PRESENTED BY: JEREMY R. POWIS APRIL 15TH, 2008 STRUCTURAL OPTION STATE COLLEGE, PA ### PRESENTATION OVERVIEW OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS **OUESTIONS** COMMENTS - THESIS GOALS - PROJECT INTRODUCTION - LOCATION Α. - **BUILDING STATISTICS/BACKGROUND INFO** - III. PROPOSAL - IV. STRUCTURAL DEPTH - **EXPANSION DESIGN** - **BRACING DESIGN** - STUCTURAL DRAWINGS - **CONCLUSIONS** - **BREADTH STUDY: ARCHITECTURE** - INNOVATION PARK FAÇADE STUDY - **FAÇADE REDESIGN** - **BREADTH STUDY: MECHANICAL** - MECHANICAL DESCRIPTION - MECHANICAL REDESIGN - VII. CONCLUSIONS/RECOMMENDATIONS - VIII. QUESTIONS/COMMENTS STATE COLLEGE, PA ### **PROJECT INTRODUCTION** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## THESIS GOALS - TO ANALYZE AND REDESIGN THREE NECESSARY SYSTEMS OF 329 INNOVATION BOULEVARD DUE TO A TWO-STORY EXPANSION - STRUCTURAL GRAVITY AND LATERAL MEMBERS - ARCHITECTURAL FAÇADE REDESIGN AND ANALYSIS - MECHANICAL HVAC SYSTEM REDESIGN AND ANALYSIS STATE COLLEGE, PA ## **PROJECT INTRODUCTION** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS ## SITE LOCATION ## **INNOVATION PARK** - **ADJACENT TO PSU** - PRIME LOCATION FOR BUSINESSES - EASY ACCESS TO RESEARCH AND TECHNOLOGY RESOURCES - III. IMAGE TO LEFT SHOWS THE **EXISITING BUILDINGS. TOPMOST** PURPLE BUILDING IS 329 INN. BLVD. STATE COLLEGE, PA ## **PROJECT INTRODUCTION** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL CONCLUSIONS/ TIONS ## **GENERAL ARCHITECTURE** ## I. MATERIALS - **RED BRICK** - **GLASS WINDOWS** - III. METAL PANELS ## II. SURROUNDINGS - THE PENN STATER - 328 INN. BLVD. - SAME DESIGNERS STATE COLLEGE, PA ## **PROJECT INTRODUCTION** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **BUILDING STATISTICS** ## **PROJECT TEAM** - **OWNER: C. B. RICHARD ELLIS** - L. ROBERT KIMBALL & ASSOC. - **ARCHITECT** - **STRUCTURAL** - **ELECTRICAL** - IV. MECHANICAL STATE COLLEGE, PA ## **PROJECT INTRODUCTION** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **BUILDING STATISTICS** ## **GENERAL INFORMATION** - **BUILDING FUNCTION: COMMERCIAL OFFICES** - **II. SIZE:** 87,000 SQ. FT. - **III. HEIGHT:** 4 STORIES, 58 FT. TALL - IV. DATES OF CONSTRUCTION: AUGUST - 2007 LATE 2008 - **V. PROJECT COST:** PRIVATE (APPROX. \$8,000,000) - VI. PROJECT DELIVERY **METHOD:** DESIGN/BID/BUILD STATE COLLEGE, PA ### THESIS PROPOSAL OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS ## THESIS PROPOSAL ### I. STRUCTURAL DEPTH - TWO-STORY VERTICAL EXPANSION - WIND ANALYSIS - II. SEISMIC ANALYSIS - **RE-SIZING OF GRAVITY MEMBERS** - III. LATERAL REDESIGN - **NEW LATERAL SYSTEM** - SIZING OF MEMBERS - III. DESIGN OF CONNECTIONS ### II. ARCHITECTURAL BREADTH - REDESIGN OF FAÇADE - THERMAL/MOISTURE ANALYSIS ### III. MECHANICAL BREADTH - REDESIGN OF MECHANICAL SYSTEM - SIZING APPROPRIATE EQUIPMENT STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **EXISTING SYSTEM** ### FRAMING