Mike Steehler

Structural Focus

- 2007 Senior Thesis Capstone Project
- Advisor: Prof. Kevin Parfitt

University of Rochester Biomedical Engineering / Optics Building

River Campus Rochester, NY

- Brief History
- Architecture
- Key Players

Original Structural Design

- Foundations
- Composite Steel Framing
- Braced Frames / Moment Frames

Problem Statement / Proposal

Presentation Outline

Structural Redesign

- Redesign Ideas Considered
- Cast-In-Place Concrete Flat Slab
- Concrete Columns
- Reinforced Concrete Shear Walls
- Notable Advantages

Cost & Scheduling Effects

Green Building Design

- ETFE Foil Cushion as a "Green" Technology
- Application for BMEO Atrium Roof

Recommendation / Conclusions

- Original Structural Design
- Problem
 Statement /
 Proposal

 \bullet

- Structural Redesign
- Cost &
 Scheduling
 Effects
- Green
 Building Design

Reficersionendatister on & BMEO Copolysiensenior Thesis

Mike Steehler

ROCHESTER

- Founded in 1929 as the first optics education program in the United States
- Has expanded into a diverse spectrum of studies, including Biomedical Optics, Fiber Optics, and Nano Optics to name a few
 - This world-class institute will combine with the Biomedical Engineering Department to occupy a new, 100,000 square foot facility
- New facility will be an add-on to the existing Wilmot Hall

 Original Structural Design

- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects

Green
 Building Design

Reficersioner datister on & BMEO Copolysiensenior Thesis

Mike Steehler

The New Facility

- U of R's scenic River Campus
 - Near Medical Center
 - Adjacent to Wilmot Hall
- 101,000 square feet
- Five stories + mechanical penthouse and partial basement
- \$37.7 million total project cost
- Construction began January 2005
- Officially named "Goergen Hall" for the generous contributions of Robert B. Goergen

- Laboratory space
- Offices
- Classrooms
- Large, 155 seat lecture hall

 Original Structural Design

- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green
 Building Design

Reference Refere

Mike Steehler

Key Players

Architect Perkins & Will Boston, MA

P E R K I N S + W I L L

LeMessurier Consultants Structural Engineers

Structural Engineer

LeMessurier Consultants Cambridge, MA

Associate Architect/ Structural Engineer SWBR Architects & Engineers, P.C. Rochester, NY

General Contractor

LeChase Construction, LLC Rochester, NY

- Original Structural Design
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost &
 Scheduling
 Effects
- Green Building Design

Reference and a second a secon

Architectural Features

- Standard red brick façade
 - Metal stud backup
 - Limestone at first floor
- Large atrium inside main entrance
 - 80+ feet tall
 - Lit by skylights
- Channel glass façade at stairwells
- Glass curtain wall at main entrance

Original Structural Design

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

Recommendation & Coniceusion Bochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Foundation

- 50 ksi steel H-piles
 - Bearing on Bedrock
 - Various Configurations
- 4000 psi Grade Beams
 - 16" x 48" supporting exterior walls
 - Framing around existing steam tunnel

Project
 Background

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design
- •

& Conclusion BMEO

> 2007 AE Senior Thesis

Mike Steehler

Floor System

- Composite steel construction
- 4 ¹/₂" concrete slab on 3" metal deck
 (7 ¹/₂" total depth)
- ³⁄₄ diameter shear studs, full composite action
- Irregular geometric shape no "typical bay" redundancy
- 21' x 26'-6" bays along west face can be considered the critical condition
- Supported by W12 columns

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

Kecommendation & Coniceusion Bochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Floor System

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design
- •

Recommendation & Coniceusijounsochester BMEO

2007 AE Senior Thesis

Mike Steehler

Floor System

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

Recommendation & Coniceusion Bochester BMEO

2007 AE Senior Thesis

Mike Steehler

Braced Frames

4 concentrically braced frames support the building in the short, East-West direction

