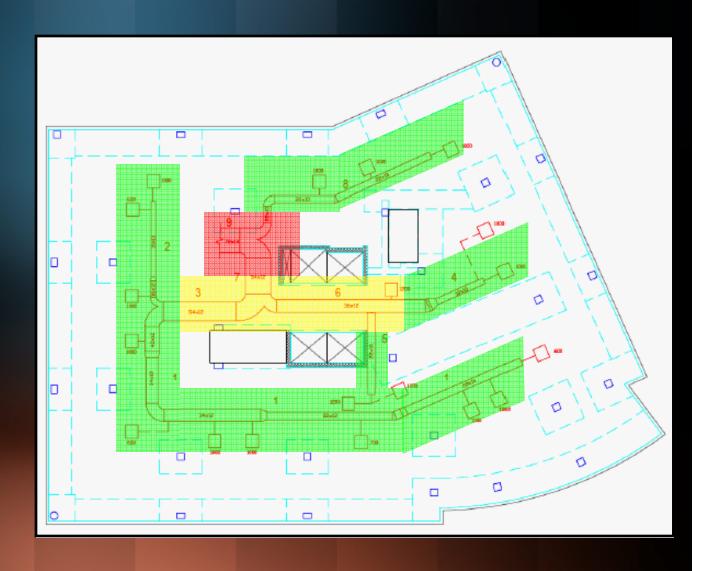
DESIGN GOALS

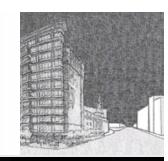
-Reduce ceiling depth by 4"


DESIGN PARAMETERS

-Not exceed 4:1 duct ratio

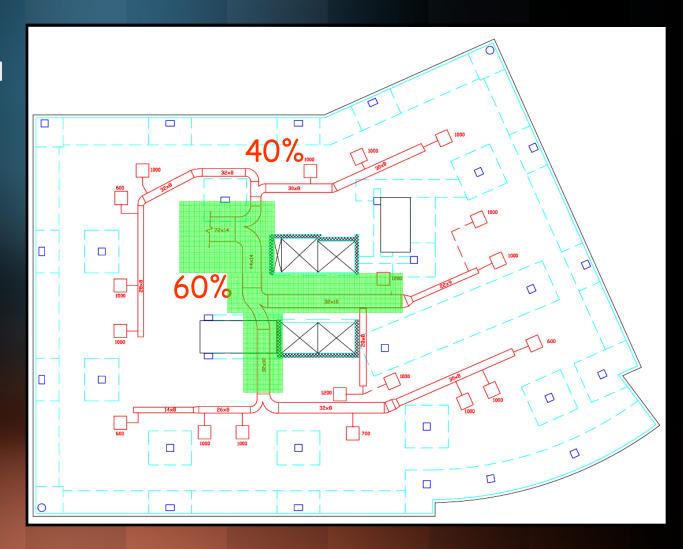
EXISTING LAYOUT

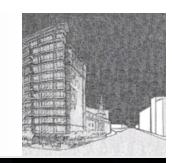

-Current depths for ducts are 12"



