# TECHNICAL REPORT TWC

## **BUILDING AND PLANT ENERGY ANALYSIS**

## ED SCIENCE CEN SCRANTON, PA

## THE UNIVERSITY OF SCRANTON



## DALE E. HOUCK | MECHANICAL

CONSULTANT: DR. BAHNFLETH

3 NOVEMBER 2010

PENN STATE UNIVERSITY ARCHITECTURAL ENGINEERING

## TABLE OF CONTENTS

| EXECUTIVE SUMMARY           |    | 3  |
|-----------------------------|----|----|
| MECHANICAL SYSTEMS SUMMARY  |    | 4  |
| DESIGN LOAD ESTIMATION      |    | 5  |
| Design Conditions           | 5  |    |
| Building Materials          | 6  |    |
| Internal Loads              | 7  |    |
| Schedules                   | 8  |    |
| Design vs. Modeled Loads    | 9  |    |
| ENERGY AND EMISSIONS REPORT |    | 10 |
| Assumptions                 | 10 |    |
| Annual Energy Consumption   | 11 |    |
| Annual Energy Costs         | 14 |    |
| Annual Energy Emissions     | 16 |    |
| REFERENCES                  |    | 18 |
| APPENDIX                    |    | 19 |

## **EXECUTIVE SUMMARY**

This purpose of this report is to provide a summary of modeled loads, energy consumption, operating costs, and emissions for the Unified Science Center in Scranton, PA. This building is a university science center housing laboratories, classrooms, computer rooms, and office spaces.

Analysis was performed using Trane TRACE 700 to simulate loads and energy usage on an annual basis. Room dimensions, occupancy, and glazing areas were entered into the program along with information about the primary heating, cooling, and ventilation systems used in the building. All information was taken directly from the design documents when provided; otherwise, default values provided by ASHRAE were used for analysis.

Results of the TRACE analysis were then compared with design document values. In most cases, the simulation results are within range of the design documents. Difficulty in accurately modeling the complex loads and systems of the Unified Science Center accounts for the discrepancies in heating loads.

According to the simulation, the Unified Science Center will consume approximately 8,666,768 kWh per year and approximately 124,195 MBTU of natural gas. The building will cost nearly \$9.00/ft<sup>2</sup> to operate. Detailed information about modeling methods and results is found in the following report.

## **MECHANICAL SYSTEMS SUMMARY**

The majority of the Unified Science Center is supplied with 100% outside air from five rooftop AHUs with energy recovery wheels and variable frequency drives. AHUs 1 and 2 serve the same supply air ducts with a total of 100,000 CFM. AHUs 3 and 4 operate identically to supply similar spaces including offices, laboratories, and classrooms. AHU 5 provides 5,150 CFM to a ground floor Vivarium. Figure 1 shows the areas served by each unit.

Other systems include a 750 CFM constant air volume unit which serves a room on the first floor and a small variable air volume unit which serves existing variable volume supply terminals. Due to the relatively small size of these units and the areas they serve, they were not considered in the following analysis.



|             | AHUs 1 and 2           | AHUs 3 and 4           | AHU 5                        |
|-------------|------------------------|------------------------|------------------------------|
| Area Served | 87,625 ft <sup>2</sup> | 85,757 ft <sup>2</sup> | <b>3,346</b> ft <sup>2</sup> |
|             | Total Floor Area       | 176728 ft <sup>2</sup> |                              |

Fig. 1

## **DESIGN LOAD ESTIMATION**

Trane TRACE was chosen for analysis because of my previous experience with the program and its ease of use. A block load simulation was performed to estimate the design heating and cooling loads. The REVIT model used for analysis was constructed using information provided by the architectural engineers.

### **Design Conditions**

The Unified Science Center is located in Scranton, PA, as indicated in Fig. 2. The design outdoor air conditions used for analysis were obtained from ASHRAE Fundamentals 2007, and are listed in Table 1. Design setpoints were taken from the project documentation.



Fig. 2

| ASHRAE Design Conditions – Scranton, PA |                              |            |  |  |
|-----------------------------------------|------------------------------|------------|--|--|
|                                         | Dry Bulb Temperature<br>(°F) |            |  |  |
| Cooling                                 | 88.9 (0.4%)                  | 72.1 (0.4) |  |  |
| Heating                                 | 3.5 (99.6%)                  | -          |  |  |
| Indoor Design Temperature               | 70-75 @ 50% RH               | -          |  |  |

## **Building Materials**

Materials used for the Unified Science Center are shown in Table 2 along with their corresponding U-values. Though different types of glazing are used throughout the building, all glazing has excellent thermal performance characteristics; for the purposes of this report, all glazing was estimated to have the U-value shown below. The roof was not considered in this analysis, because a penthouse covers most of the rooftop and limits heat conduction; in addition, the white PVC roof material will reflect the majority of incident solar radiation.

| Building Materials Characteristics |                                                    |                                    |  |  |
|------------------------------------|----------------------------------------------------|------------------------------------|--|--|
| Building Component                 | Construction                                       | U-value<br>(BTU/(h*ft²*°F)         |  |  |
| Façade Wall                        | Stone Veneer, Rigid<br>Insulation, Weatherproofing | 0.0693                             |  |  |
| Partition                          | ¾" Gypsum Wall Board                               | 0.388                              |  |  |
| Floor Slab                         | 3-4" NW Concrete                                   | 0.212615                           |  |  |
| Glazing                            | Double Pane Low-E Fritted<br>Glass (typ.)          | 0.29<br>Shading Coefficient = 0.95 |  |  |

Table 2

## **Internal Loads**

Where not specified in the project documentation, internal loads were estimated using typical data based on space type provided by ASHRAE Fundamentals. Typical occupancy loads and airflows were taken from the project documentation when available; otherwise default TRACE values were used. Table 3 provides a summary of loads according to room type. Samples of TRACE inputs can be found in the Appendix.

| Internal Loads      |          |               |             |             |              |
|---------------------|----------|---------------|-------------|-------------|--------------|
|                     | Lighting | Miscellaneous | Peo<br>(BTU | ple<br>/hr) | People       |
|                     | (W/ft²)  | (W/ft²)       | Sensible    | Latent      | (ft²/person) |
| Classroom           | 1.25     | 0.22          | 250         | 200         | 20           |
| Coffee Shop         | 1.25     | 0.1           | 275         | 275         | 15           |
| Computer Classroom  | 1.25     | 8             | 250         | 200         | 20           |
| Corridor            | 1.25     | 0             | 250         | 250         | 0            |
| Laboratory          | 1.25     | 9             | 250         | 250         | 33           |
| Mechanical Room     | 1        | 10            | 250         | 250         | 0            |
| Office Suite        | 1.25     | 0.5           | 250         | 200         | 143          |
| Student Study Space | 1        | 0.22          | 250         | 200         | 10           |
| Toilet Room         | 1        | 3             | 250         | 250         | 50           |
| Vestibule           | 1        | 0             | 250         | 200         | 33           |
| Vivarium            | 1.25     | 10            | 250         | 250         | 33           |

## **Schedules**

Schedules were generally based on typical values provided by TRACE. Since occupancy and daylight sensors will be utilized to control the lighting levels, the default TRACE schedule "College" was used to designate lighting and people loads. Miscellaneous loads including computers, servers, and laboratory equipment are scheduled for 100% of the time. All loads for the Vivarium space are scheduled for 100% of the time. Table 4 summarizes the schedules used. Samples of TRACE inputs can be found in the Appendix.

| Lighting & Occupancy Schedules |        |        |  |  |  |
|--------------------------------|--------|--------|--|--|--|
| Time                           | Lights | People |  |  |  |
|                                | (%)    | (%)    |  |  |  |
| Midnight-6 AM                  | 0      | 0      |  |  |  |
| 6-7 AM                         | 10     | 50     |  |  |  |
| 7-8 AM                         | 50     | 50     |  |  |  |
| 8AM-Noon                       | 100    | 100    |  |  |  |
| Noon-1 PM                      | 30     | 30     |  |  |  |
| 1-4 PM                         | 100    | 100    |  |  |  |
| 4-5 PM                         | 50     | 100    |  |  |  |
| 5-6 PM                         | 10     | 50     |  |  |  |
| 6 PM – Midnight                | 0      | 0      |  |  |  |

Table 4

#### **Design vs. Modeled Loads**

The building was modeled using Trane TRACE 700. With the exception of the heating load and the Vivarium supply air rate, the modeled load and ventilation indices are comparable with those of the design documents. Results of the TRACE analysis are summarized for the entire building in Table 5. Additional information about modeling methods and examples of inputs can be found in the Appendix.

The model was created by combining spaces with similar uses, including office clusters and adjacent laboratories, to perform a block load analysis for the entire building. The AHUs were each assigned rooms based on the design documents, and were treated as three separate units. Rooms on the 4<sup>th</sup> and 5<sup>th</sup> floors of the renovation were not included in the model because these floors are slated for future expansion and have not yet been assigned space types or ventilation rates. They will be served by AHUs 3 and 4; accordingly, the overall cooling load and the supply air for these AHUs differ from the design documents by approximately 25%.

The modeled heating load is considerably lower than the design documents; this is due to difficulties in accurately modeling the heating system of the building. Hot water produced by 8 natural gas fired boilers serves all the air handlers and terminal units. Space heating is achieved in a variety of manners according to space type, including VAV terminal boxes with hot water reheat, fan coil units, cabinet heaters, and finned tube radiation. The model was simplified as a 100% outside air unit with VAV terminal reheat, and underestimated heating loads as a result.

The Vivarium was scheduled for 100% occupancy based on 100 people in the space – this was not a reasonable assumption, and the analysis resulted in an overestimation of supply air. To a lesser extent, this error also affected the overall building cooling load.

|                                                                                                               | Cooling Load | Heating Load | Si<br>(     | upply Ai<br>CFM/ft <sup>t</sup> ) | r     |
|---------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|-----------------------------------|-------|
|                                                                                                               |              |              | AHUs<br>1&2 | AHUs<br>3&4                       | AHU 5 |
| Designed*                                                                                                     | 180          | 70           | 1.14        | 1.17                              | 1.54  |
| Modeled <sup>†</sup>                                                                                          | 135          | 24           | 1.31        | 1.62                              | 4.5   |
| *Based on design square footage = 200,000 ft² (includes future expansion)<br>†Based on modeled square footage |              |              |             |                                   |       |

Table 5

## **ANNUAL ENERGY CONSUMPTION AND OPERATING COSTS**

The annual energy consumption and operating costs were estimated using the same TRACE model that was used for load calculations. The building is not yet occupied, so actual energy bills are not available for comparison with the model. Information pertaining to energy modeling performed by the architectural engineers was not available at the time of this writing.

Analysis shows that energy consumption and costs are dominated by natural gas use. However, delivered electricity accounts for the majority of annual source emissions due to electricity use and distribution losses.

### Assumptions

All of the equipment was modeled using information from the design documents, including efficiencies and horsepowers. Representative TRACE inputs can be found in the Appendix.

Utility rates were estimated based on average values for Northeastern Pennsylvania, and can be found in Table 6. Though electricity rates fluctuate yearly, they average at \$0.10/kWh, which was the value used for estimation. Current natural gas rates are likely to decrease in the future as a result of developments in local Marcellus shale mining, but a conservative rate was used in analysis nonetheless.

| Gas and Electricity Rates     |                      |  |  |  |  |
|-------------------------------|----------------------|--|--|--|--|
| Electricity Demand \$10.00/kW |                      |  |  |  |  |
| Electricity Supply            | \$0.10/kWh           |  |  |  |  |
| Gas                           | \$0.72/therm         |  |  |  |  |
| Water                         | \$11.00/1000 gallons |  |  |  |  |

Table 6

## **Annual Energy Consumption**

Table 7 provides a breakdown of annual energy consumption by load type. The heating load easily dominates modeled annual energy usage with 80% of the total. Though the overall cooling, auxiliary, lighting and receptacle loads are typical, the natural gas usage seems excessively high, and skews the percentage values of each load type. Given the location in northeastern Pennsylvania and the focus on daylighting and energy conservation, the other results are generally reasonable.

| Annual Energy Consumption        |                      |                       |                      |               |  |  |
|----------------------------------|----------------------|-----------------------|----------------------|---------------|--|--|
| Load                             | Electricity<br>(kWh) | Natural Gas<br>(kBTU) | Water<br>(1,000 gal) | % of<br>Total |  |  |
| Heating                          |                      |                       |                      | 80            |  |  |
| Primary                          |                      | 124,195,200           |                      | 79.5          |  |  |
| Other                            | 127,024              |                       |                      | 0.6           |  |  |
| Cooling                          |                      |                       |                      | 6             |  |  |
| Compressor                       | 1,615,573            |                       |                      | 3.6           |  |  |
| Cooling Tower/<br>Condenser Fans | 398,595              |                       | 16,550               | 0.9           |  |  |
| Condenser Pump                   | 220,635              |                       |                      | 0.5           |  |  |
| Auxiliary                        |                      |                       |                      | 9             |  |  |
| Supply Fans                      | 3,489,151            |                       |                      | 7.7           |  |  |
| Pumps                            | 569,932              |                       |                      | 1.3           |  |  |
| Other                            |                      |                       |                      | 5             |  |  |
| Lighting                         | 1,425,080            |                       |                      | 3.2           |  |  |
| Receptacles                      | 820,778              |                       |                      | 1.8           |  |  |
| Totals                           | 8,666,768            | 124,195,200           | 16,550               | 100           |  |  |

Table 7

When the design heating consumption is substituted for the TRACE calculated value in Table 7, the overall results are much more reasonable, and are shown in Figure 3.





The chart above provides an estimate of annual energy consumption according to load type. Primary heating loads and auxiliary equipment, including supply fans and pumps, consume most of the annual energy, followed by primary cooling, lighting and receptacle loads. While these results are acceptable, the receptacle load should account for a greater portion of the overall energy use given the amount of laboratory and computer equipment requiring power.

### **Monthly Energy Consumption**

Figures 4 and 5 show the fluctuations in energy usage over the course of the design year. As expected for this climate, electricity use peaks in the summer months (Fig. 4), while gas usage peaks in the winter (Fig. 5). Figure 5 also indicates a summertime surge in natural gas consumption, the reason for the unexpectedly large annual heating load seen in Table 7. This spike is most likely due to the modeled interior and underground spaces requiring VAV reheat during the summer, and is most likely not a realistic estimate of this building's gas consumption. Table 8 shows the numerical values which were given by TRACE and used to produce these graphs.



Fig. 4

Fig. 5

| Monthly Energy Consumption   |        |        |        |        |        |        |         |         |        |        |        |        |
|------------------------------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|
|                              | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul     | Aug     | Sept   | Oct    | Nov    | Dec    |
| Electric - on peak<br>(kWh)  | 196594 | 176785 | 217748 | 194321 | 342564 | 490203 | 483988  | 537002  | 333919 | 213753 | 204135 | 187979 |
| Electric - off peak<br>(kWh) | 332773 | 299699 | 320868 | 334547 | 383614 | 486969 | 867202  | 663076  | 395704 | 336323 | 324621 | 342380 |
| Electric - total<br>(kWh)    | 529367 | 476484 | 538616 | 528868 | 726178 | 977172 | 1351190 | 1200078 | 729623 | 550076 | 528756 | 530359 |
| Gas (therms)                 | 136759 | 133524 | 136759 | 97817  | 29510  | 82032  | 86759   | 84266   | 26468  | 91261  | 110038 | 136759 |

Table 8

#### **Annual Energy Cost Analysis**

| Monthly Energy Costs |                     |                     |               |               |                         |  |
|----------------------|---------------------|---------------------|---------------|---------------|-------------------------|--|
| Month                | Electricity<br>(\$) | Natural Gas<br>(\$) | Water<br>(\$) | Total<br>(\$) | % of<br>Annual<br>Total |  |
| January              | 28,464              | 98,467              | 9,485         | 136,415       | 8.5                     |  |
| February             | 26,422              | 88,938              | 8,510         | 123,869       | 8                       |  |
| March                | 30,769              | 98,467              | 9,862         | 139,098       | 9.6                     |  |
| April                | 28,516              | 70,428              | 10,001        | 108,945       | 6.6                     |  |
| Мау                  | 55,419              | 21,247              | 15,190        | 91,857        | 6                       |  |
| June                 | 71,003              | 66,263              | 22,573        | 159,839       | 10                      |  |
| July                 | 71,142              | 98,467              | 32,532        | 202,141       | 12.5                    |  |
| August               | 76,423              | 89,472              | 28,723        | 194,618       | 12                      |  |
| September            | 55,737              | 19,057              | 15,350        | 90,143        | 5.5                     |  |
| October              | 31,561              | 65,708              | 10,450        | 107,719       | 6.5                     |  |
| November             | 30,023              | 30,023              | 9,805         | 119,055       | 7.4                     |  |
| December             | 27,748              | 27,748              | 9,570         | 135,785       | 8.4                     |  |
| Totals               | 533,228             | 894,205             | 182,051       | 1,609,484     | 100                     |  |

#### Table 9

Table 9 provides a monthly summary of overall utility costs based on the rates in Table 6. Figure 6 provides a graphical representation of overall monthly utility costs. Energy costs will be at their peak in the summer months as a result of the cooling demand; an increase in natural gas consumption also contributes to this peak in overall energy costs. Natural gas usage constitutes the greatest economic cost, at 55% of the yearly total.

The building will cost approximately \$8.04/ft<sup>2</sup> to operate for a typical year. Comparisons of the costs according to type can be found in Figure 7 and Table 10.

Monthly Utility Costs







Fig. 7

| Overall Cost Comparison               |                         |                         |                         |  |  |  |
|---------------------------------------|-------------------------|-------------------------|-------------------------|--|--|--|
| Electricity Natural Gas Water Overall |                         |                         |                         |  |  |  |
| \$2.66/ft <sup>2</sup>                | \$4.47/ ft <sup>2</sup> | \$0.91/ ft <sup>2</sup> | \$8.04/ ft <sup>2</sup> |  |  |  |

Table 10

## **Annual Energy Emissions**

An emissions calculation was performed using the results of TRACE analysis and the 2007 NREL Regional Grid Emission Factors data. This project is located in the Eastern Interconnection of the North American Electrical Reliability Council electrical grid depicted in Figure 8.

Analysis shows that emissions are primarily the result of delivered electricity. This is the result of the large building electrical loads in combination with the poor efficiency of delivering the electricity itself. High efficiency on-site low-No<sub>x</sub> boilers with sealed combustion effectively limit environmental impact from natural gas combustion. The TRACE model produced the summary of overall annual emissions found in Table 11.



