Bronx School for Law Government & Justice

Yulien Wong Mechanical Option 2006 Senior Thesis

Bronx, New York

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

General Information

BACKGROUND

- Location: Bronx, NY
- 6 stories plus 1 mechanical penthouse
 & 1 floor below grade
- Approx. Size: 114,000 SF
- Occupied: Sept. 2003
- Estimated Cost: 75 million

PROJECT TEAM

- Owner: New York School Construction Authority
- Architect: The Hillier Group Architecture
- Structural Engineer: Ysrael A Seinuk, P.C.
- MEP/Telecom: Joseph R. Loring & Associates, Inc
- Civil Engineer: Langan Engineering
- Lighting: Lighting Design Collaborative
- Contractor: Silverite Construction

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

Existing Systems

- (2) 250 Ton -York Air Cooled Reciprocating Chillers
- (10) York AirPak packaged air handling units (AHU)
- (2) Duel-fired boilers

Air Handling Units (AHU)	Туре	Total [CFM]	Min. Outdoor Air [CFM]	OA %
AHU 1 [Classrooms & misc.]	VAV	48000	26000	54.2
AHU 2 [Classrooms & misc.]	VAV	19000	9000	47.4
AHU 3 [Gymnasium]	CAV	18500	7500	40.5
AHU 4 [Library]	CAV	3400	1020	30.0
AHU 5 [Lobby & Corridor]	CAV	12000	6900	57.5
AHU 6 [Kitchen]	CAV	5200/2600	5200/2600	100/100
AHU 7 [Administration]	VAV	12000	3800	31.7
AHU 8 [Dining]	CAV	6000	3360	56.0
AHU 9 [Plant Operations]	CAV	7200	2200	30.6
AHU-10 [Orchestra]	CAV	3100	1050	33.9
TOTAL		133440	66030	49.1

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

Proposed System

- Ice Thermal Energy Storage
 - Full Storage
 - Partial Storage
- Cold Air Distribution
 - Supply Air at 44°F vs. 55°F
 - Entering Chilled Water 39°F vs. 44°F

Design Goals

- Reduce high demand costs
- Downsize the needed chiller capacity
- Increase chiller efficiency
- Reduce energy consumption
- Minimize first cost

Design Procedure

- Screening Initial Economics
- Calculating Load Profiles
- Selecting Storage Type
- Selecting Operating Strategy
- Sizing Cooling Plant and Storage
- Determining Chiller & Equipment Parameters
- Sizing New Cooling Coils for Cold Air Distribution
- Laying Schematics
- Evaluating Economics
- Finalizing Design

Screening Initial Economics

Con Edison Electric Utility Rate for January 2006

On-Peak Demand Charge	\$12.17 per kW
On-Peak	\$0.183 per kWh
Off-Peak	\$0.147 per kWh

*New York State Energy Research and Power Authority

Calculating Load Profiles

Selecting Storage Type

- Chilled Water
- Ice Harvesting
- External Melt Ice-on-Coil
- Internal Melt Ice-on-Coil

Selecting Operating Strategy

- Full Storage
- Partial Storage

Sizing Cooling Plant & Storage

- Full Storage
- Partial Storage

Full Storage

- (2) 410 ton York propylene glycol chillers
- (2) 1400 gpm Marley cooling towers
- (6) 486 ton-hour Calmac IceBank (model 1500C) ice storage tanks
- (1) 162 ton-hour Calmac IceBank (model 1190C) ice storage tanks

Partial Storage

- (2) 240 ton York propylene glycol chillers
- (2) 800 gpm Marley cooling towers
- (3) 486 ton-hour Calmac IceBank (model 1500C) ice storage tanks
- (2) 162 ton-hour Calmac IceBank (model 1190C) ice storage tanks

Determining Chiller & Equipment Parameters

- "n+1" rule of thumb
- Chiller Upstream vs. Downstream
- Chiller Priority vs. Storage Priority

Sizing New Cooling Coils for Cold Air Distribution

	CFM	GPM	Sensible
Original Coil Data	134400	1096	4398.3
Redesigned Coil Data	103300	880.4	4473.1

Laying Schematics

Evaluating Economics

First Cost

	Conventional	Partial Storage	Full Storage
Total	\$2,260,237.00	\$2,110,891.00	\$2,352,824.00
Savings	-	\$149,346.00	-\$92,587.00

Operating Cost

	Conventional System	Partial Storage	Full Storage
Demand Cost (kW)	26,626.01	22,318.81	0.00
Operating Cost (kWh)	49,140.21	40,079.48	52,300.05
Total Annual Cost	75,766.22	62,398.29	52,300.05
Total Savings	-	13,367.94	23,466.17

Payback Period

	Partial Storage	Full Storage	
Payback (yrs)	-1.9	10.5	

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Electrical Considerations
- Construction Considerations
- Final Thought
- Questions & maybe answers

Structural Considerations

Existing Conditions

- Steel Frame & Concrete on Metal Deck
- Beams in Question: HSS 16 x 6 x 3/8

Required Design Flex Strength = 116.63 ft-k

Required Design Flex Capacity = 135.2 ft-k

HSS 16 x 6 x 3/8 IS OK!!