AREAS DIVIDED BY AIR VELOCITY Controls

- 3100 cfm
- 2700 cfm
- 2300 cfm

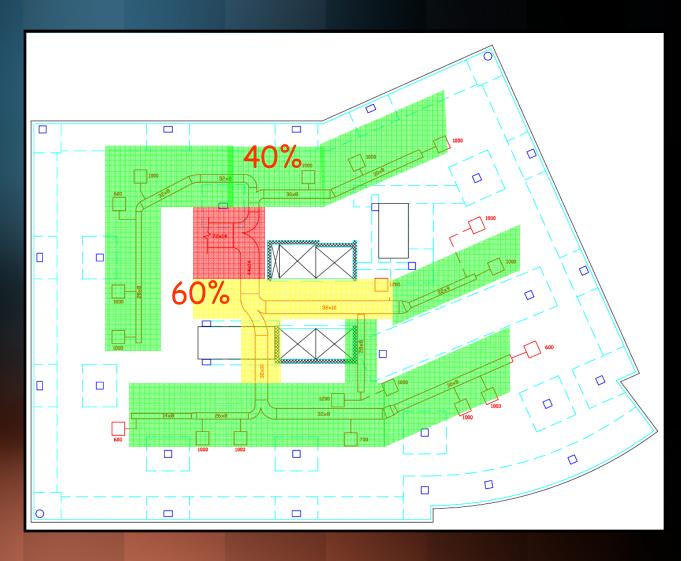


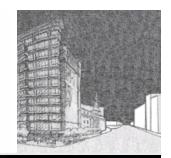

BULKHEAD DESIGN

-4" bulkhead designed for restroom

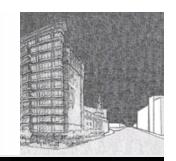
-2" bulkhead designed for corridor

Allowed redistribution of air

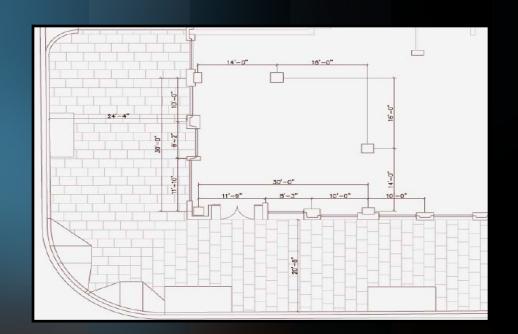


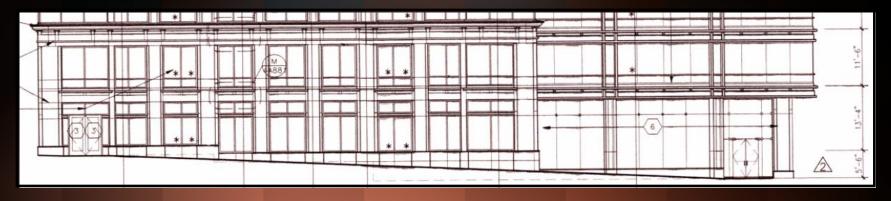

NEW DESIGN W/ SIMILAR AIR VELOCITIES

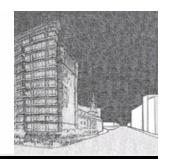
Controls


- 3000 cfm
- 2800 cfm
- 2200 cfm

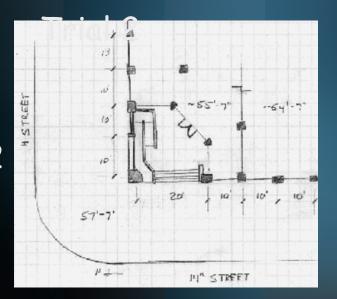
Building reduction, 4" per floor times 12 floors, 4' - 0"

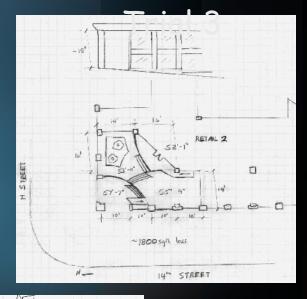

ARCHITECTURAL BREADTH

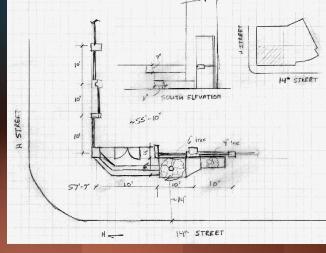


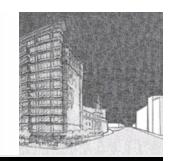

DESIGN GOALS
-Reduce building
height 5' - 6"

