# **TECHNICAL REPORT 1**

Structural Concepts / Structural Existing Conditions



### Penn State Hershey Medical Center Children's Hospital

Hershey, Pennsylvania

Matthew V Vandersall The Pennsylvania State University Architectural Engineering Structural Option Adviser: Dr. Richard Behr October 7, 2010

# **Table of Contents**

| Executive Summary2                        |
|-------------------------------------------|
| Building Overview                         |
| Introduction to Structural System         |
| Foundation4                               |
| Floor System                              |
| Roof System6                              |
| Lateral System7                           |
| Conclusions on Structural System9         |
| Building Codes11                          |
| Materials12                               |
| Gravity and Lateral Loads13               |
| Dead and Live Loads13                     |
| Wind Load Calculations and Diagrams14     |
| Seismic Load Calculations and Diagrams18  |
| Snow Load Calculations20                  |
| Spot-Checks of Typical Framing Elements21 |
| Composite Metal Deck Analysis21           |
| Typical W16x26 Beam Analysis22            |
| Girder Analysis23                         |
| Column Analysis24                         |
| Evaluations and Summary25                 |
| APPENDIX                                  |
| Appendix A: Wind Calculations27           |
| Appendix B: Total Weight                  |
| Appendix C: Seismic Calculations          |
| Appendix D: Snow Calculations             |
| Appendix E: Spot Checks                   |

### **Executive Summary**

The objective of Technical Report 1 is to investigate the structural system for the Penn State Hershey Medical Center Children's Hospital. To achieve this objective, this report will focus on the following:

- Exploring the structural concepts and conditions of the structural design
- Computing all required loads including wind, seismic, and snow for the existing systems
- Verifying typical framing elements in gravity load areas with hand calculations

An introduction to the structural systems is provided to summarize some of the existing conditions and structural concepts. These conditions are subdivided into separate sections to explore the foundation, floor, roof, and lateral systems. A list of building codes and materials used in the design is also provided for reference in the analysis that follows.

Using the calculating procedures listed in ASCE 7-10, the loadings due to wind, seismic, and snow forces were determined for the structure. Loading diagrams included within this report show that the predominantly controlling force is wind pressure striking the North and South faces of the structure. This information will be used in future reports to analyze the story drift of the lateral system.

Spot checks were performed to confirm that the structure was adequately designed under gravity loads. The structural components that were considered include a composite beam design, a girder design, and a column design. These members were determined to have been properly designed and to have met all strength and serviceability requirements. All hand calculations that were performed for this report are included within the appendix.

The investigation of this report shows that structural concepts and conditions of the Children's Hospital are sufficiently designed. The wind pressures along with the gravity loads are determined to be the overall design factors. Future reports will include a more intensive analysis for the lateral system which would provide additional information on the response of the structure.

# **Building Overview**

The new Penn State Hershey Medical Center Children's Hospital is located at 500 University Drive in Hershey, Pennsylvania. The Children's Hospital is an expansion project on the existing Cancer Institute and Main Hospital. The overall project plan calls for a five story, 263,556 square-foot addition which will contain a number of operating rooms, offices, and patient rooms specializing in pediatric care. The exterior of the building utilizes spandrel glass and an aluminum curtain wall system. The main curve of the façade helps to tie the building into the existing curve along the Cancer Institute. A vegetated roof garden will be situated on the third level above the existing Cancer Institute. See Figure 1 for a site plan of the Children's Hospital.

The dates of construction for the Children's Hospital are scheduled for March 2010 to August 2012. The drawing specifications for the Children's Hospital note that an additional two floors of occupancy are intended for a later date. The range of this thesis project will be limited to the structural analysis of the Children's Hospital.

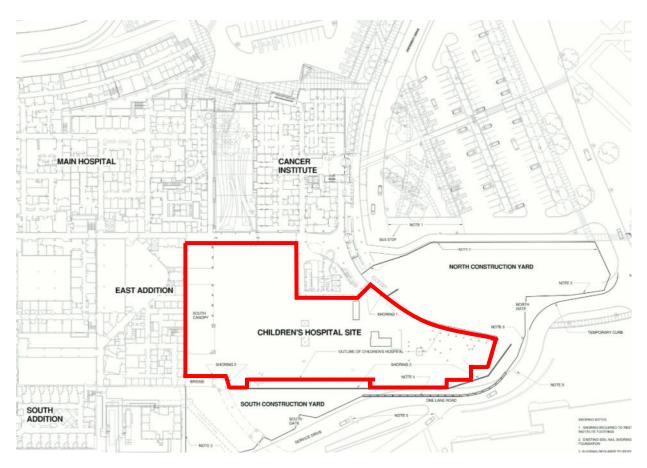



Figure 1 – Site Plan

#### **Introduction to Structural System**

The primary structural system comprises of structural steel framing integrated with a composite floor system. The composite floor consists of metal decking with normal weight concrete topping. Shear studs are welded to the supporting beam and embedded into the slab allowing interaction between the two elements. Transfer girders help to transmit the gravity loads from the beams to the columns. All of the columns consist of W14 members which allow for easier constructability. The lateral force resisting system consists of moment connected frames along the East-West direction while diagonal bracing members assist in North-South bracing.

#### Foundation

Due to the potential for excessive settlement, micropiles were utilized as recommended in the Geotechnical Report provided by CMT Laboratories. Micropiles consist of a casing that is injected with grout to create a friction bond within the bond zone. The piles that are used in the design are specified for a compression load of 280kips and a tension capacity of 170 kips. There are over 600 micropiles that were used in the foundation of the structure. See Figure 2 for a detail section of a typical micropile.

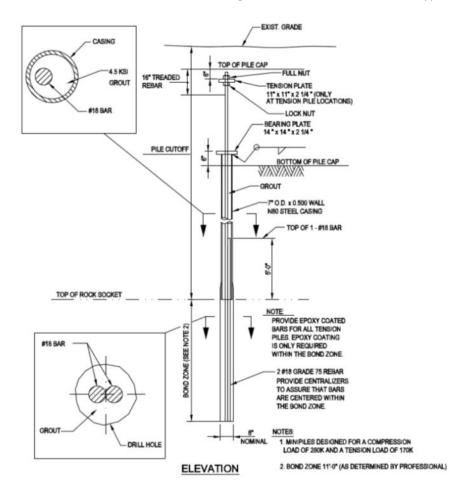



Figure 2 - Micropile Detail

The micropiles are grouped into various sizes of pile caps ranging from  $3'0'' \times 3'0''$  to  $10'0'' \times 15'0''$  with a depth ranging from 3' 6'' to 6' 0''. An example of a typical pile cap can be seen in Figure 3. Typical strut beams of 1' 6'' wide by 2' 8'' deep span between all pile caps to provide resistance to lateral column base movement. See "Figure 4 – Typ. Strut Beam" below.

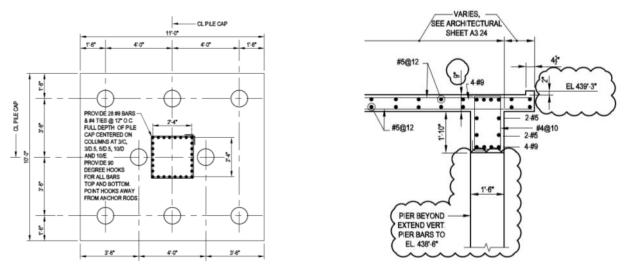



Figure 3 - P8 Pile Cap Plan

Figure 4 - Typ. Strut Beam

The floor at the ground level is a 5" concrete slab while in heavier load areas such as elevator pits and mechanical rooms a slab thickness of 6" is used. Below is an overview of the West End foundation plan.

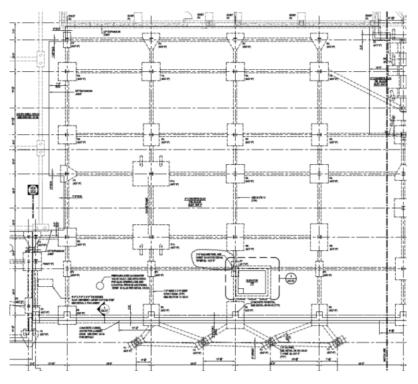
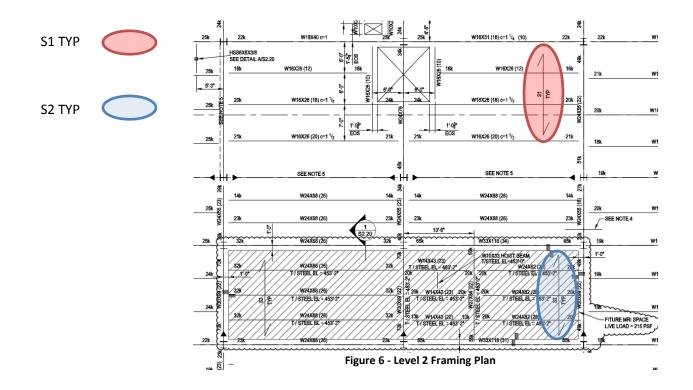




Figure 5 - West End Foundation Plan

#### **Floor System**

The typical floor slab throughout all five stories consists of a composite floor system denoted on structural drawings as S1 TYP. This slab type is comprised of a 2" deep, 20-gage composite metal deck with a 4 ½" topping thickness. The reinforcement within the slab is 6x6 W2.1xW2.1 Welded Wire Fabric. The only change in slab thickness occurs at an area on Level 2 marked as having a slab type of S2 TYP (see Figure 6). Here, a 6" concrete slab sits on a 2" deep, 20 gage composite deck with 6x6 W2.9xW2.9 Welded Wire Fabric. The main reason behind increasing the slab thickness in this area is to account for a future MRI space where the live load is considered to be 215 PSF. All floor slabs are connected to wide flange beams using ¾" diameter shear studs where the number of studs is listed on each beam in the framing plans. The typical span for a wide flange beam is 34' 6".



#### **Roof System**

The roof system for the Children's Hospital utilizes the same construction as the S1 TYP floor designation. Future plans call for an additional two stories of occupiable space to be constructed above the current roof level. Figure 7 shows how the columns for the future sixth floor are to be attached to the existing columns. The roofing material consists of a multiple-ply built-up roofing membrane on top of insulation. Surrounding the roof is an 8" thick parapet wall that rises 1' 4" above the top of the composite slab.

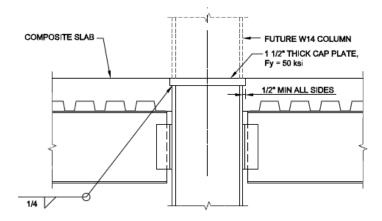



Figure 7 - Top of Column at Future Sixth Floor

#### Lateral System

The main lateral force resisting system is composed of several moment frames located at the interior of the floor plan. These moment frames run in the East-West direction along the floor plan and are represented in Figure 8 with red. The purpose in placing the moment frames in these locations is to allow for a consistent and open floor space which is important for the functionality of a hospital. Running perpendicular to the moment frames are diagonally braced frames which are represented with blue in Figure 8. The locations of these braced frames are set in locations where space requirements are not as significant such as partitions to the elevator banks.

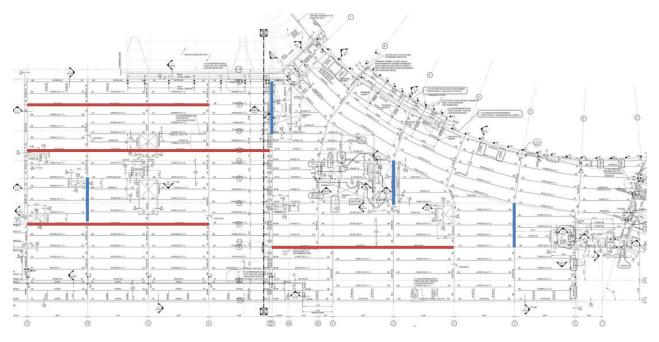



Figure 8 - Framing Plan

Elevations of the typical moment frame can be seen in Figure 9. The main lateral members used in the moment frame system are wide flange sections, primarily W24x229 and W24x176 while the columns are W14x342 and W14x283. An elevation of a braced frame used in the structure is shown in Figure 10 which is comprised of W10x112 and W10x88 bracing members.

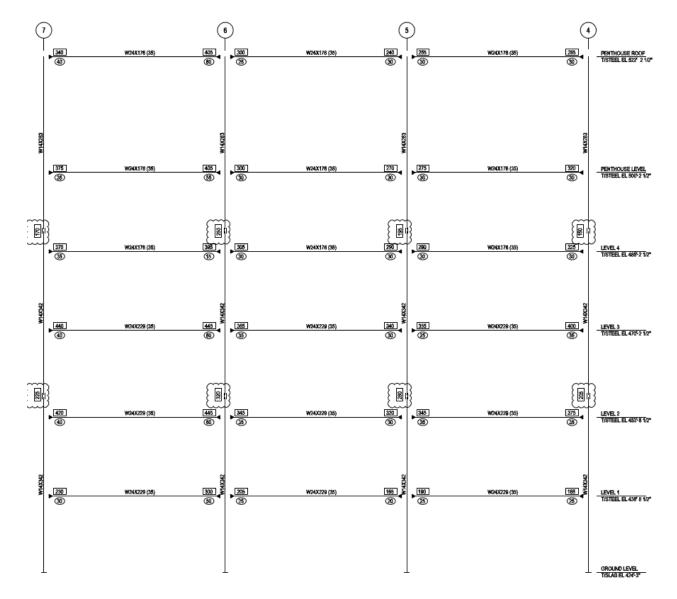



Figure 9 - Elevation: Moment Frame

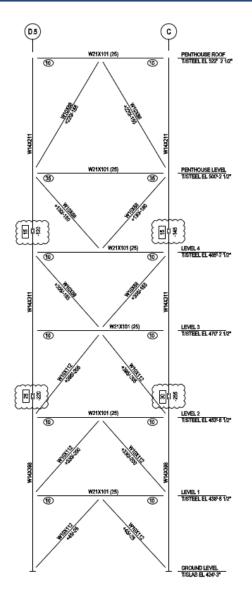



Figure 10 - Elevation: Braced Frame

#### **Conclusions on Structural System**

The structural system for the Children's Hospital allows for optimal use of space and provides room for future expansion when the need arises. The importance of using a composite floor system is that it allows for smaller framing members to be used. By using smaller members, the floor to floor height can be increased. Another benefit of using a composite floor system is that it assists in providing additional lateral resistance by creating a stiffer structure. This along with the moment frames allow for larger spaces that are necessary for daily operations of the Children's Hospital.

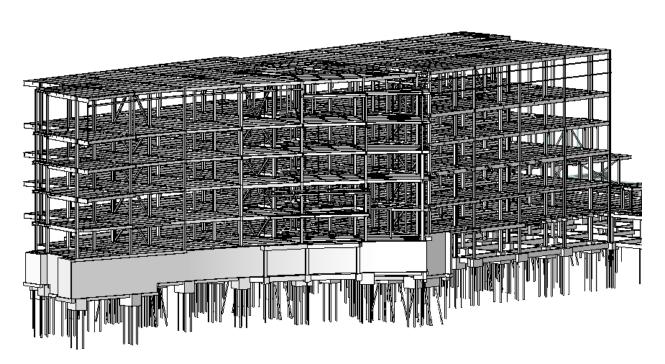



Figure 11 - Framing Render

# **Building Codes**

The building codes used by the structural engineer in the design of the structural system as listed in the specifications are listed as the following:

"International Building Code, 2006 Edition"
SEI/ASCE 7-05, Third Edition – "Minimum Design Loads for Buildings and Other Structures"
AISC – "Manual of Steel Construction – Load and Resistance Factor Design"
AISC 360-05 – "Specification for Structural Steel Buildings"
AISC 303-05 – "Code of Standard Practice for Steel Buildings and Bridges"
ACI 318-05 – "Building Code Requirements for Structural Concrete"

The building codes that will be referenced throughout the research, calculations, and findings of this report are as follows:

"International Building Code, 2009 Edition"

SEI/ASCE 7-10 – "Minimum Design Loads for Buildings and Other Structures"

AISC – Steel Construction Manual, 13<sup>th</sup> