TECHNICAL REPORT III Gen*NY*Sis Center for

Excellence in Cancer Genomics

Rensselaer, NY

Meral G. Kanik Structural Option Advisor: A. M. Memari January 12, 2007

Executive Summary	3
Introduction	4
Existing Structural System	5
3-D Model Images	6
Codes and Load Combinations	7
Gravity Loads	8
Wind Criteria	9
Seismic Criteria	9
Load Distribution and Lateral Analysis	10
Hand Calculations	10
RAM Structural Model and Comparisons	13
Serviceability Check	13
Overturning Check	14
Member Verification	15
Lateral Diagonal Bracing	15
Lateral Column	16
Lateral Beam	17
Conclusions	18
Appendix A: Location	19
Appendix B: Typical Structural Layout	20
Appendix C: Important Structural Details	21
Appendix D: Construction Photographs	22
Appendix E: Lateral Brace Frames	24
Appendix F: Lateral Frame Number Labels	26
Appendix G: Wind Data	27
Appendix H: Seismic Data	29
Annendix I: Center of Mass	20

This account details the lateral analysis of the Gen*NY*Sis Center for Excellence in Cancer Genomics. Using RAM Structural system and hand calculations, wind and seismic forces are applied to the lateral force resisting system, which consists of steel eccentrically, chevron braced frames. Using the analysis from the hand calculations and basic computer analysis (in Technical Report I), a more in-depth computer analysis has been compared and evaluated.

The outcome validates the original belief that the seismic forces govern in this case. Computer based shear values were smaller than the conservative hand calculated values. However, using the computer generated loads, strength and serviceability checks were completed to verify the sizes of the lateral braced frame members. Spot checks determined that some of the lateral bracing may have been oversized and therefore are a possibility for resizing. However, the building was able to meet drifting codes based on wind and seismic forces.

Gen*NY*Sis Center for Excellence in Cancer Genomics is University at Albany owned, state-funded medical research lab. Standing four stories tall with the first floor partially below grade, the Center for Genomics sits atop a hill with a beautiful outlook over Rensselaer, NY and the Hudson River. The Research Center houses research laboratories, offices, an animal facility, a seminar room, mechanical rooms and a loading dock.

As the signature building of University at Albany's East Campus Technology Park, the Research Center is a model for the co-location of academia, industry, and government. To signify its technological presence, a glass curtain wall and exposed frames promote a fresh, new look for the campus.

A main design goal was to maximize vertical space for utilities in the corridor and in the laboratories. Another concern was the minimization of vibration from foot-traffic in the corridor through the center of the building so a 100 psf live load was predominantly used for designing. The use of composite steel with concrete slab on deck forms the 117,400 square feet plan with a typical bay size of 21 feet by 27 feet. The lateral system is a series of braces frames spaced throughout the plan of the building.

This report examines the distribution of the lateral loads through the building frame of Gen*NY*Sis Center for Genomics. The ASCE 7-05 Code is used for load case input into RAM Structural System, in addition to hand calculations. Spot checks were performed on typical lateral brace members to confirm that computer strength design checks were appropriate.

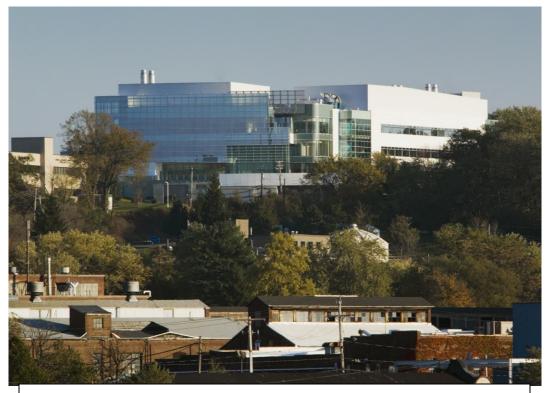


Figure 1: Gen*NY*Sis Center for Excellence in Cancer Genomics overlooks

Foundation

Bearing on fill and the indigenous soils was selected to simplify the excavation techniques. With this option, rock encountered above the desired footing elevation must be over-excavated 18-inches, and a fill "cushion" placed beneath the footings. The allowable bearing capacity of this foundation system is 4000 psf. Typical footings are 9-feet square 25-inches deep calling for 11#9 reinforcing bars each way on bottom. Typical continuous wall footings are 1-foot deep by 2-feet wide calling for 3#5 continuous bars and 1#5 bar at 12-inches on center, transverse.

Floor Framing

The floor system of the Center for Genomics is composed of a composite steel system with a typical bay of 21 feet by 27 feet. It includes 2.0 inch, 20-gage composite decking with a 4.5" normal weight concrete slab, and ¾" diameter, 4" long studs. A 2 hour-rated construction is provided for all columns and beams supporting all floors. Typical floor beams (displayed in teal to the right) are W16x31 spaced 7-feet apart and 20 shear connectors. Filler beams across the 10-

Figure 2: 2nd Floor Plan

foot corridor are W10x12 spaced 7-feet apart. Girders along the interior

column lines and along the exterior walls are W18x35 with 32 shear connectors. Camber is not be accounted for due to relatively short spans.

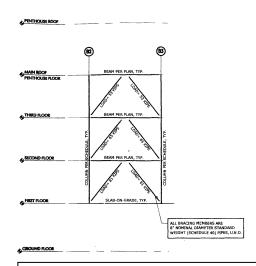


Figure 3: Typical Lateral Brace Frame

Lateral Force Resisting System

Steel braced frames (displayed in red above) will resist wind and seismic lateral loads. An expansion joint at the intersection of the two building wings will isolate the two sections from each other. The expansion joint will require a row of columns along each side of the joint, with the building structures separated by a distance sufficient to provide seismic isolation—approximately 6 to 8-inches. Each building section has braced frames across the ends, and two bays of bracing along the length of each exterior wall. Bracing diagonals are typically HSS8x8x5/16 in non-moment-resisting eccentrically braced frames.

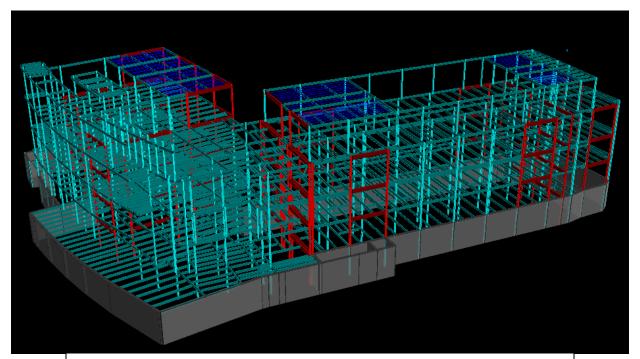


Figure 4: RAM 3-D View of Structural System with Lateral Bracing Highlighted (Northwest corner)

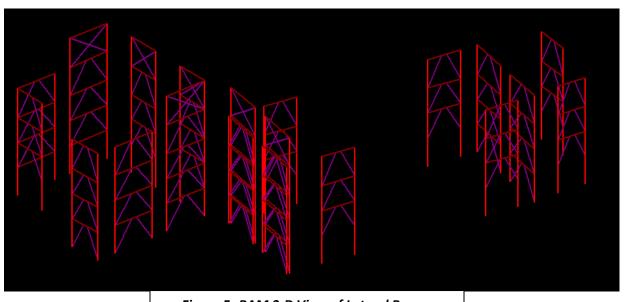


Figure 5: RAM 3-D View of Lateral Braces

Codes and Load Combinations

Codes and References

- ~ The Building Code of New York State (a replica of the IBC with amendments)
- Minimum Design Loads for Buildings and Other Structures (ASCE 7-05)
- ~ The Building Code Requirements for Reinforced Concrete (ACI 318-05)
- ~ Specifications for Structural Steel Buildings (AISC 13th Edition)
- ~ Seismic Provisions for Structural Steel Buildings (AISC 13th Edition)
- Code of Standard Practice for Steel Buildings and Bridges (AISC 13th Edition)

LRFD Load Cases

- 1.4(Dead)
- 1.2(Dead) + 1.6(Live) + 0.5(Roof Live)
- 1.2(Dead) + 1.6(Roof Live) + 1.0(Live) or 0.8(Wind)
- 1.2(Dead) + 1.6(Wind) + 1.0(Live) + 0.5(Roof Live)
- 1.2(Dead) + 1.0(Seismic) + 1.0(Live)
- 0.9(Dead) + 1.6(Wind)
- 0.9(Dead) + 1.0(Seismic)

^{*}Snow Loads were not considered in this analysis

Gravity Loads

Dead Loads

Construction Dead Load

Concrete 150 pcf Steel 490 pcf

Construction Dead Load

Partitions 20 psf
M.E.P. 10 psf
Finishes 5 psf
Windows and Framing 20 psf
Roof 20 psf

Live Loads

Laboratories 60 psf

70 psf for office/lab flexibility

Offices 70 psf Lobbies 100 psf First Floor Corridor 100 psf Corridors above First Floor 80 psf 100 psf Stairs and Exits Seminar Room 100 psf Catwalks 40 psf Balcony/Terrace 100 psf

Mechanical Rooms Weight of equipment

Wind Criteria

Gen*NY*Sis Tech Report III

The Analytical Procedure was used from ASCE 7-05 Section 6.5 to calculate the wind loads. Below is a list of the major assumptions made for determining the building's wind loads.