DESIGN PARAMETERS

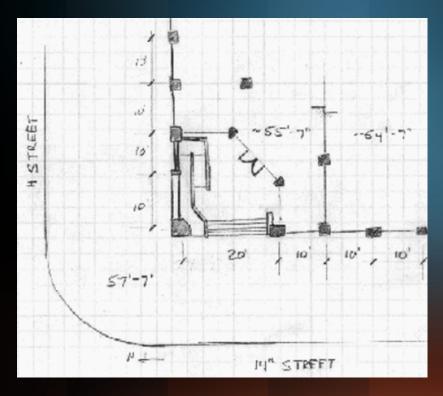

- -Aim to not distort overall design
- -Minimize floor area lost

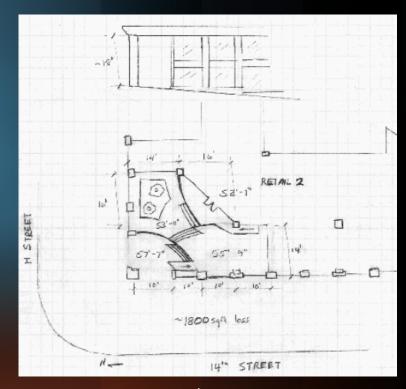



Trial 2

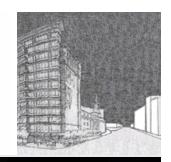


Trial 3

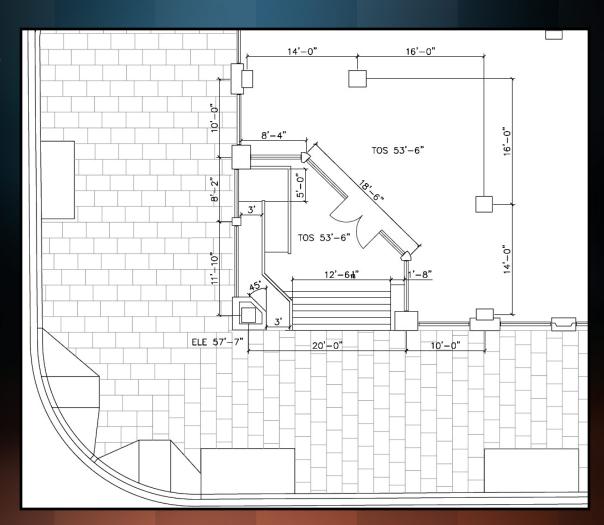

Trial 1

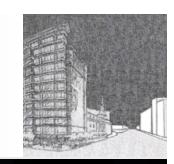

Sketched but did not meet code

Trial 2

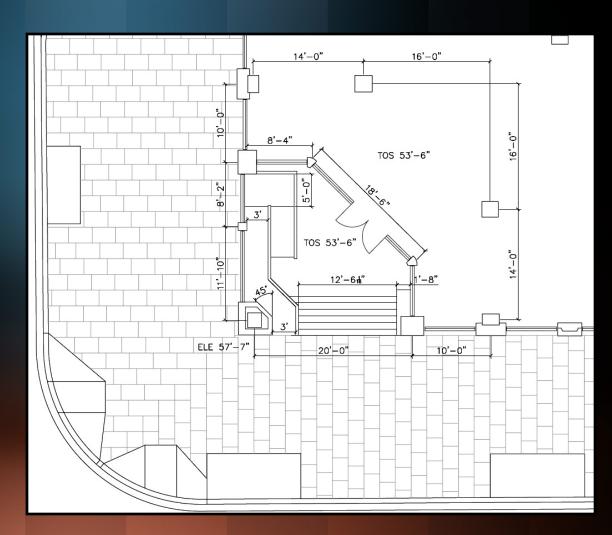


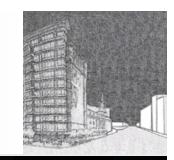
Trial 3

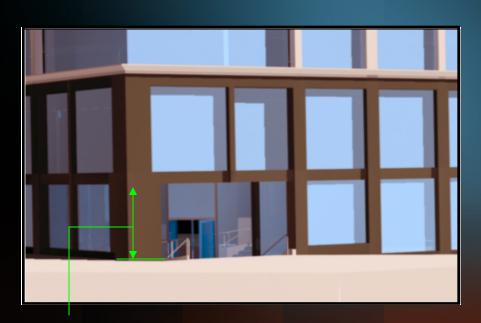



-Requires section of 2nd floor removed to meet 8' headroom by code

-1800 sqft of lost rentable floor area

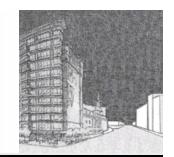

TRIAL 2

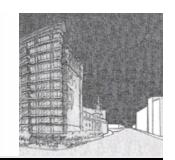




TRIAL 2

- -400 sqft of rentable area lost to construction