SYSTEM - COMPOSITE SLAB ON METAL DECK WITH BEAMS AND GIRDERS - LWC 3.5" - 3" GALV. METAL DECKING - TYP. BAY IS 30'x33'-3" 0 ## II. DESIGN LOADS | L | | |--------------|---| | ١١ | | | \checkmark | | | Ε | | | L | | | O | _ | | Α | | | D | | | S | _ | | I. | CORRIDORS | 100 PSF | |------|------------------|---------| | II. | STAIRS | 100 PSF | | III. | PUBLIC AREAS | 100 PSF | | IV. | OPEN OFFICE PLAN | 100 PSF | #### **DEAD LOADS** | I. | PARTITIONS | 20 PSF | |------|---------------|---------| | II. | LWC | 115 PCF | | III. | MEP | 5 PSF | | IV. | METAL DECKING | 2-3 PSF | STATE COLLEGE, PA STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ TIONS COMMENTS ## **CURRENT TYPICAL FLOOR PLAN** STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ TIONS ## **CURRENT FRAMING SYSTEM** - I. CURRENT LATERAL RESISTIVE **SYSTEM** - **MOMENT FRAMES** - II. OPEN FLOOR PLAN - ALLOWS FOR LARGE OPEN BAYS WITH MINIMAL OBSTRUCTIONS - **CREATES MORE TENANT SPACE** STATE COLLEGE, PA ## STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS ## **EXPANSION PARAMETERS** ## I. FLOOR PLAN - **EXISTING FLOOR PLAN AND CONSTRUCTION USED** - **SYMMETRIC** - **EFFICIENT** ## II. HEIGHTS TWO-STORY EXPANSION WOULD **INCREASE HEIGHT FROM 58' TO 86'** STATE COLLEGE, PA ## STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ TIONS ## TWO-STORY EXPANSION ### **NEW LOADS: WIND** ## II. STORY FORCES | 1/ Met. Panei (86°) | 88.6 Kips | |---------------------|------------------| | Level 6 (60') | 74.9 Kips | | Level 5 (56') | 72.7 Kips | | Level 4 (42') | 60.0 Kips | | Level 3 (28') | 65.0 Kips | | Level 2 (14') | 61.6 Kips | **YIELDS A OVERTURNING MOMENT** OF 21,400'K | Wind Loading According to A | SCE7-05 | |-------------------------------|----------| | Basic Wind Speed | 90 MPH | | Exposure Category | С | | Enclosure Classification | Enclosed | | Building Category | II | | Importance Factor | 1.0 | | Internal Pressure Coefficient | 0.18 | | | | | | | North/ | South Wind Pr | essure Value | s | | |--------|------|------------------|------------------------------|----------------------------|-----------------------------|--------------------------| | z (ft) | Kz | \mathbf{q}_{z} | P _{windwardl} (PSF) | P _{leeward} (PSF) | P _{sidewall} (PSF) | P _{total} (PSF) | | 0-15 | 0.85 | 14.98 | 12.84 | -8.43 | -14.83 | 21.27 | | 20 | 0.90 | 15.86 | 13.59 | -8.43 | -14.83 | 22.02 | | 25 | 0.95 | 16.74 | 14.35 | -8.43 | -14.83 | 22.78 | | 30 | 0.98 | 17.27 | 14.80 | -8.43 | -14.83 | 23.23 | | 40 | 1.04 | 18.33 | 15.71 | -8.43 | -14.83 | 24.14 | | 50 | 1.09 | 19.21 | 16.46 | -8.43 | -14.83 | 24.89 | | 60 | 1.14 | 20.09 | 17.22 | -8.43 | -14.83 | 25.65 | | 70 | 1.17 | 20.62 | 17.67 | -8.43 | -14.83 | 26.10 | | 80 | 1.21 | 21.33 | 18.28 | -8.43 | -14.83 | 26.71 | | 90 | 1.24 | 21.86 | 18.73 | -8.43 | -14.83 | 27.16 | | | | | | | | | STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS TIONS ## **NEW