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

Construction Considerations

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

Electrical Considerations

Current System

- A 6000A, 208/120 V, 3 phase, 4 wire
- 208/480/277 V Transformer
- (2) 1200A Motor Control Centers

Only 40A Reduction Keep Original Designed 1200A MCC

	Original	New
AHU-4	15	10
AHU-5	45	35
AHU-6	15	10
AHU-7	20	15
AHU-8	35	25
AHU-9	15	10
AHU-10	10	10
RF-4	6	6
RF-5	10	10
RF-8	6	6
RF-9	10	10
RF-10	6	6
Unchanged Loads	846	846
Total	1039	999

- General Information
- Existing Systems
- Mechanical Redesign
- Structural Considerations
- Construction Considerations
- Electrical Considerations
- Final Thought
- Questions & maybe answers

Final Thought

Design Goals Met!!

- Reduce high demand costs
- Downsize the needed chiller capacity
- Increase chiller efficiency
- Reduce energy consumption
- Minimize first cost

Acknowledgements

Professors

- Dr. William P. Bahnfleth
- Dr. James D. Freihaut
- Dr. Stanley A. Mumma
- Dr. Jelena Srebric
- Dr. Jae-Weon "JJ" Jeong

Professional

Loring Engineers

Students

 All of my fellow classmates I had the privilege of meeting and working with throughout my years in AE

Questions

FROM THE FILM "BATMAN FOREVER"

Sizing New Cooling Coils for Cold Air Distribution

Original Coil Data

	CFM	GPM	Sensible	Total
AHU-1	48000	404	1614.0	2440.0
AHU-2	19000	164	612.4	903.5
AHU-3	18500	138	578.7	848.3
AHU-4	3400	25	101.3	152.1
AHU-5	12000	119	479.3	728.1
AHU-6	5200	47	178.6	287.5
AHU-7	12000	77	333.3	471.6
AHU-8	6000	53	207.3	323.0
AHU-9	7200	47	202.4	284.9
AHU-10	3100	22	91.0	134.1
Totals:	134400	1096	4398.3	6573.1

New Design Data

	CFM	GPM	Sensible	Total
AHU-1	37500	336.6	1656.3	2442.8
AHU-2	14500	120.2	621.9	875.3
AHU-3	13500	112.3	580.4	817.6
AHU-4	2400	19.3	103.4	140.6
AHU-5	11200	92.8	480.4	675.6
AHU-6	4200	35.8	183.4	260.9
AHU-7	8000	64.3	335.4	468.2
AHU-8	4800	40.7	208.4	296.0
AHU-9	4800	40.7	208.4	296.0
AHU-10	2400	17.7	95.1	128.9
Totals:	103300	880.4	4473.1	6401.9

Evaluating Economics

	Conventional		Partial Storage		Full Storage	
	Material	Labor	Material	Labor	Material	Labor
Chillers	\$314,000.00	\$34,080.00	\$378,103.00	\$47,003.00	\$614,103.00	\$52,936.00
Pumps	\$9,525.00	\$1,695.00	\$22,100.00	\$1,365.00	\$22,100.00	\$1,365.00
Air Handling Units	\$187,050.00	\$13,185.00	\$154,750.00	\$11,985.00	\$154,750.00	\$11,985.00
Cooling Coils	\$23,828.00	\$12,638.00	\$27,315.00	\$14,537.00	\$27,315.00	\$14,537.00
Fans	\$59,985.00	\$16,140.00	\$41,135.00	\$12,225.00	\$41,135.00	\$12,225.00
Air Distribution	\$396,525.00	\$836,663.00	\$375,875.00	\$740,544.00	\$375,875.00	\$740,544.00
Pipe	\$128,765.00	\$157,613.00	\$103,012.00	\$126,090.00	\$103,012.00	\$126,090.00
Pipe Insulations	\$38,585.00	\$29,960.00	\$30,868.00	\$23,984.00	\$30,868.00	\$23,984.00
Subtotal	\$1,158,263.00	\$1,101,974.00	\$1,133,158.00	\$977,733.00	\$1,369,158.00	\$983,666.00
Grand Total	\$2,260,237.00		\$2,110,891.00		\$2,352,824.00	

First Cost