- -At \$38per sqft
- -yields \$16,700
- -Building reduction, 4' 1"



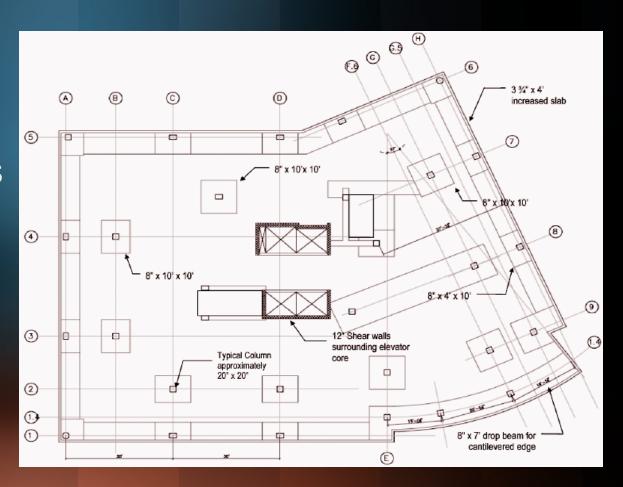


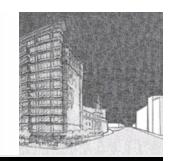
8' - 9"

VIZ Rendering of new entrance

POST TENSION DEPTH STUDY

DESIGN GOALS

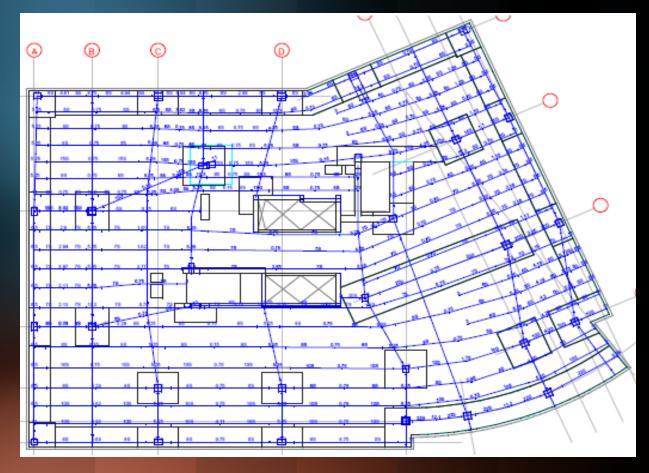

-Reduce slab thickness by 3"

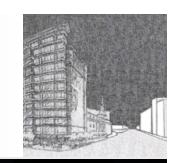

DESIGN PARAMETERS

-Deflection Criteria of L/360

DESIGN METHOD

-Use of RAM
Concept to
perform a finite
analysis on slab

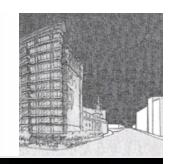



DESIGN CHALLENGES

- -Column layout irregular in building
- -Creating column strips to fit column layout

RESULT

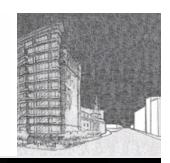
-Trail One tendon layout w/ similar discontinuity