LATERAL RESISTIVING SYSTEM** ### **BRACED FRAMES** - **NEEDED TO RESIST GREATER LATERAL** LOADS - **CREATE OBSTRUCTIONS IN BAYS** ## II. PLACEMENT CONSIDERATIONS - CENTER OF RIGIDITY/CENTER OF MASS - PREVIOUS ARCHITECTURAL ASPECTS - POSSIBLE ARCHITECTURAL LAYOUTS WITH BRACED FRAMES STATE COLLEGE, PA ## STRUCTURAL DEPTH OVERVIEW **PROJECT** INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS ## TYPES OF BRACES CONSIDERED **Diagonal Bracing** X-Bracing **Chevron Bracing** HSS SHAPES CHOSEN FOR BRACES STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **BRACE SCHEMATICS** ## I. EXTERIOR FRAMES - UTILIZED "INVERTED V" CHEVRON **BRACING** - CREATED ACCESS TO THE STAIRWELLS **USING EXISTING PLAN** ### II. INTERIOR FRAMES - UTILIZED ALTERNATING "INVERTED V" AND "V" CHEVRON BRACING - CREATED A TWO-STORY "X" BRACE STATE COLLEGE, PA STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS COMMENTS ## 3D MODEL STATE COLLEGE, PA ## STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: TIONS ## **DRIFT AND TORSION ANALYSIS** | | | Critica | ıl Displace | ments | | | |-----------------------|--------------|-----------------|-------------|---------------------------|---------------------------|-------------| | Floor | Height (ft.) | FF Height (ft.) | H/400 (in.) | RAM Disp.
Values (in.) | RAM Drift
Values (in.) | H/400 (in.) | | Roof | 86 | 16 | 2.58 | 0.59 | 0.09 | 0.48 | | 6 th Floor | 70 | 14 | 2.58 | 0.49 | 0.10 | 0.42 | | 5 th Floor | 56 | 14 | 2.58 | 0.39 | 0.11 | 0.42 | | 4 th Floor | 42 | 14 | 2.58 | 0.29 | 0.11 | 0.42 | | 3 rd Floor | 28 | 14 | 2.58 | 0.18 | 0.10 | 0.42 | | 2 nd Floor | 14 | 14 | 2.58 | 0.08 | 0.08 | 0.42 | | 1 st Floor | 0 | N/A | N/A | N/A | N/A | N/A | | | Tor | sion Valu | ıes | | |-----------------------|-----------|------------|---------|---------| | Floor | Centers o | f Rigidity | Centers | of Mass | | | X (Ft.) | Y (Ft.) | X (Ft.) | Y (Ft.) | | 6 th Floor | 102.35 | 49.78 | 101.96 | 49.88 | | 5 th Floor | 102.41 | 49.81 | 101.68 | 50.24 | | 4 th Floor | 102.50 | 49.84 | 101.68 | 50.25 | | 3 rd Floor | 102.30 | 49.88 | 101.68 | 50.26 | | 2 nd Floor | 101.92 | 49.92 | 101.68 | 50.26 | | 1 st Floor | 101.92 | 49.91 | 101.68 | 50.93 | | | | | | | STATE COLLEGE, PA ## STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS COMMENTS ## NEW TYPICAL FLOOR PLAN STATE COLLEGE, PA ## STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **ELEVATIONS** **REFER TO PAGES 28-29 OF REPORT** STATE COLLEGE, PA ## STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **CONNECTIONS** STATE COLLEGE, PA ## STRUCTURAL DEPTH **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **CONNECTIONS** STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **COST ANALYSIS** | | | Moment C | onnection Costs | | | |----------|-----------|-----------------|-------------------------------|-------------|-----------------| | Material | Cost/Unit | Unit/Connection | # of Connections