Fig. 8

| Computed Emissions Summary |                 |                 |  |  |  |  |  |
|----------------------------|-----------------|-----------------|--|--|--|--|--|
| <b>CO</b> <sub>2</sub>     | SO <sub>2</sub> | NO <sub>x</sub> |  |  |  |  |  |
| 54,797,620 lb/yr           | 423,662 gm/yr   | 85,156 gm/yr    |  |  |  |  |  |

Table 11

Tables 12 and 13 summarize emissions from delivered electricity and on-site combustion, respectively.

| Annual Emissions from Delivered Electricity |                               |                                                   |  |  |  |  |  |
|---------------------------------------------|-------------------------------|---------------------------------------------------|--|--|--|--|--|
| Pollutant                                   | lb of Pollutant<br>per kWh of | Annual lb of Pollutant                            |  |  |  |  |  |
|                                             | Electricity                   | Annual Electricity Consumption =<br>8,666,768 kWh |  |  |  |  |  |
| CO2e                                        | 1.74E+00                      | 15080174.58                                       |  |  |  |  |  |
| CO2                                         | 1.64E+00                      | 14213497.88                                       |  |  |  |  |  |
| CH4                                         | 3.59E-03                      | 31113.69                                          |  |  |  |  |  |
| N20                                         | 3.87E-05                      | 335.40                                            |  |  |  |  |  |
| NOX                                         | 3.00E-03                      | 26000.30                                          |  |  |  |  |  |
| SOX                                         | 8.57E-03                      | 74274.19                                          |  |  |  |  |  |
| CO                                          | 8.54E-04                      | 7401.42                                           |  |  |  |  |  |
| TNMOC                                       | 7.26E-05                      | 629.21                                            |  |  |  |  |  |
| Lead                                        | 1.39E-07                      | 1.20                                              |  |  |  |  |  |
| Mercury                                     | 3.36E-08                      | 0.29                                              |  |  |  |  |  |
| PM10                                        | 9.26E-05                      | 802.54                                            |  |  |  |  |  |
| Solid Waste                                 | 2.05E-01                      | 1776687.24                                        |  |  |  |  |  |
| Total Annual Emis                           | 31,210,917.95                 |                                                   |  |  |  |  |  |

#### Table 12

| Annual Emissions from Natural Gas Boilers |                                             |                        |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------|------------------------|--|--|--|--|--|
| Pollutant                                 | lb of Pollutant per<br>1000 ft3 Natural Gas | Annual lb of Pollutant |  |  |  |  |  |
| CO2e                                      | 1.23E+02                                    | 141690.096             |  |  |  |  |  |
| CO2                                       | 1.22E+02                                    | 140538.144             |  |  |  |  |  |
| CH4                                       | 2.50E-03                                    | 2.87988                |  |  |  |  |  |
| N20                                       | 2.50E-03                                    | 2.87988                |  |  |  |  |  |
| NOX                                       | 1.11E-01                                    | 127.866672             |  |  |  |  |  |
| SOX                                       | 6.32E-04                                    | 0.728033664            |  |  |  |  |  |
| СО                                        | 9.33E-02                                    | 107.4771216            |  |  |  |  |  |
| VOC                                       | 6.13E-03                                    | 7.06146576             |  |  |  |  |  |
| Lead                                      | 5.00E-07                                    | 0.000575976            |  |  |  |  |  |
| Mercury                                   | 2.60E-07                                    | 0.000299508            |  |  |  |  |  |
| PM10                                      | 8.40E-03                                    | 9.6763968              |  |  |  |  |  |
| Total Annual Emissi                       | ons (lb)                                    | 282,486.8103           |  |  |  |  |  |

Table 13

## **REFERENCES**

Deru, M., and P. Torcellini. *Source Energy and Emission Factors for Energy Use in Buildings*. Oak Ridge, TN: U.S. Department of Energy, 2007.

ASHRAE, 2009 Fundamentals.

Project documentation provided by Einhorn Yaffee Prescott Architecture and Engineering.

## **APPENDIX**

| nternal Lo                 | ad Temp          | lates - Project              |                |               |                      |   | ×                  |
|----------------------------|------------------|------------------------------|----------------|---------------|----------------------|---|--------------------|
| Alternative<br>Description | Altern<br>Classr | ative 1<br>com               | <b>•</b>       |               |                      |   | Apply              |
| People                     |                  |                              |                |               |                      |   |                    |
| Туре                       | Classroo         | m                            |                |               |                      | • | New                |
| Density                    | 20               | sq ft/person 💌               | Schedule       | People - Co   | llege                | • | Сору               |
| Sensible                   | 250              | Btu/h                        | Latent         | 200 Bt        | u/h                  |   | <u>D</u> elete     |
| Workstation                | s                |                              |                |               |                      |   | Add <u>G</u> lobal |
| Density                    | 1                | workstation/person 💌         |                |               |                      |   |                    |
| Lighting                   |                  |                              |                |               |                      |   |                    |
| Туре                       | Recesse          | d fluorescent, not vented, 8 | 30% load to sp | ace           |                      | - |                    |
| Heat gain                  | 1.25             | W/sq.ft 💌                    | Schedule       | Lights - Coll | ege                  | - |                    |
| Miscellaneou               | us loads         |                              |                |               |                      |   |                    |
| Туре                       | Std Scho         | ool Equipment                |                |               |                      | - |                    |
| Energy                     | 0.22             | W/sq.ft 💌                    | Schedule       | Misc - Colle  | ge                   | • |                    |
| Energy<br>meter            | Electricity      | y 🔽                          |                | ,             |                      |   |                    |
| <u>I</u> nternal           | Load             | Airflow                      | <u>I</u> herm  | iostat        | <u>C</u> onstruction |   | <u>R</u> oom       |