TRIAL ONE CONCERNS

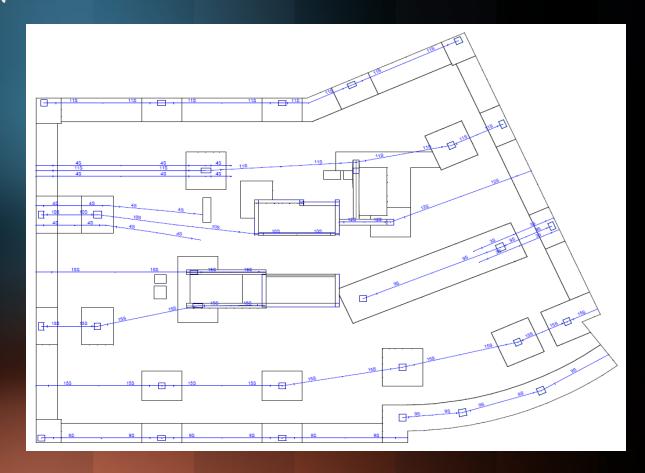
- -Column line C
- -Column D
- -Areas with drastic tendon direction changes

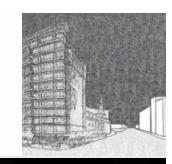
CONCLUSION

- -Attempt to run tendon in opposite direction
- -Reduce slab by 2"



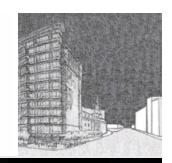
TRIAL TWO VS. TRIAL ONE


- -More successful than Trial One
- -Easier to bend tendons around openings
- -Tendon free corridor
- -Smoother transition at 24° skew in building

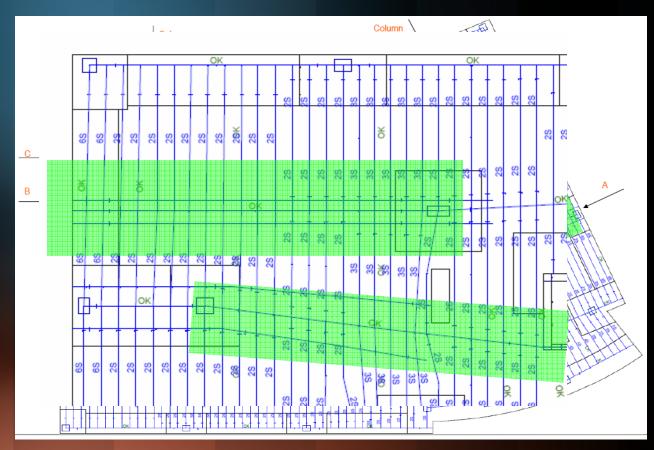


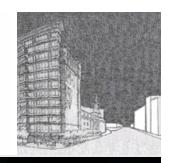
TRIAL TWO DESIGN

- -Maximum
 bundle was 15
 strands;
 typically 10
 strands
- -Banded direction is 1 strand per foot in the longitude direction



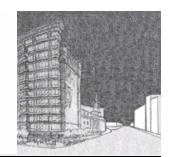
TRIAL TWO DESIGN


- -Maximum
 bundle was 15
 strands;
 typically 10
 strands
- -Banded direction is 1 strand per foot in the longitude direction



TRIAL TWO DESIGN

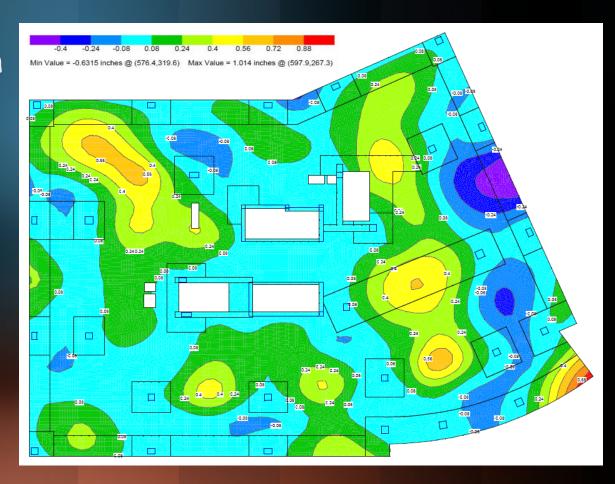
- -Positive balancing loads at sections A&B
- -Abditional tendons at that spansoto sections and fail
 - Long spans failing in deflection, additional strands were added