Per Floor | # of Floors | Total Cost (\$) | | Bolts | \$10/bolt | 18 | 36 | 6 | 38880.00 | | Welds | \$35/lb | 4 | 36 | 6 | 30240.00 | | Plates | | | | (+ 10%) | 6912.00 | | Total | | | | | 76032.00 | | | | | | | | #### **COSTS OF RAW MATERIALS** #### **RESULTS** П. **BOTH CONNECTION COSTS BEING ESTIMATES, THE MOMENT CONNECTIONS** AT \$76,000 EASILY DOUBLES THAT OF THE **BRACED CONNECTIONS (\$32,000)** | Material | Cost/Unit | Size | Tons/Member | Quantity | Total Cost (\$) | |----------|------------|-----------------|------------------------|----------|-----------------| | | | HSS9x9x3/8 | 0.439 | 16 | 4916.8 | | HSS | \$700/ton | HSS8x8x3/8 | 0.386 | 40 | 10808 | | | | HSS6x6x3/8 | 0.281 | 16 | 3147.2 | | | | Connection Type | SF of Plare/Connection | | | | | | Α | 2.80 | 4 | 274.40 | | | | В | 2.80 | 20 | 1372.00 | | Plates | \$24.50/SF | С | 4.70 | 12 | 1381.80 | | | | D | 3.00 | 8 | 588.00 | | | | E | 11.10 | 12 | 3263.40 | | | | F | 6.10 | 24 | 3586.80 | | | | Connection Type | Pounds/Connection | | | | | | Α | 0.334 | 4 | 50.77 | | | | В | 0.334 | 20 | 253.84 | | Welds | \$35/lb | С | 0.668 | 12 | 304.61 | | | | D | 0.444 | 8 | 134.98 | | | | E | 1.777 | 12 | 810.31 | | | | F | 0.889 | 24 | 810.77 | | Total | | · | | | 31703.67 | | | | | | | | STATE COLLEGE, PA ### STRUCTURAL DEPTH OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **CONCLUSIONS** ### I. IMPACT OF EXPANSION - REQ'D REDESIGN OF GRAVITY AND LATERAL MEMBERS - CREATED TWICE THE OVERTURNING **MOMENT** ## II. LATERAL RESISTIVE SYSTEM - HSS CHEVRON BRACING UTILIZED - SIZES RANGED FROM HSS6x6x3/8 TO HSS9x9x3/8 ### III. CONNECTIONS - SIMPLIER CONNECTIONS ARE **NEEDED FOR BRACING** - 14" WELDS USED WITH 12" PLATES - III. WELDS RANGED FROM 6-8" LONG ### IV. OVERALL - **EXTREMELY RIGID SYSTEM** - ADVANTAGES IN COSTS OVER **MOMENT CONNECTIONS** - III. MINIMAL CHANGES TO GRAVITY **MEMBERS** STATE COLLEGE, PA ## **ARCHITECTURE BREADTH** **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS COMMENTS ## **FAÇADE STUDY** FAÇADE STUDY OF INNOVATION PARK STATE COLLEGE, PA **ARCHITECTURE BREADTH** **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS "NEW-LOOK" 329 INN. BLVD. STATE COLLEGE, PA ### **ARCHITECTURE BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## THERMAL ANALYSIS | Material | R-Value U- | | U-Value | |-------------------------------|------------|-------------|---------| | | Per Inch | Per Thickne | ess | | Polyisocyanurate (Foil Faced) | 7.20 | 14.40 | 0.0694 | | Brick 4" Common | | 0.80 | 1.2500 | | 1/2" Fiberboard Shething | | 1.32 | 0.7576 | | ABP Wall Panel | | 16.00 | 0.0625 | | 5500 ISOWEB Window Type F | | 5.41 | 0.1850 | | | | | | $ETTV = 12(1-WWR)U_W + 3.4(WWR)U_F$ +211(WWR)(CF)(SC) (METRIC) $ETTV < 50 W/M^2$ STATE COLLEGE, PA ### **ARCHITECTURE BREADTH** **OVERVIEW** PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## THERMAL ANALYSIS | Opaque Wall