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

& Coniceusion BMEO

> 2007 AE Senior Thesis

Mike Steehler

Braced Frames

Braced frame locations

Project
 Background

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

Recommendation & Conicidusion Bochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Moment Frames

- 4 Moment frames support the building in the long, North-South direction
- Located along building faces

Project
 Background

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design
- •

& Coniceusion BMEO

> 2007 AE Senior Thesis

Mike Steehler

Moment Frames

- Columns at east face of building not continuous to foundation
- Provide column free space to lecture hall
- Also part of a moment frame
- Bracing members form a horizontal truss to transfer lateral load

- <u>Original</u> <u>Structural</u> <u>Design</u>
- Problem
 Statement /
 Proposal
- Structural Redesign
- Cost & Scheduling Effects
- Green Building Design

•

& Coniceusion BMEO

> 2007 AE Senior Thesis

Mike Steehler

Lateral System

Problem Statement / Proposal

- Project Background
- Original Structural Design

• <u>Problem</u> <u>Statement /</u> <u>Proposal</u>

- Structural Redesign
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Problem Statement

Pros

- Existing steel design works well with the architecture
- Steel framing is common in the area
- Nature of steel makes design process relatively easy

Cons

- Several notable areas of BMEO would work better in concrete
- •Amount of steel seems excessive for the size of the building
 - About 1300 members weighing 300 tons
 - Over 6000 shear studs
 - Over 400 moment connections
 - 7 ¹/₂" concrete to achieve full composite action

 Original Structural Design

• <u>Problem</u> <u>Statement /</u> <u>Proposal</u>

- Structural Redesign
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Proposal

What if BMEO was an all concrete structure?

Goals:

- Gain a better understanding of concrete design
- Design a complete, economical, and structurally sound concrete building
- Compare concrete design with steel framing for a building of irregular geometry
- Analyze BMEO as a "green", environmentally friendly building

Structural Redesign

- Project Background
- Original Structural Design
- Problem Statement / Proposal

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Design Procedure

After considering several steel and concrete options, <u>cast-in-place flat slab</u> with drop panels chosen as most efficient.

Codes and methods:

- ASCE 7-05
- ACI 318-02
- Finite Element Analysis (RAM Concept)
- Equivalent Frame Method as a check
 - PCA Slab
 - Hand Calculations

- Project Background
- Original Structural Design
- Problem Statement / Proposal

Cost & Scheduling
 Effects

• Green Building Design

Recommendation & Conclusions

University of Rochester BMEO 2007 AE Senior

Thesis

Mike Steehler

Slab Design

- Traditionally, concrete buildings are designed using the Equivalent Frame Method
- Building approximated as a series of frames in each direction
- Moment is distributed to the slab and columns based on equivalent stiffnesses
- For more complicated structures, finite element analysis can more accurately determine distribution of moments

- •Project Background
- Original Structural Design
- Problem Statement Proposal

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Slab Design

- 4000 psi concrete, 60 ksi steel reinforcing
- •10" thick concrete slab for typical floors based on ACI guidelines
- 12" thick slab at mechanical penthouse floor
- Pattern Loading considered to find critical moments
- Steel Reinforcing
 - Laid out in column strips and middle strips
 - #4 bottom (positive)
 - #5 top (negative)
- •Deflection not critical, limited to less than $\frac{1}{2}$ "

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal
- <u>Structural</u> <u>Redesign</u>
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

> 2007 AE Senior Thesis

Mike Steehler

Critical Bay Reinforcing

	Top, Ext Col	Top, Int Col	Bottom
Column Strip	(14) #5	(20) #5	(12) #4
1/2 Middle Strip	(4) #5	(4) #5	(8) #4

	Top, Ext Col	Top, Int Col	Bottom, Ext	Bottom, Int
Column Strip	(9) #5	(17) #5	(8) #4	(12) #4
1/2 Middle Strip	(6) #5	(6) #5	(9) #4	(9) #4