Basic Wind Speed	90 mph
Exposure Category	B
Importance Factor	1.15
Building Category	II
Internal Pressure Coefficient	+/- 0.18

Seismic Criteria

Gen*NY*Sis Tech Report III

The Equivalent Lateral Force Procedure was used from ASCE 7-05 Section 11 and 12 to calculate the seismic loads. Below is a list of the major assumptions made for determining the building's seismic loads.

Seismic Use Group	II
Importance Factor	1.0
Mapped Spectral Response Accelera	ations
S _s	0.220
S ₁	0.076
Site Class	C
Site Class Factors	
F _a	1.2
F _v	1.7
S _{MS}	
S _{M1}	0.129g
S _{DS}	0.159g
S _{D1}	0.073g
Seismic Design Category	B
Response Modification Factor (R)	7.0
Nonmoment-Resisting Eccentrically	Braced Frames
Seismic Period Coefficient (Ct)	0.03
Seismic Response Coefficient (C _s)	0.0251 sec
Period Coefficient (x)	0.75

Distribution of lateral forces is based on frame relative stiffness. The composite deck and slab are treated as a rigid diaphragm, which designates load to each vertical lateral frame based upon this specified stiffness. The working point was set as (0, 0) at the intersection of A1-B1.

Hand Calculations

A 1.0 kips unit load was applied to each story level. The inverse of the deflection of caused by the unit load is then recorded as the relative stiffness. This is done at each of the five floors above the base of the structure. Using the stiffness of each frame (see Appendix F for Lateral Frame Number Labels), story shear can be determined for each frame. A simple calculation of the center of rigidity was calculated for the determination of wind story shears, and the center of mass for the seismic story shears. It was affirmed that the seismic forces govern for the lateral bracing, so overturning moment and torsion were further investigated.

The equation used to determine torsion was:

$$\frac{V.e.K_{SN}.C_{N}}{\Sigma(K_{SN}C_{N}^{2})}$$

where V=story shear, e=eccentricity, K_{SN} =relative stiffness, and C_N =distance from frame to center of rigidity.

In calculating the center of rigidity and the center of mass, all slab openings and varying floor levels are ignored. There is a small change for the different floor layouts, but it was not accounted for in the computer model.

	Frame Number	2	3	6	7	13	14	15	16	19	Sum
Frame Stiffness	Penthouse		388	231							619
Sentificas	Roof	303	239	152	294	200	200	200	200	138	1926
	3rd	416	398	219	453	299	299	299	299	211	2893
	2nd	485	500	255	500	357	357	357	357	261	3429

Figure 6: Frame Stiffness in East-West Frames

	Frame Number	1	4	5	8	9	10	11	12	17	18	20	Sum
Frame													
Stiffness	Penthouse		71	231				53	72				427
	Roof	312	27	153	526	51	51	41	51	23	27	17	1279
	3rd	425	27	219	952	55	55	46	53	20	21	16	1889
	2nd	485	21	255	813	60	61	52	57	21	22	11	1858

Figure 7: Frame Stiffness in North-South Frames

Story											
Shear	Eccentricity,	Eccent	ricitv.								
(kips)	x (ft)	y (1	•								
0.0	13.76	8.1									
45.8	15.45	8.1	8.12								
149.4	15.45	8.1	2								
219.0	15.62	9.9	97								
	Frame Number	2	3	6	7	13	14	15	16	19	
Relative											
Stiffness	Penthouse	0	0.63	0.37	0	0	0	0	0	0	1
	Roof	0.157	0.12	0.08	0.15	0.1	0.1	0.1	0.1	0.07	1
	3rd	0.144	0.14	0.08	0.16	0.1	0.1	0.1	0.1	0.07	1
	2nd	0.141	0.15	0.07	0.15	0.1	0.1	0.1	0.1	0.08	1
		0.443	1.03	0.6	0.46	0.31	0.31	0.31	0.31	0.22	
Distance to	Center of										
Rigidity (ft)	131	110	63	93	107	7	129	73	165	SUM
Torsional											
Force, x	Penthouse	0	0.08	0.14	0	0	0	0	0	0	0.2
	Roof	1.931	0.77	1.48	2.52	2.29	34.3	1.9	3.35	1.4	49.9
	3rd	5.757	2.78	4.62	8.45	7.43	111	6.16	10.9	4.64	162.0
	2nd	8.393	4.36	6.73	11.7	11.1	166	9.2	16.3	7.17	241.1
Torsional											
Force, y	Penthouse	0	0.61	1.11	0	0	0	0	0	0	1.7
	Roof	1.015	0.14	0.26	0.51	0.34	0.34	0.34	0.34	0.24	3.5
	3rd	3.026	0.15	0.25	0.52	0.34	0.34	0.34	0.34	0.24	5.6
	2nd	5.357	0.2	0.31	0.6	0.43	0.43	0.43	0.43	0.31	8.5