#### Internal Load Template - Classroom

| Internal Load Templates - Project                   |                                |                    |
|-----------------------------------------------------|--------------------------------|--------------------|
| Alternative Alternative 1<br>Description Laboratory | <u> </u>                       | Apply              |
| People                                              |                                |                    |
| Type Laboratory                                     |                                | ▼ <u>New</u>       |
| Density 33.3 sq.ft/person                           | Schedule Cooling Only (Design) | ▼ Copy             |
| Sensible 250 Btu/h                                  | Latent 250 Btu/h               | <u>D</u> elete     |
| Workstations<br>Density 1 workstation/person        | •                              | Add <u>G</u> lobal |
| Lighting                                            |                                |                    |
| Type Recessed fluorescent, not ven                  | ed, 80% load to space          | •                  |
| Heat gain 1.25 W/sq ft                              | Schedule Cooling Only (Design) | •                  |
| Miscellaneous loads                                 |                                |                    |
| Type None                                           |                                | -                  |
| Energy 9 W/sq.ft                                    | Schedule Cooling Only (Design) | •                  |
| Energy<br>meter None                                | •                              |                    |
| Internal Load Airflow                               | Ihermostat Construction        | <u>R</u> oom       |

**Internal Load Template - Laboratory** 

| Internal Loa               | ad Temp     | lates - Project               |               |          |          |      | $\mathbf{X}$       |
|----------------------------|-------------|-------------------------------|---------------|----------|----------|------|--------------------|
| Alternative<br>Description | Alterna     | ative 1<br>Suite              | •             |          |          |      | Apply<br>Close     |
| People                     |             |                               |               |          |          |      |                    |
| Туре                       | General (   | Office Space                  |               |          |          | •    | New                |
| Density                    | 143         | sq ft/person 💌                | Schedule      | People   | Office   | •    | С <u>о</u> ру      |
| Sensible                   | 250         | Btu/h                         | Latent        | 200      | Btu/h    |      | <u>D</u> elete     |
| Workstations               | ,           |                               |               |          |          |      | Add <u>G</u> lobal |
| Density                    | 1           | workstation/person 💌          |               |          |          |      |                    |
| Lighting                   |             |                               |               |          |          |      |                    |
| Туре                       | Recesse     | d fluorescent, not vented, 80 | )% load to sp | ace      |          | •    |                    |
| Heat gain                  | 1.25        | W/sq.ft 📃 💌                   | Schedule      | Lights - | Office   | -    |                    |
| Miscellaneou               | ıs loads    |                               |               |          |          |      |                    |
| Туре                       | Std Office  | e Equipment                   |               |          |          | •    |                    |
| Energy                     | 0.5         | W/sq.ft 🗾 💌                   | Schedule      | Misc - C | ollege   | -    |                    |
| Energy<br>meter            | Electricity | •                             |               |          |          |      |                    |
| <u>I</u> nternal           | Load        | Airflow                       | <u>T</u> herm | ostat    | Construc | tion | <u>R</u> oom       |

#### **Internal Load Template - Offices**

| Internal Loa               | ad Temp            | lates - Project              |                |         |              |   |                    |
|----------------------------|--------------------|------------------------------|----------------|---------|--------------|---|--------------------|
| Alternative<br>Description | Alterna<br>Vivariu | ative 1<br>m                 | •              |         |              |   | Apply<br>Close     |
| People                     |                    |                              |                |         |              |   |                    |
| Туре                       | Laborato           | ry .                         |                |         |              | • | New                |
| Density                    | 33.3               | sq ft/person 💌               | Schedule       | Availab | le (100%)    | • | Сору               |
| Sensible                   | 250                | Btu/h                        | Latent         | 250     | Btu/h        |   | <u>D</u> elete     |
| Workstations               |                    |                              |                |         |              |   | Add <u>G</u> lobal |
| Density                    | 1                  | workstation/person 💌         |                |         |              |   |                    |
| Lighting                   |                    |                              |                |         |              |   |                    |
| Туре                       | Recesse            | d fluorescent, not vented, { | 30% load to sp | ace     |              | - |                    |
| Heat gain                  | 1.25               | W/sq.ft 🔍                    | Schedule       | Availab | le (100%)    | • |                    |
| Miscellaneou               | us loads           |                              |                |         |              |   |                    |
| Туре                       | None               |                              |                |         |              | - |                    |
| Energy                     | 10                 | W/sq.ft 💌                    | Schedule       | Availab | le (100%)    | - |                    |
| Energy<br>meter            | None               | •                            |                |         |              |   |                    |
| <u>I</u> nternal           | Load               | Airflow                      | <u> </u>       | nostat  | Construction |   | <u>R</u> oom       |