Polyisocyanurate 9418 14.40 Brick 9418 0.80 Total 15.20 0.0658 63 Fiberboard 3928 1.32 Wall Panel 3928 16.00 Total 17.32 0.0577 23 Fenestration | | | n (English) | North/ South Direction | | |---|--------|---------|-------------|------------------------|------------------| | Polyisocyanurate 9418 14.40 Brick 9418 0.80 Total 15.20 0.0658 6: Fiberboard 3928 1.32 Wall Panel 3928 16.00 Total 17.32 0.0577 2: Fenestration | A*U | U-Value | R-Value | Area (ft²) | Material | | Brick 9418 0.80 Total 15.20 0.0658 63 Fiberboard 3928 1.32 | | | | | Opaque Wall | | Total 15.20 0.0658 6 Fiberboard 3928 1.32 | | | 14.40 | 9418 | Polyisocyanurate | | Fiberboard 3928 1.32 Wall Panel 3928 16.00 Total 17.32 0.0577 27 Fenestration | | | 0.80 | 9418 | Brick | | Wall Panel 3928 16.00 Total 17.32 0.0577 27 Fenestration | 619.61 | 0.0658 | 15.20 | | Total | | Total 17.32 0.0577 2. Fenestration | | | 1.32 | 3928 | Fiberboard | | Fenestration | | | 16.00 | 3928 | Wall Panel | | | 226.79 | 0.0577 | 17.32 | | Total | | Window 4414 5.41 0.1850 8 | | | | | Fenestration | | | 816.59 | 0.1850 | 5.41 | 4414 | Window | | Total 8: | 816.59 | | | | Total | | North/ South Direction (Metric) | | | | | | | | | | | | |---------------------------------|-----------|---------|---------|--------|--|--|--|--|--|--|--| | Material | Area (m²) | R-Value | U-Value | A*U | | | | | | | | | Opaque Wall | | | | | | | | | | | | | Polyisocyanurate | 875 | 2.52 | | | | | | | | | | | Brick | 875 | 0.14 | | | | | | | | | | | Total | | 2.66 | 0.3757 | 328.70 | | | | | | | | | Fiberboard | 365 | 0.23 | | | | | | | | | | | Wall Panel | 365 | 2.80 | | | | | | | | | | | Total | | 3.03 | 0.3297 | 120.33 | | | | | | | | | Fenestration | | | | | | | | | | | | | Window | 410 | 0.95 | 1.0564 | 433.10 | | | | | | | | | Total | | | | 433.10 | | | | | | | | ETTV = 12((328.7 + 120.33)/1650) + 3.4(433.1/1650) + 211(433.1/1650)(0.80)(1.00) $ETTV = 48.5 W/M^2$ $< 50 W/M^2$ STATE COLLEGE, PA ### **ARCHITECTURE BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ ## MOISTURE ANALYSIS $T_{Dewpoint, Interior} < T_{Int} - Ti_{surface} (T_{int} - T_{Ext})$ **Design Values:** Inside Surface Film C-Value From ASHRAE: C = 8.3 **Average Temperatures: Winter (Low):** $T_{\text{Ext}} = 18 \, ^{\circ}\text{F}$ $T_{Int} = 70 \, ^{\circ}F$ Summer (High): $T_{Fxt} = 81 \, ^{\circ}F$ **Surface Temperature Index**, $R_{\text{surface film}} = 1/8.3 = 0.1205$ = R_{surface film}/R_{total} Ti_{surface} = 0.1205/(0.1205 + 0.95) = 0.114 Winter: T_{Dewpoint, Interior} < 70 + 0.114(70 - 18) < 76 °F Summer: T_{Dewpoint}, Interior < 70 - 0.114(70 - 81) < 68 °F STATE COLLEGE, PA ### **ARCHITECTURE BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **CONCLUSIONS** ## I. "NEW-LOOK" FAÇADE - INTENDED TO FIT THE MOLD OF IP - **SUBJECTIVE** - UTILIZES THEMES FROM PARK ### II. THERMAL ANALYSIS - **DICTATED:** - SIZE OF WINDOWS - TYPE OF WINDOWS - **ACHIEVED THERMAL COMFORT LEVEL** ### III. MOISTURE ANALYSIS - PERFORMED TO AVOID **CONDENSATION** - PRODUCED DESIGN PARAMETERS FOR MECHANICAL SYSTEM ### IV. OVERALL - **COSTLY MATERIALS** - THERMAL COMFORT LEVEL **ACHIEVED** - III. CONDENSATION NOT ALWAYS BAD STATE COLLEGE, PA ### **MECHANICAL BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS OUESTIONS/ ## **REASONS FOR CHANGE** - **CURRENT MECH. SYSTEM** - **HEAT PUMPS** - 14 INDOOR UNITS - **4 ROOFTOP UNITS** - PROVIDES 28,000 CFM WHICH YIELDS 0.33 CFM/SF - **TFMPORARYY** - **DUCTWORK LABELED WITH TEMPORARY GRILLES** #### OFFICE BUILDING ENERGY 11. **USAGE BREAKDOWN** STATE COLLEGE, PA ### **MECHANICAL BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS OUESTIONS ## HEAT PUMPS VS. VAV SYSTEM #### **Heat Pump Advantages** - 1 Even temperatures - 2 Comfortable humidity levels in winter - 3 Less noise and odor - 4 No pilot light or vent - 5 No seasonable change-over - 6 Only one fuel bill - 7 May supply hot water w/ excess heat #### **VAV Advantages** - 1 Produces minimal margin of error from the specified desired temperature - 2 Contributes significantly to the efficiency of the system - 3 Individually controlled zones (as small as individual rooms) - 4 Little cost added to operational cost to run the system - 5 Requires minimal maintenance #### **Heat Pump Disadvantages** - 1 Unable to operate at low temperatures, which requires a back-up system - 2 People find the air supplied to be "cold" during the winter #### **VAV Disadvantages** - 1 Latent heat may cause issues in auditoriums and conference rooms - 2 Minimum outside air requirements must be met - 3 Decreased air temperature may lead to poor dispersion of the tempered air - 4 Little control over pressurization - 5 Equipment located just above the ceiling can create noise - **VAV CHOSEN** - **VAV BECOMING A TREND** \bigcirc IN OFFICES OVER THE **PAST 5 YEARS** - MANY DISADV. DON'T 0 APPLY TO OFFICE SPACES - **ZONES ALLOW MORE** 0 **CONTROL FOR TENANTS** STATE COLLEGE, PA **MECHANICAL BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## TRACE® 700 DESIGN OUTPUT #### **SYSTEM SUMMARY** #### **DESIGN AIRFLOW QUANTITIES** By PSUAE | | M | Auxiliary System | Room | | | | | | | | |--------------------|---|------------------|------------|-------------|---|-------------|---------------------|---------|--|--| | | | Outside | Cooling | Heating | Return | Exhaust | Supply | Exhaust | | | | | | Airflow | | | System Description | System Type | cfm | | | System - 001 | Variable Volume Reheat | 17,622 | 145,609 | 43,891 | 145,609 | 17,622 | 0 | 0 | | | | Totals | (30% Min Flow Default) | 17,622 | 145,609 | 43,891 | 145,609 | 17,622 | 0 | 0 | | | | Note: | Airflows on this report are n | ot additive | because th | ey are each | taken at the | time of the | eir respective peak | KS. | | | | | To view the balanced system design airflows, see the appropriate Checksums report (Airflows section). | | | | | | | | | | | Project Name: | 329 Innovation Boulevard | | | | TRACE® 700 v4.1 | | | | | | | Dataset Name: | P:\Thesis\Research\Mechanical Breadth\329 Inn Boul System.trc | | | | Alternative - 1 Design Airflow Quantities report page 1 | | | | | | STATE COLLEGE, PA ### **MECHANICAL BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ ## **EQUIPMENT SIZING** #### **VAV BOX SIZING** **# VAV Boxes** = 145,609 cfm/(2 Zones)(6 Floors)(3,000 cfm/box) = 4.04 Try 5 Boxes Per Zone: **VAV Box Size (CFM)** = 145,609 cfm/(2 Zones)(6 Floors)(5 Boxes/Zone) = 2,430 CFM Krueger KQFP Ultra-Quiet VAV units will be used (Total CFM = 2960 > 2430 CFM). The unit size is 7, and the inlet size is 16. #### **VAV DUCT SIZING** **Ductulator Method:** Air Volume: 2,430 CFM Friction Per 100 Feet of Duct: 0.25 **Ductulator Checks: Rectangular Duct Possibilities:** 15"x15" 18"x12" 16"x14 Other Ductulator Value: Velocity = 1700 FPM STATE COLLEGE, PA ### **MECHANICAL BREADTH** OVERVIEW PROJECT INTRODUCTION PROPOSAL. STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS ## **CONCLUSIONS** ### **EXISTING SYSTEM** TEMPORARY AND WOULD NEED REDESIGN ANYWAY. ### II. VAV SYSTEM - EACH ZONE CAN CONTROL TEMP. - MORE COSTLY UPFRONT - III. CHEAPER MAINTENANCE AND **OPERATIONAL COSTS** - IV. SHIFT TO VAV SYSTEMS IN OFFICES ## III. EQUIPMENT SIZES - **MULTIPLE DUCT SIZES** - II. VAV BOX NUMBER ABLE TO **INCREASE OR DECREASE** - III. ONE AHU WAS UTILIZED TO **ALLEVIATE COORDINATION PROBLEMS** ### IV. OVERALL - MORE COST EFFICIENT - PROVIDES MORE CFM/SF - III. ABIDES TO ASHRAE STANDARD 62.1-2007 STATE COLLEGE, PA ## **CONCLUSIONS/RECOMMENDATIONS** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: BREATH: ARCHITECTURE MECHANICAL CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## FINAL CONCLUSIONS/RECOMMENDATIONS ## I. STRUCTURAL SYSTEM - BRACED FRAMES CREATED AN EXTREMELY RIGID BUILDING - II. MINIMAL CHANGES IN GRAVITY MEMBER SIZES IMPLICATE SAVINGS DUE TO TIME TO REDESIGN - III. THE COST OF RAW MATERIALS IS MUCH LESS FOR BRACED CONNECTIONS THAN MOMENT CONNECTIONS ### II. ARCHITECTURAL SYSTEM NEW FAÇADE STILL STICKS TO IP MOLD - II. THERMAL ANALYSIS DICTATED SELECTION OF MATERIALS - III. SAVINGS FROM STRUCTURAL ABSORBED BY MAT. COSTS - IV. EXTISTING FACADE SUFFICIENT ### III. MECHANICAL SYSTEM - NEEDED REDESIGN REGARDLESS - II. VAV SYSTEM SEES LONG-TERM BENEFITS ### IV. OVERALL - I. AN EXPANSION = MORE WORK - II. ALL OF THE NEW SYSTEMS FEASIBLE PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS ## **ACKNOWLEDGEMENTS** CHRIS BOWERS, OF L. ROBERT KIMBALL & ASSOCIATES PROFESSOR M. KEVIN PARFITT THE AE FACULTY **MY FAMILY** AND LAST, BUT NOT LEAST MY FELLOW AE'S STATE COLLEGE, PA ## **QUESTIONS/COMMENTS** OVERVIEW PROJECT INTRODUCTION PROPOSAL STRUCTURAL DEPTH BREADTH: ARCHITECTURE MECHANICAL BREATH: CONCLUSIONS/ RECOMMENDA-TIONS QUESTIONS/ COMMENTS # Any Questions/Comments?