Figure 8: Torsional Forces in North-South Frames

Story		
Shear	Eccentricity,	Eccentricity,
(kips)	x (ft)	y (ft)
0.0	13.76	8.14
45.8	15.45	8.12
149.4	15.45	8.12
219.0	15.62	9.97

	Frame Number	1	4	5	8	9	10	11	12	17	18	20	
Relative	Pent-												
Stiffness	house	0	0.17	0.54	0	0	0	0.12	0.17	0	0	0	1
	Roof	0.24	0.02	0.12	0.41	0.04	0.04	0.03	0.04	0.02	0.02	0.01	1
	3rd	0.22	0.01	0.12	0.5	0.03	0.03	0.02	0.03	0.01	0.01	0.01	1
	2nd	0.26	0.01	0.14	0.44	0.03	0.03	0.03	0.03	0.01	0.01	0.01	1
Distance to	Center of												
Rigidity (ft)		121	45	77	119	38	67	36	66	125	137	161	SUM
Torsional	Pent-												
Force, x	house	0	0.24	0.11	0	0	0	0.24	0.13	0	0	0	0.7
	Roof	1.98	1.57	1.19	1.81	7.34	4.2	3.14	1.58	2.54	2.72	1.94	30
	3rd	5.96	3.47	3.78	7.24	17.5	10	7.78	3.63	4.87	4.67	4.04	723
	2nd	10.2	4.07	6.62	9.32	28.8	16.7	13.3	5.88	7.71	7.38	4.18	114
Torsional	Pent-												
Force, y	house	0	0.02	0.05	0	0	0	0.01	0.02	0	0	0	0.1
	Roof	1.04	0.09	0.51	1.76	0.17	0.17	0.14	0.17	0.08	0.09	0.06	4.3
	3rd	3.13	0.2	1.61	7.02	0.41	0.41	0.34	0.39	0.15	0.15	0.12	14
	2nd	6.54	0.28	3.44	11	0.81	0.82	0.7	0.77	0.28	0.3	0.15	25

Figure 9: Torsional Forces in East-West Frames

RAM Structural System Model and Comparisons

RAM Structural System was used for a more detailed lateral analysis. Because the difference of each floor frame could be taken into account more precisely, the centers of rigidity and the centers of mass were more accurate. However, slab openings were still not included in the calculation. Also, the starting point for the RAM calculations was slightly different than the one used by hand.

	Hand Calc	ulations			RAM Calcu	ılations		
		Center	Center of	Center of				
	Center of	of Mass,	Rigidity,	Rigidity,	Center of	Center of	Center of	Center of
Story	Mass, x	У	х	У	Mass, x	Mass, y	Rigidity, x	Rigidity, y
Penthouse	26.80	129.60	70.36	111.84	31.57	133.90	78.31	126.02
Main Roof	102.90	85.20	111.54	89.16	111.89	76.36	96.72	86.37
3rd	82.70	77.00	111.54	89.16	112.90	75.82	106.33	90.74
2nd	82.70	77.00	111.54	89.16	105.47	88.64	114.56	92.58
1st	76.20	87.50	62.56	82.62	92.85	96.32	123.82	90.38

Figure 10: Comparison of Hand Calculations and RAM Output

Serviceability Check

The IBC was applied for the deflection criteria so as to compare drift by story and by overall drift. Wind drift was evaluated against $\Delta_{\text{SEISMIC}} = 1.025 \, \text{h}_{\text{SX}}$.

Floor	Story Height (ft)	Allowable Story Drift H/400 (in)	Story Drift (in)	Height Above Base (ft)	Allowable Drift H/400 (in)	Total Drift (in)
Penthouse	18.42	0.55	0.48	87	2.61	1.72
Roof	18.58	0.56	0.34	68.58	2.06	1.24
3rd	16.00	0.48	0.33	50	1.50	0.90
2nd	16.00	0.48	0.32	34	1.02	0.57
1st	18.00	0.54	0.32	18	0.54	0.25

Figure 11: Computed Wind Drift to Code Limit

				Height		
	Story	Allowable	Story	Above	Allowable	Total
	Height	Drift	Drift	Base	Drift	Drift
Floor	(ft)	0.025h _{sx} (in)	(in)	(ft)	0.025h _{sx} (in)	(in)
Penthouse	18.42	0.46	0.43	87.00	2.18	1.73
Roof	18.58	0.46	0.36	68.58	1.71	1.30
3rd	16.00	0.40	0.36	50.00	1.25	0.94
2nd	16.00	0.40	0.33	34.00	0.85	0.58
1st	18.00	0.45	0.25	18.00	0.45	0.25

Figure 12: Computed Seismic Drift to Code Limit

As seen here, overall drift is up to code and the all individual floors are acceptable as well. Because it seems as though some of the deflection is considerably lower than code, the braces and beams may be able to be decreased in size which could affect the overall pricing of the lateral system. Another possibility would be to decrease the length of the diagonal bracing by bringing the braced length of the top beams of each section closer to the exterior nodes of that beam.