Deflection

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal

• <u>Structural</u> <u>Redesign</u>

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Deflection Plan, Typical Floor

- Project Background
- Original Structural
 Design
- Problem Statement Proposal
- <u>Structural</u> <u>Redesign</u>
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

> 2007 AE Senior Thesis

Mike Steehler

Column Design

- Designed for axial load and worst case moments
- Biaxial bending interaction diagrams
- Slenderness effects ignored per ACI code
- 4000 psi concrete
- #3 ties

<u>Size</u>	Reinforcing
24x24	(10) #7
22x22	(16) #5
18x24	(14) #5
18x18	(8) #6
14x14	(8) #5
18" Dia.	(12) #5

- Original Structural Design
- Problem Statement / Proposal

• <u>Structural</u> <u>Redesign</u>

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Punching Shear

- Most common type of catastrophic failure in concrete buildings
- Several methods to resist punching shear were considered for BMEO
- Drop panels and SSR both designed for
- Drop panels found to be more economical
 - Project 4" below concrete surface
 - Increase stiffness of columns, thus reducing negative reinforcing in slab
 - Used at west face of building on all floors

- Project Background
- Original Structural
 Design
- Problem Statement Proposal

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO Co

2007 AE Senior Thesis

Mike Steehler

Transfer Girders

- Lecture hall at first floor required column free space
- Columns at east face of BMEO not continuous to foundation
- Three 24x36 transfer girders with 24x36 columns designed to transfer forces from columns above

3eam	Design Positive Moment	1210	ft-k
	Design Negative Moment	1300	ft-k
	Size	24x36	d = 32.5"
	Positive Reinf	(10) #9	Тор
	Negative Reinf	(10) #9	Bottom
lumns	Design Moment	1722	ft-k
	Design Compression	270	k
	Size	24x36	
	Reinf	(16) #10	

- Original Structural
 Design
- Problem Statement / Proposal

• <u>Structural</u> <u>Redesign</u>

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Penthouse Floor

- Similarly, some columns from mechanical penthouse do not line up with columns below
- Low forces could be resisted in flexure by the 12" slab
- Additional drop panels needed to resist punching shear, decrease slab moments

- Project Background
- Original Structural
 Design
- Problem Statement
 Proposal

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Shear Walls

- Shear walls designed to resist lateral loads in both directions
- Strategically placed adjacent to stairs, elevators, and mechanical openings
- Forces distributed by relative rigidities

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal
- <u>Structural</u> <u>Redesign</u>
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO 2007 AE Senior

Thesis

Mike Steehler

Lateral Drift

- Calculated by hand using approximate formulas
- Combination of shear deflection and bending deflection
- Results compared with computer model
- Drift found to be less than 1" in each direction

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal
- <u>Structural</u> <u>Redesign</u>
- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

2007 AE Senior Thesis

Mike Steehler

Advantages

Curtain Wall

- Original Structural
 Design
- Problem Statement
- / Proposal

• <u>Structural</u> <u>Redesign</u>

- Cost & Scheduling
 Effects
- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Advantages

Isolation Joint With Wilmot Hall

П

Cost & Scheduling Effects

- Original Structural
 Design
- Problem Statement / Proposal
- Structural Redesign

• <u>Cost &</u> <u>Scheduling</u> <u>Effects</u>

- Green Building Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Cost Comparison

Concrete System

- Formwork
- Concrete

\$372,000

\$785,000

Reinforcing Steel \$242,000

Total Superstructure Cost: \$1.5 Million

18 week construction

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal
- Structural Redesign

• <u>Cost &</u> <u>Scheduling</u> <u>Effects</u>

- Green Building
 Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Cost Comparison

Steel System

- From LeChase Construction, \$2.4 million
- (6.5% total project cost)

However, RS Means estimate provides a more accurate comparison with concrete estimate

- Steel Tonnage \$648,000
- Composite Deck \$780,000
- Moment Connections \$200,000
- Slab on Deck \$282,000