#### Internal Load Template - Vivarium

| Airflow Temp                      | lates - I             | Project                            |                                                  |                                    |            |                              |
|-----------------------------------|-----------------------|------------------------------------|--------------------------------------------------|------------------------------------|------------|------------------------------|
| Alternative<br>Description        | Alternat<br>Vivariun  | ive 1                              | •                                                |                                    |            | Apply                        |
| Main supply<br>Cooling<br>Heating |                       | To be calculated  To be calculated | Auxiliary supply<br>Cooling<br>Heating           | To be calculated  To be calculated |            | <u>N</u> ew<br>C <u>o</u> py |
| Ventilation<br>Apply ASHR         | AE Std62              | 2.1-2004/2007 No 💌                 | Std 62.1-2004/2007<br>Clg Ez Custom              |                                    | %          | Delete                       |
| Type<br>Cooling<br>Heating        | 100 Per<br>100<br>100 | rcent Outdoor Air                  | Htg Ez Custom<br>Er Default b<br>DCV Min OA Inta | ased on system type                | ~ %<br>~ % |                              |
| Schedule                          | Availab               | le (100%)                          | Room exhaust<br>Rate 100                         | % Clg Airflow                      |            |                              |
| Туре                              | Neutral,              | Average Const. 💌                   | Schedule Availa                                  | able (100%)                        |            |                              |
| Cooling<br>Heating                | 0.6                   | air changes/hr 💌                   | VAV minimum<br>Rate                              | % Cla Airflow 🗨                    |            |                              |
| Schedule                          | ,<br>Availabl         | e (100%)                           | Schedule Availa                                  | able (100%)                        |            |                              |
|                                   |                       |                                    | Type Defau                                       |                                    |            |                              |
| Internal Loa                      | ed                    | <u>A</u> irflo <del>w</del>        | <u>I</u> hermostat                               | <u>C</u> onstruction               |            | <u>R</u> oom                 |

**Airflow Template - Vivarium** 

| Airflow Temp | lates -  | Project               |                     |                          |   |               |
|--------------|----------|-----------------------|---------------------|--------------------------|---|---------------|
| Alternative  | Alterna  | tive 1                | •                   |                          |   | Apply         |
| Description  | Classro  | om                    | <b>•</b>            |                          |   | <u>C</u> lose |
| Main supply  |          |                       | Auxiliary supply    |                          |   |               |
| Cooling      |          | To be calculated 💌    | Cooling             | To be calculated 💌       |   | <u>N</u> ew   |
| Heating      |          | To be calculated 💌    | Heating             | To be calculated 💌       |   | Copy          |
| Ventilation  |          |                       | Std 62.1-2004/2007. |                          |   | Delete        |
| Apply ASHR   | IAE Std6 | 2.1-2004/2007 No 💌    | Clg Ez Custom       | ~                        | % |               |
| Туре         | 100 Pe   | rcent Outdoor Air 📃 💌 | Htg Ez Custom       | -                        | % |               |
| Cooling      | 100      | 🛛 🗶 Clg Airflow 💽     | Er Default I        | based on system type 💌 🗾 | % |               |
| Heating      | 100      | % Htg Airflow 🗨       | DCV Min 0A Inte     | ake None                 | - |               |
| Schedule     | Availab  | ıle (100%) 🔹 💌        | Room exhaust        |                          |   |               |
| Infiltration |          |                       | Rate 100            | % Clg Airflow 💌          |   |               |
| Туре         | Neutral  | , Average Const. 📃 💌  | Schedule Avail      | able (100%) 🛛 💌          |   |               |
| Cooling      | 0.6      | air changes/hr 💽      | VAV minimum         |                          |   |               |
| Heating      | 0.6      | air changes/hr 🛛 💌    | Rate                | 🛛 🖇 Clg Airflow 🛛 💌      |   |               |
| Schedule     | Availab  | le (100%) 🔹 💌         | Schedule Avail      | able (100%) 🛛 💌          |   |               |
|              |          |                       | Type Defa           | ult 💌                    |   |               |
|              |          |                       |                     |                          |   |               |
| Internal Loa | ad .     | <u>A</u> irflow       | <u>I</u> hermostat  | <u>C</u> onstruction     |   | <u>R</u> oom  |

Airflow Template - typ.