Overturning Check

The overturning moments were evaluated to see if the wind forces would overpower the 4000 psf bearing capacity of the foundation system. By inspection, some of the foundations don't seem to be strong enough and must be re-evaluated.

Floor	Height Above Base (ft)	Wind Shear N/S (kips)	Calculated Moment (ft-kips)	Overturning Moment (ft-kips)	Wind Shear E/W (kips)	Calculated Moment (ft-kips)	Overturning Moment (ft-kips)
Penthouse	87.00	69.37	6029	6035	71.43	6212	6214
Roof	68.58	32.62	3340	2237	60.04	3392	4118
3rd	50.00	6.16	2440	308	32.36	2470	1618
2nd	34.00	40.87	1564	1390	210.09	1537	7143
1st	18.00	175.97	871	3167	272.68	833	4908

To validate the output given by RAM Structural System, some lateral members were strength-checked using the governing loads of those members.

GEN*NY* SIS CENTER FOR GENOMICS - SPOT CHECK /3 LATERAL BRACING LUXD CHECK BRACE @ 18 (B2, B3) $\frac{\text{KLy}}{r} = \frac{(10)(20\text{ft})}{313\text{ in}} = 76.7 < 200 \text{ V}$ 4.71 \[= 4.71 \] \[\frac{29000 \kin }{46 \kin } = 118.3 76.7 < 118.3 .. INELASTIC [AISC 13th ED. EQ.3-2] $f_e = \frac{\eta^2 E}{\left(\frac{kL}{V}\right)^2} = \frac{\eta^2 (29000 \text{ pm})}{(76.7)^2} = 48.7 \text{ pm}$ Fcr = [0.658 (Fylfe)] Fy = [0.658 (46 Mai/48.7 Mai)] (46 Mai) = 31.0 Mai OPn= 0.85Ag Fcr = 0.85(876 m2)(31.0 km) = 231 km OPO > Po / TABLE 4-4 [AISC 13# ED.] OPa = 244" /

Pu = 114k = 0.49 < 1.01

GEN*NY* SIS CENTER FOR GENCHICS - TECHT 3 SPOT CHECK 2/3

COL@ 18-83, BZ

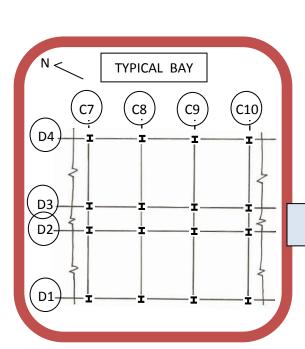
Fy=50 kg; Ag= 14.6 in² yy= 1.96 in Vx=5.17 in d= 12.2 in tw= 0.370 in

$$\phi V_{\eta} = 0.9 \text{ fy dt}_{w} = 0.9 (50 \text{ psi})(122 \text{ in})(0.37 \text{ in}) = 203^{k}$$