TRIAL TWO DESIGN

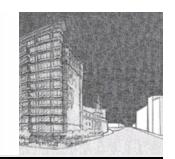
-Positive balancing loads at sections A&B

Long span causing shorter span to chamber and fail



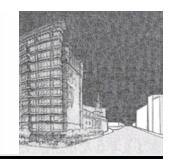
DEFLECTION PLAN

- -Largest Deflection is 0.97"
- -less than deflection criteria of L/360


Building drifts were 4.30", less than 4.5"

Building reduction of 2" per floor

CONCLUSIONS


COST ESTIMATIONS

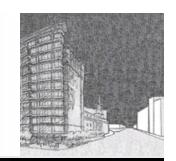
Flat Slab	Units	Materials	Labor	Equip	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	354.8		134824
Post tension	I.B	0.46	0.7	0.03	1.85	0		0
Steel reinforcement	tons	850	305	0	1475	23.17		34175.75
General condition	days						<u>+</u> 0	0
								\$168,999.75

Flat Slab w/ Post Tension	Units	Materials	Labor	Equip	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	308.4		117192
Post tension	I.B	0.46	0.7	0.03	1.85	12510		23143.5
Steel reinforcement	tons	850	305	0	1475	12.56		18526
General condition	days						+30	100,000
								\$258,861.50
								\$89,861.75

LOSSES

Structure cost Arch. Breadth $$90,000 \times 12 floors = $1,080,000$ $$38/sf \times 400sf = $16,700/month$

COST ESTIMATIONS


Flat Slab	Units	Materials	Labor	Equip	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	354.8		134824
Post tension	L.B	0.46	0.7	0.03	1.85	0		0
Steel reinforcement	tons	850	305	0	1475	23.17		34175.75
General condition	days						<u>+</u> 0	0
								\$168,999.75

Flat Slab w/ Post Tension	Units	Materials	Labor	Equip	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	308.4		117192
Post tension	I.B	0.46	0.7	0.03	1.85	12510		23143.5
Steel reinforcement	tons	850	305	0	1475	12.56		18526
General condition	days						+30	100,000
								\$258,861.50
								\$89,861.75

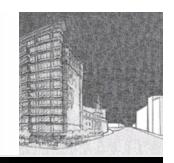
GAINS

12th Floor

\$47/sf x 11750sf = \$552,250/month

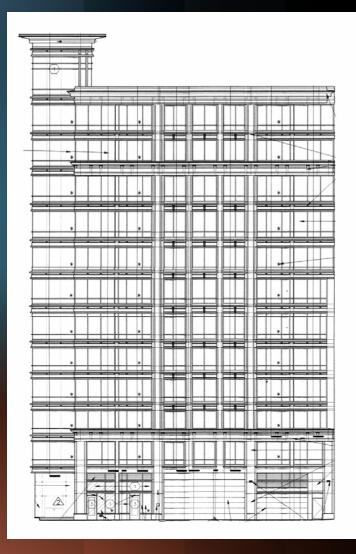
COST ESTIMATIONS

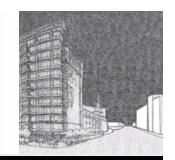
Flat Slab	Units	Materials	Labor	Equ i p	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	354.8		134824
Post tension	L.B	0.46	0.7	0.03	1.85	0		0
Steel reinforcement	tons	850	305	0	1475	23.17		34175.75
General condition	days						<u>+</u> 0	0
								\$168,999.75


Flat Slab w/ Post Tension	Units	Materials	Labor	Equip	Total w/ O&P	Amount	Schedule	Cost
Concrete cost with forms	CY	190	90.5	16.5	380	308.4		117192
Post tension	I.B	0.46	0.7	0.03	1.85	12510		23143.5
Steel reinforcement	tons	850	305	0	1475	12.56		18526
General condition	days						+30	100,000
								\$258,861.50
								\$89,861.75