Total Superstructure Cost: \$1.9 Million

15 week construction

- Project Background
- Original Structural Design
- Problem Statement / Proposal
- Structural Redesign

• <u>Cost &</u> <u>Scheduling</u> <u>Effects</u>

- Green Building
 Design
- Recommendation & Conclusions

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Cost Comparison

- Cost & Scheduling not as critical for this type of building than for office or apartment buildings
- However, concrete structure saves an estimated \$400,000 (21%)
- Total project savings: 1%
- Schedule increase of 3 weeks, not critical

Green Building Design

- Original Structural Design
- Problem Statement Proposal
- Structural Redesign
- Cost & Scheduling
 Effects

• <u>Green Building</u> <u>Design</u>

Recommendation & Conclusions

University of Rochester BMEO

2007 AE Senior Thesis

Mike Steehler

Green Building Design

What is a "green" building?

A *holistic* approach to building design, focusing on:

- Reduction in energy use
- Minimizing environmental impact
- Reducing embodied energy and resource depletion
- Minimizing internal pollution and health risks

- Project Background
- Original Structural
 Design
- Problem Statement / Proposal
- Structural Redesign
- Cost & Scheduling
 Effects
- <u>Green Building</u> <u>Design</u>
- Recommendation & Conclusions

> 2007 AE Senior Thesis

Mike Steehler

EFTE Foil Cushion

- Project Background
- Original Structural
 Design
- Problem Statement Proposal
- Structural Redesign
- Cost & Scheduling
 Effects
- <u>Green Building</u> <u>Design</u>
- Recommendation & Conclusions

> 2007 AE Senior Thesis

Mike Steehler

Possibility for BMEO

Atrium Roof

- Will provide more natural light across a wider spectrum than existing skylights
- One of the panels could have a hydraulic lift to provide ventilation

- Project Background
- Original Structural Design
- Problem Statement Proposal
- Structural Redesign
- Cost & Scheduling
 Effects
- <u>Green Building</u> <u>Design</u>
- Recommendation & Conclusions

> 2007 AE Senior Thesis

Mike Steehler

Advantages

Natural Light

• Transmits 97% of total light across the entire visible spectrum

Insulation

- Significantly better than glass
- Extremely Lightweight
 - Reduces framing members for atrium roof
- Durability & Maintenance
 - Almost maintenance free
- Low Embodied Energy

Follows principles of "green" building

Recommendation & Conclusions

- Project Background
- Original Structural Design
- Problem Statement / Proposal
- Structural Redesign
- Cost & Scheduling
 Effects
- Green Building
 Design

<u>Recommendation</u>
<u>& Conclusions</u>

University of Rochester BMEO

> 2007 AE Senior Thesis

Mike Steehler

Recommendation

The cast-in-place concrete design outlined in this presentation is being recommended for the University of Rochester Biomedical Engineering / Optics Building based on:

- Significant Cost Savings
- Durability
- Inherent Fire Protection
- Limited Deflections
- Vibration Damping
- Quality Control

- Original Structural
 Design
- Problem Statement / Proposal
- Structural Redesign
- Cost & Scheduling
 Effects
- Green Building
 Design

<u>Recommendation</u> <u>& Conclusions</u>

> University of Rochester BMEO

> > 2007 AE Senior Thesis

Mike Steehler

Conclusions

 Recent technologies such as finite element analysis make concrete design for more complex structures possible and more efficient

 Although more labor intensive, cast-in-place concrete can be very economical in buildings such as BMEO, that would otherwise require a large quantity of steel

• Technological advancements such as ETFE foil cushion membranes can provide architecturally unique, environmentally friendly, energy-saving building solutions

Acknowledgements

Prof. Kevin Parfitt

The Pennsylvania State University

The entire AE Department

Tom Zimmerman, Mark Kluczinski, and Greg Hale at SWBR

Wayne Goodman and the University of Rochester

Mike Mallon at LeChase Construction

My friends and family