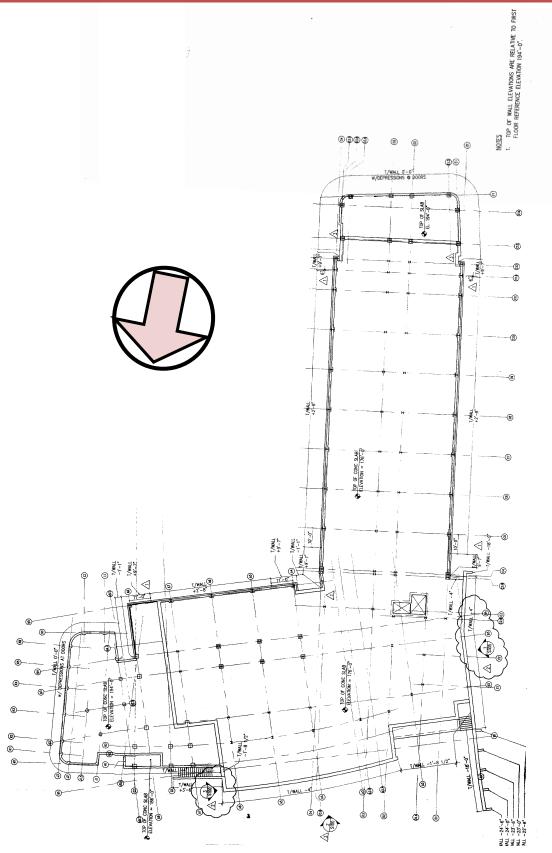
 $\phi V_{\eta} > V_{U} \sim$

iviember	Verification Gen*NY*Sis F	ecn Ke
	GEN*NY*SIS CENTER FOR GENOMICS - TECH 3 SPOT CHECK	3/3
•	$\frac{P_0}{\Phi P_n} = \frac{150^{14}}{324^{12}} = 0.43 > 0.2$; [AISC127 ED.] EQ. HI-IA $\frac{P_0}{\Phi P_n} = \frac{150^{14}}{9} \left(\frac{M_0}{\Phi M_n}\right) = 0.43 + \frac{8}{9} \left(\frac{54}{90}\right) = 0.96 < 1.0 \checkmark$	
	$V_{U}=46^{k}$ Fy=50 kgi $A_{U}=68^{k}$ Ag=18.3 cy ² $A_{U}=68^{k}$ Ag=18.3 cy ² $A_{U}=68$	
	$\frac{\text{KLy}}{V} = \frac{(10)(12 \text{ ft})}{1.77 \text{ in}} = 81.4 < 200 \leftarrow \text{CONTROLS}$ $\frac{\text{KLy}}{V} = \frac{(1.0)(21 \text{ ft})}{8.54 \text{ in}} = 380.4200$	
	DVn= Φ0.6 Fydtro = (10)(06)(50 km)(21m)(0.4m) = 252kg	2
	KL Fy = 814 50 ksi = 1.1<15	
	ΦPn = ΦFcr Ag = 0.85 (0.658(11)2) (50 μm) (183 in2) = 469R	
	TABLE 6-1 [AISC [3# ED.] P= (.99 × 103 / hipe PPU= (1.99 × 10-3)(104k) = 0.21 × 1.0 V: EQ. HI-IA	
	$0x = 2.02 \times 10^{-3}$ /kip-fl 0.21 + $(2.02 \times 10^{-3})(68) = 0.35 \times 10$,

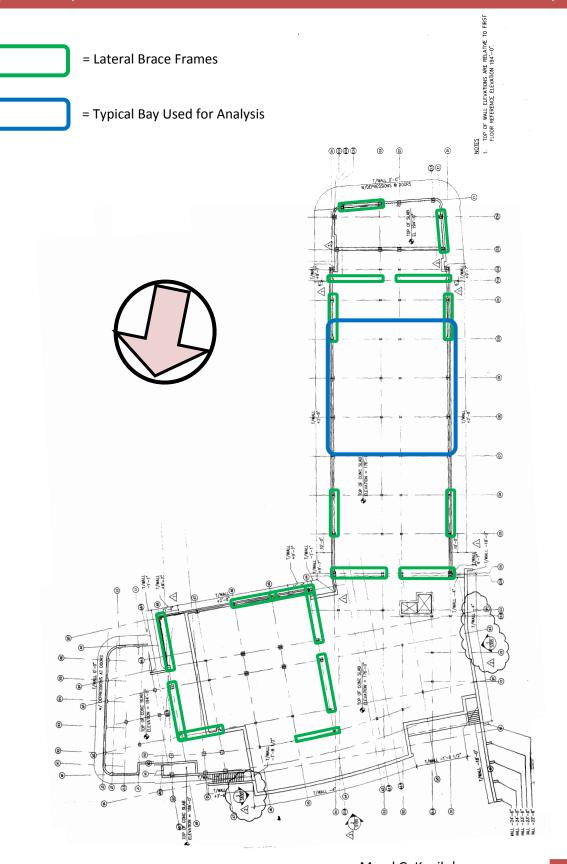
This report is an evaluation of hand calculations against computer modeling to further understand the lateral system for the Gen*NY*Sis Center for Genomics. For the most part, the calculations were consistent with each other, except in the case of story shears which most likely arise from different assumptions between the computer model and the original assumptions in Technical Report I. In other words, attention to detail and precise modeling can provide more comparable calculations.


Problems arise with the disagreement of the relative stiffness which is partially due to the disconnected diaphragm at the Penthouse level. It is also due to the disagreement of story shears between the hand calculations and the model calculations. The set point of the model turned out to be different than what was used in design which caused a difference in basic length and distance calculations. However, the calculations for drift are completely within the limits as is the strength in the lateral brace members for the loads designed by hand.

The confusion between model and hand calculations of shear and distances will be re-evaluated as part of my thesis proposal. The brace configurations provide a lot of chance for disagreement and will also be looked into as part of the proposal.