Modeled System Diagram, all AHUs

| Configuration                  |
|--------------------------------|
| Ltdd Cooling plants            |
| 🖻 📲 Cooling plant - 001        |
| 🖻 🔩 Water-cooled chiller - 001 |
| 🕀 👻 Cooling tower              |
| 🖓 🖓 Primary chilled water pump |
| 🖃 🕰 Water-cooled chiller - 002 |
| 😟 👻 Cooling tower              |
| 🖓 🖓 Primary chilled water pump |
| Heating plants                 |
| 🖻 🏙 Heating plant - 002        |
| 🗄 💆 Boiler - 001               |
| 🖻 🚊 Boiler - 002               |
| 庄 💆 Boiler - 009               |
| 🖻 💆 Boiler - 010               |
| 🖻 🚊 Boiler - 011               |
| 🖻 🚊 Boiler - 012               |
| 🗄 💆 Boiler - 013               |
| 🗄 🚊 Boiler - 014               |
|                                |

**Modeled Cooling and Heating Plants** 

| 🗩 Create Plants            |                                    |               |          |                                  |                         |                                           | _ 🗆 🛛                |
|----------------------------|------------------------------------|---------------|----------|----------------------------------|-------------------------|-------------------------------------------|----------------------|
| Cooling Equipment - Alterr | native 1                           |               |          | Heat Reje                        | ction                   |                                           |                      |
| Cooling plant              | Cooling plant -                    | 001           | -        | Туре                             | Cooling tower for Cent. | Chillers 🔹                                | Apply                |
| Equipment tag              | Water-cooled                       | chiller - 001 | •        | Hourly ambient wet bulb offset F |                         |                                           | <u>C</u> lose        |
| Category                   | Water-cooled                       | chiller       | <b>-</b> |                                  |                         |                                           |                      |
| Equipment type             | Centrifugal 2-Stage w/ Var Freq Dr |               |          | Thermal S                        | torage                  |                                           | <u>N</u> ew Equip    |
| Sequencing type            | Single                             |               | •        | Туре                             | None                    | -                                         | Copy Equip           |
| Energy source              |                                    |               | _        | Capacity                         | 0 Ito                   | n-hr                                      |                      |
|                            |                                    | · .           |          | Delete                           |                         |                                           | <u>D</u> elete Equip |
| Reject condenser heat      | Heat rejection                     | equipment     | <u> </u> | Schedule                         | Storage                 |                                           |                      |
| Reject heat to plant       |                                    |               | ~        |                                  |                         |                                           | Controls             |
|                            |                                    |               |          |                                  |                         |                                           | <u>Controis</u>      |
| Operating mod              | le                                 |               | Capacity |                                  | Energy r                | ate                                       | Packaged             |
| Cooling                    |                                    | 550           | tons     |                                  | 0.548 kW/to             | n                                         | Energy               |
| Heat recovery              |                                    |               | tons     |                                  | kW/to                   | n                                         | breakout             |
| Tank charging              |                                    |               | tons     |                                  | kW/to                   | n                                         |                      |
| Tank charging & heat reco  | very                               |               | tons     |                                  | kW/to                   | n j                                       |                      |
| Pumps                      |                                    |               | Туре     |                                  | Full load cons          | umption                                   |                      |
| Primary chilled water      | water Default water pump           |               | P        | 95 ft water                      |                         | :r                                        |                      |
| Condenser water            | Default water pump                 |               | P        |                                  | 65 ft wate              | er                                        |                      |
| Heat recovery or aux cond  | enser                              | None          |          |                                  | 0 ft wate               | er en |                      |
| <u>C</u> onfiguration      |                                    | Cooling Equ   | uipment  |                                  | Heating Equipment       | Base Utility / N                          | disc. Accessory      |

**Modeled Chillers** 

| 💭 Create Plants                                    |                                                           |                  |    |                                     |               |        |                          | _ 🗆 🗙                |
|----------------------------------------------------|-----------------------------------------------------------|------------------|----|-------------------------------------|---------------|--------|--------------------------|----------------------|
| Heating Equipmen<br>Heating plant<br>Equipment tag | it - Alternative 1 —<br>Heating plant - 0<br>Boiler - 001 | 02               | •  | Thermal Sto<br>Type<br>Capacity     | None          | ton-hr | •<br>•                   | Apply                |
| Category<br>Equipment type                         | Boiler<br>Gas Fired Hot W                                 | ater Boiler      | •  | Schedule                            | Storage       |        | <b>_</b>                 | <u>N</u> ew Equip    |
| Capacity<br>Energy rate                            | 1760 Mb<br>87 Pe                                          | h 💌              |    | Equipment<br>schedule<br>Demand lir | Available (10 | 0%)    | •                        | <u>D</u> elete Equip |
| Hot Water Pump<br>Type<br>Full load<br>consumption | Heating water ci                                          | rc pump<br>vater | T  |                                     |               |        |                          |                      |
|                                                    |                                                           |                  |    |                                     |               |        |                          |                      |
| Configura                                          | ation                                                     | Coojing Equipmen | nt | <u>H</u> eati                       | ng Equipmen   | ıt 🗌   | <u>B</u> ase Utility / N | lisc. Accessory      |

**Modeled Boilers**