Franklin & Marshall College Row Lancaster, PA

Aimee Bashore

Senior Thesis 2007

Construction Management

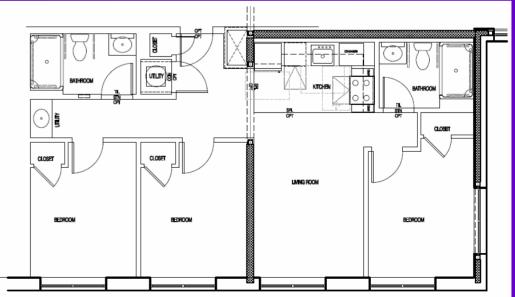
© Elkus Manfredi Architect

> Outline of Presentation Topics

- 1. Project Overview
- Analysis 1 Building Information Modeling (BIM) Utilization
- 3. Analysis 2 Composite Metal Deck v. Precast Concrete Plank Flooring
- 4. Analysis 3 Cold Weather Construction
- 5. Conclusion

Project Overview

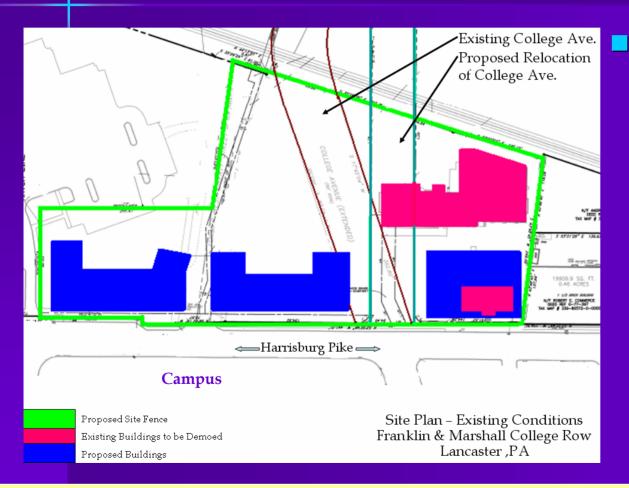
FRANKLINGMARSHALL


- Project Cost
 - \$15,250,000
- Project Size
 - 111,641 SF
 - 6 stories
- Project Duration
 - 15 months
 - 5/8/06 to 7/31/07
- Project Delivery Method
 - CM at Risk with a GMP

Building Features

81% Residential

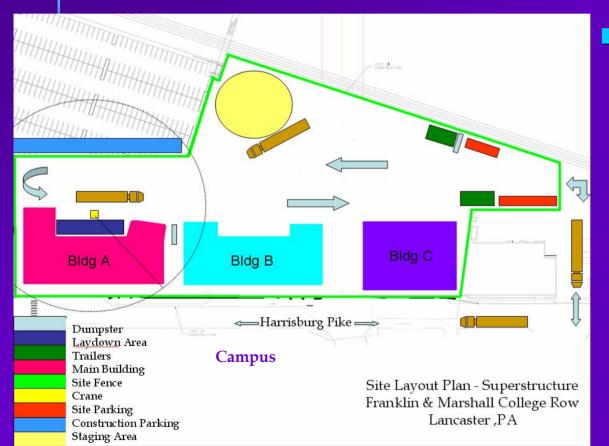
- Top 5 floors containing 65 units 1, 3 and 4 bedrooms
- Handicap-accessible unit, common lounge, and laundry facilities on each floor
- 15% Retail
- 4% Offices


Aimee Bashore

Building Design

- Spread footings with selective compaction grouting
- Strip footings for masonry foundation walls
- Structural steel
- Slab on grade
- Composite slab on deck
- Load-bearing block and precast hollow core concrete plank
- Façade is brick veneer, metal sheeting, and calcium silicate masonry units

Site Plan – Existing Conditions


Features

- Demolition of historical buildings
- Limited pedestrian traffic
- Keep footbridge accessible
- Reroute gas and electric lines

Aimee Bashore

Site Layout Plan – Superstructure

- Features
 - One main gate for deliveries
 - Centrally
 located crane
 and laydown
 area
 - Open site

Aimee Bashore

Analysis 1 – Building Information Modeling

- Digital representation of the building process to facilitate exchange and interoperability of information in digital format
- BIM covers geometry, spatial relationships, geographic information, quantities, and properties of building components
- Application possibilities of BIM include coordination of trades, activity sequencing, and scope of work details

BIM Goals and Outcomes

Goals

- Address benefits of BIM, focusing on owners
- Look at the integration of BIM with operations and maintenance procedures
- Review software applications

Outcomes

- BIM provides owner with visualization of building
- Ease of coordination during construction
- Organization of maintenance operations
- Benefits for future renovations