Appendix A: Typical Structural Layout

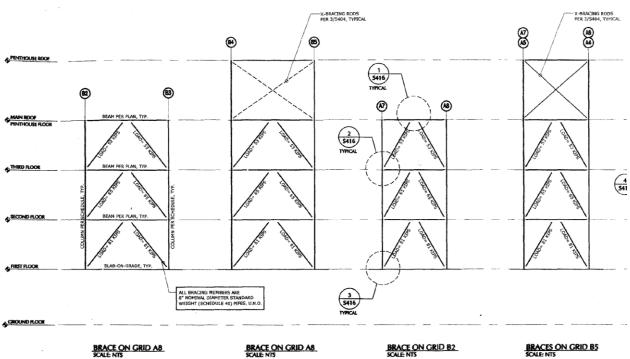
Gen*NY*Sis Tech Report III

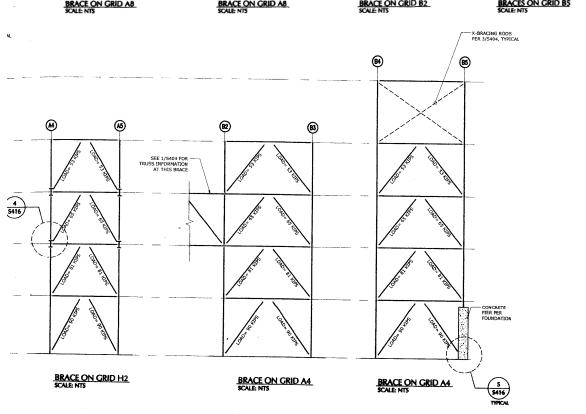


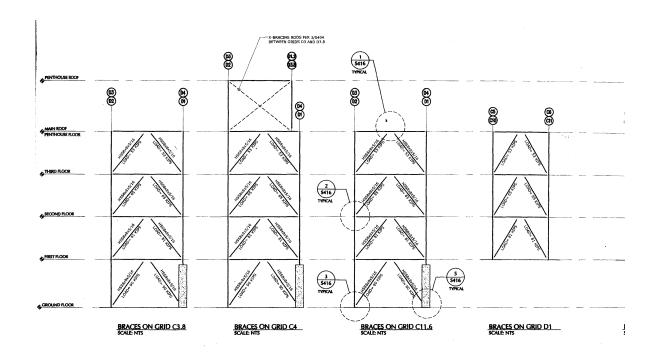
Meral G. Kanik | Page 20 of 30

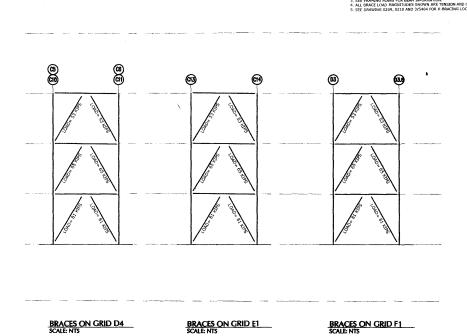
Meral G. Kanik | Page 21 of 30

Picture 1: Typical Structural Column on Pier

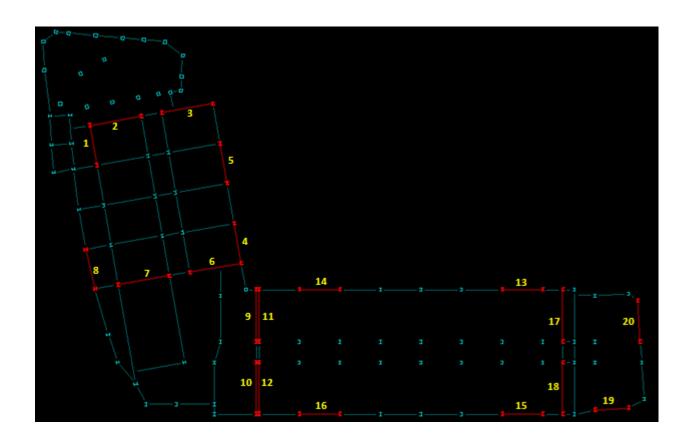

Picture 4: Typical Lateral Brace Connection




Picture 5: Typical Column-Girder Connection



Picture 6: Penthouse Mechanical Screen



1 SCHEMATIC CHEVRON BRACE DETAILS \$403 SCALE: 3/32" = 1'-0"±

Basic Wind Speed	V	90 mph	
Importance Factor	l _w	1.0	
Exposure Category		В	
Roof Angle	Θ	1.07°	
Height and Exposure Coefficient	λ	1.16	
Building Period Coefficient	C _t	0.03	
Effective Height Coefficient	Х	0.75	
Maximum Height Above Base	h _n	87 ft	determined from
Coefficient for Upper Limit on Period	Cu	1.70	seismic calcs in ASCE
Fundamental Period	Т	1.454	7-05 Section 12.8.2
Topographic Factor	K _{zt}	see Figure 7	
Building Natural Frequency	n ₁	0.69 Hz	├ ─
Mean Hourly Wind Speed Factor	Б	0.45	
Height Above Ground Level	Z	87 ft	structure is flexible
3-Sec Gust Speed Power Law Exponent	α	0.25	Structure is mexicie
Basic Wind Speed	V	90 mph	
Mean Hourly Speed	V _z	75.69	
Integral Length Scale Factor	P	320 ft	
Integral Length Scale Power Law Exponent	Ē	0.333	
Resonant Response Factor	R	see Figure 8	
Gust-Effect Factor	G_f	see Figure 9	
Internal Pressure Coefficient	GC_{pi}	+/- 0.18	
Windward External Pressure Coefficient	Cp	0.8	
Leeward External Pressure Coefficient	Cp	-0.2/-0.5	
Wind Pressure	р	see Figure 2	

Wind Pressure [p]

	., .						
	Elevation	Height Above Base (ft)	q _z	N-S Windward (psf)	N-S Leeward (psf)	E-W Windward (psf)	E-W Leeward (psf)
Penthouse	263'-0"	87.00	20.0	17.63	-12.37	10.35	-12.32
Roof	242'-0"	66.00	18.2	16.37	-12.37	9.10	-12.32
3rd	226'-0"	50.00	17.0	15.33	-12.37	8.26	-12.32
2nd	210'-0"	34.00	14.5	13.77	-12.37	6.52	-12.32
1st	194'-0"	18.00	12.1	12.09	-12.37	4.84	-12.32

Base Shear and Overturning Moment

	Vert. Dist. To Base (ft)	Load (kips) N-S	Load (kips) E-W	Shear (kips) N-S	Shear (kips) E-W	Moment (ft-kips) N-S	Moment (ft-kips) E-W
Penthouse	87.0	69.3	71.4	0.0	0.0	6029	6212
Roof	66.0	50.6	51.4	69.3	71.4	3340	3392
3rd	50.0	48.8	49.4	119.9	122.8	2440	2470
2nd	34.0	46.0	45.2	168.7	172.2	1564	1537
1st	18.0	48.4	46.3	214.7	217.4	871	833
BASE	0.0	263.1	263.7	263.1	263.7	14244	14444

0.2-Sec Spectral Response Acceleration	S _s	0.220
1.0-Sec Spectral Response Acceleration	S ₁	0.076
Site Class		С
Short-Period Site Coefficient	Fa	1.2
Long-Period Site Coefficient	F _v	1.7
MCE on Short Period	S _{MS}	0.264
MCE on Long Period	S _{M1}	0.129
Design Spectral Response Acceleration on Short Period	S _{DS}	0.176
Design Spectral Response Acceleration on Long Period	S _{D1}	0.086
Seismic Design Category		В
Importance Factor	ı	1.0
Response Modification Coefficient	R	7.0
Building Period Coefficient	C _t	0.03
Effective Height Coefficient	х	0.75
Maximum Height Above Base	h _n	87 ft
Coefficient for Upper Limit on Period	Cu	1.70
Approximate Fundamental Period	Ta	0.855 sec
Fundamental Period	Т	1.454 sec
Seismic Response Coefficient	Cs	0.0251 sec
Distribution Exponent	k	1.480
Building Weight	W	see Figure 10

Base Shear and Overturning Moment

	h _x (ft)	w _x (kips)	h _x ^k w _x (ft-kips)	C _{vx}	$F_x = C_{vx}V$ (kips)	V (kips)	$M = F_x h_x$ (ft-kips)
Penthouse	87.0	564	418569.5	0.164	45.8	0	3984
Roof	66.0	1921	947223.3	0.372	103.6	46	6840
3rd	50.0	1947	636563.2	0.250	69.6	149	3482
2nd	34.0	1913	353430.3	0.139	38.7	219	1315
1st	18.0	2644	190574.5	0.075	20.9	258	375
Ground	0.0	1738	0	0.000	0.0	279	0
Total		10727	2546361	1.000	278.6	279	15997

	GENXNY*SIS CENTER FOR GENOMICS - CENTER OF MICS /
•	PART I (57' x9') + (69' x 20') + (12) (46' x 14') + (46' x7')
	2537 [t2 PART II (104' × 64') + (13' × 87') 7787 [t2 PART III (12)(20' × 104') + (1/2)(88' × 18') + (76' × 92')
	PANET II
	(117' × 52') PART 7
	(591 + 681) + (1/2)(51) *(00) + (251 × 611) 56 87 ft2
	CENTER OF PART MASS
•	$ \begin{array}{l} \times_{m} = 2.1 \times A = (3)(2531) + (19)(7187) + (28)(8824) + (141)(6684) + (171)(669) \\ \times_{m} = 76.2 \text{ (4)} \\ \times_{m} = 76.2 \text{ (4)} \\ \times_{m} = (204)(2531) + (136)(7787) + (59)(8824) + (53)(6684) + (50)(6687) \\ \times_{m} = 87.5 \text{ (4)} \\ \times_{m} = 87.5 \text{ (4)} \end{array} $