NET GAINS

\$552,250 - 16,700 = \$535,550/month

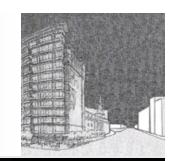

TIME TO BREAK EVEN


\$1,080,000 = 2.02 months \$535,550/month

BUILDING HEIGHT SUMMARY

	Orginal Height	Arch. Breadth	Mech. Breadth	Post Tension	New Floor Heights
12	1	/	- 4"	- 2"	11' - 0"
11	11' - 6"	/	- 4"	- 2"	11' - O"
10	11' - 6"	\	- 4"	- 2"	11' - O"
9	11' - 6"		- 4"	- 2"	11' - O"
8	11' - 6"	/	- 4"	- 2"	11' - 0"
7	11' - 6"	/	- 4"	- 2"	11' - O"
6	11' - 6"	/	- 4"	- 2"	11' - 0"
5	11' - 6"	/	- 4"	- 2"	11' - O"
4	11' - 6"	/	- 4"	- 2"	11' - O"
3	11' - 6"	\	- 4"	- 2"	11' - O"
2	11' - 6"	/	- 4"	- 2"	11' - 0"
1	13' - 4"	- 4" - 1"	- 4"	- 2"	8' - 9"
	128' - 4"				

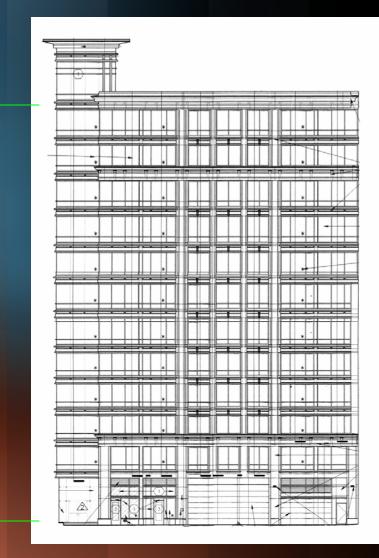


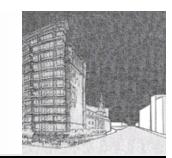


BUILDING HEIGHT SUMMARY

Building is under 130' maximum height limit

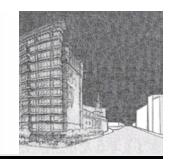
129' - 11"



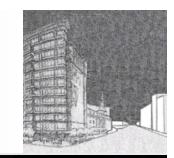


FINAL REMARKS

- -Proposal was successful
- -The result of this would be an additional \$500,000 per month for the owners

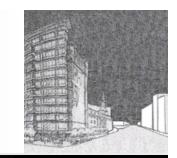


ACKNOWLEDGEMENTS


- -Renee Gibbs and Jason Lee
- -The staff of Mesen Associates
- -The AE Faculty
- -My Family
- -Becky
- -And finally, all the people that pulled me out of thesis when I needed, but didn't want to admit

QUESTION & ANSWER

(ROOF OF THE FEDERAL BUILDING, CHICAGO 2004)


LIGHTER STRUCTURE

$$11 \times 2'' = 22''$$

$$150pcf \times 16''/12'' = 200 psf$$

$$1.2 \times 200 - 1.6 \times 100 = 80 \text{ psf}$$

$$80psf \times 11800sf = 944kips$$

PUNCHING SHEAR CONTROLLED Reduction of 2" in slab

Used prestress punching shear equation

$$\forall c = (\beta p(f'c)^{\wedge}(1/2) + 0.3f_{pc})^{*}b_{o}^{*}d + \forall p$$
 11.12.2.2

$$2^{*}(f'c)^{\wedge}(1/2)^{*}b_{o}^{*}d$$
 11.12.3.1

Vc was acceptable for most column except for 1, 8, and 24

#4's @ 6" were required