Questionnaire Results

Benefits

- Coordination of trades
- More detail, more accurate estimates
- Reduced paper usage
- Drawbacks
 - Integration of new technology
 - Cost, Training, Capability
 - Industry's willingness to change

- BIM after project completion
 - Turnover as-built model, only good if accurate
 - Ease of future renovation
 - Design and updates
 - Reduce storage space
 - Helpful for operations and maintenance

BIM Case Study – Dickinson School of Law Building

Dickinson School of Law Building

- Penn State
 - University Park
- Project Cost
 - \$60,000,000
- Building Size
 - 113,000 SF
- Design Phase
 - October 2005 to April 2007
- Construction Phase
 - January 2007 to January 2009
- Building Features
 - library, mock courtroom, classrooms, offices, cafeteria, and parking

Aimee Bashore

BIM Case Study – Dickinson School of Law Building

- Decision to use BIM late in 2006
- Hope that additional costs will be outweighed by any "savings" from use of BIM
 - Easier coordination
 - Less conflicts
 - Less time lost in field
- High quality as-builts
- Ease of maintenance operations

BIM from an Owner Perspective

Owner benefits before, during, and after construction

Owner characteristics

- Understand time = money
- Enforce training for using the technology
- Set standards among design, construction, and conclusion of project

Facility Management

- Knowledgeable employees
- Update technology

BIM Software Review – Autodesk FMDesktop

- Tool to maintain as-built model
 - Facility manager functions
 - Space and asset management
 - Project management
 - Emergency management
 - Maintenance management
 - Facility manager features
 - Tabular or graphical output
 - view, query, pan, zoom, print, and share facility drawings
 - Planning, tracking, and managing

BIM Conclusions – Relating BIM to Franklin & Marshall

- 1. Decision to invest the money into the technology
- 2. Ability to hire knowledgeable designers and contractors
- 3. Eliminates room for drawing storage
- 4. Simplifies maintenance operations
- 5. Eases future renovations

Analysis 2 – Composite Metal Deck v. Precast Plank

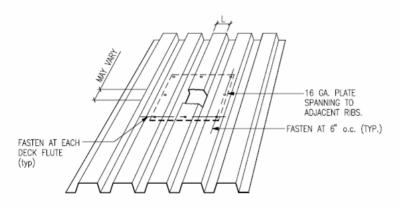
- Problem
 - Current system is a combination of composite metal deck and precast hollow core concrete plank
- Goal
 - Compare two systems based on methods, schedule, and cost

Outcomes

- Precast concrete plank has higher cost
- Composite metal deck has longer schedule
- Precast concrete plank better suited to repetition and residential construction

Floor System Comparison

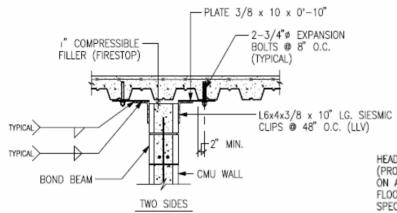
<u>Composite Metal Deck</u>


- More on-site labor
- Formwork
- Reinforcement
- More bearing walls needed for support
- More affordable equipment
- Horizontal load resistance

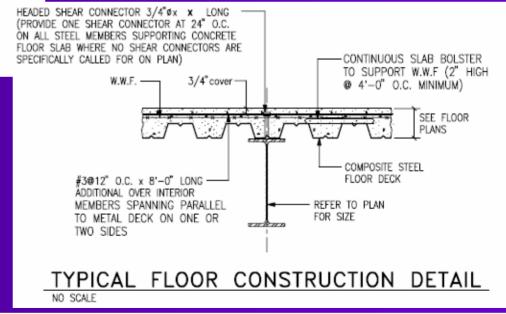
Precast Concrete Plank

- Eliminates on-site prep work
- High strength less support needed
- Substantial crane needed
- Delivery expenses
- Less sound transmission
- Longer fire safety rating

Flooring Design – Composite Metal Deck


FOR OPENINGS 6" TO 12" IN DIAMETER OR FOR 6"<L<12" ROOF PENETRATION

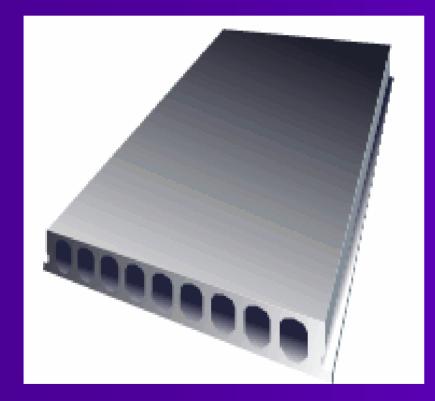
Main Functions:


- 1. Platform during construction
- 2. Act as a form
- 3. Provide positive bending reinforcement for a concrete slab
- 4. Provide resistance to horizontal wind or earthquake loads

Flooring Design – Composite Metal Deck

Deck and Steel Beam

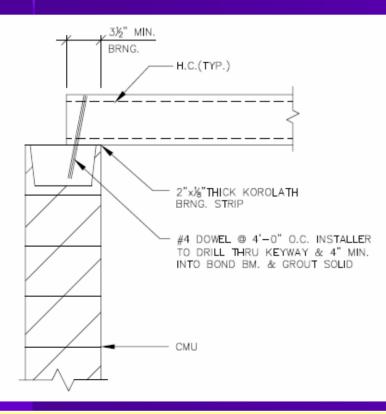
Deck and Bearing Wall

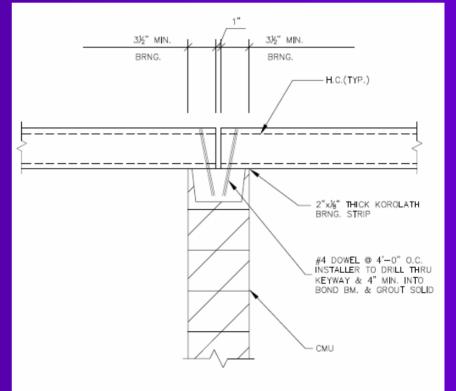

Aimee Bashore

Senior Thesis 2007

Construction Management

Flooring Design – Precast Hollow Core Concrete Plank




- Speedy production and erection
- Fire protection rating up to 4 hrs
- Noise control
- Unique designs, colors, and textures

Flooring Design – Precast Hollow Core Concrete Plank

Exterior Wall Connection

Interior Wall Connection

Cost and Schedule Comparisons

Composite Metal DeckPrecast Concrete PlankCost: \$1,288,000Cost: \$1,583,500Schedule: 45 daysSchedule: 30 days

Comparison parameters

- 5 upper floors of building
- Total of 93,034 square feet
- Same crew size for each system

Flooring Analysis Conclusions

- 1. Precast plank approximately \$300,000 more than composite metal deck
 - 10% of structural cost
 - 2% entire budget cost
- 2. Composite metal deck 15 days longer than precast plank
- 3. Varying floor layouts and uses
 - 1st floor tenant space
 - 2nd Roof are repeated pattern and residential space

Analysis 3 – Cold Weather Construction

- Problem
 - Concrete activities scheduled during winter months, effect on those activities
 - Schedule and cost impacts
- Goals
 - Analyze requirements for cold weather concrete work
 - Analyze effects on schedule and budget

Outcomes

- Concrete activities on critical path, difficult to change
- Expedite work to avoid working in extreme conditions

Cold Weather and Concrete

- Cold weather construction at 40°F
- Average temperatures for Lancaster, PA
 - December 40°F/24°F
 - January 35°F/19°F
 - February 39°F/21°F
 - March 49°F/29°F
- Air-entraining agents
- Increase set time
- Reduced strength gain rates

Schedule Analysis

- Concrete activities on critical path
- Steel delayed, delaying concrete work
- Bulk of concrete work in December, January, February, and March
- Expedite work
 - Increase crew size
 - Extend working hours
 - Weekend work

Cost and Material Analysis

- Temporary Heat
 - Cost of natural gas
 - Heater rentals

Temporary Protection

- Labor (overtime)
 - Extended hours
 - Weekend work
- Material
 - Hoses
 - Blankets
 - Plastic window covers
- Additional cost approximately \$145,000

Cold Weather Conclusions

- Expedited work
 - Longer working hours
 - Weekend work
- Concrete protection
 - Temporary heaters
 - Steam hoses
 - Insulating blankets
 - Plastic window/opening covers
- Admixtures
- Need to have a good temporary protection plan

Summary and Conclusions

- Analysis 1 Building Information Modeling
 - Design phase: aid in visualization, reduce rework
 - Construction phase: ease coordination, reduce change orders
 - Lifecycle: ease maintenance operations and future renovations
- Analysis 2 Composite Metal Deck v. Precast Plank
 - Precast plank suited for residential and repetition projects
 - Precast plank would increase cost by 2% and decrease schedule by 3 weeks
- Analysis 3 Cold Weather Construction
 - Need a good temporary protection plan
 - Schedule can be reduced by expediting work

Acknowledgments

- Penn State AE Faculty
- Penn State OPP Personnel
- Alexander Building Construction, LLC
- Campus Apartments, Inc
- Elkus | Manfredi Architects
- Franklin & Marshall College
- BIM Questionnaire Participants
- My Friends and Family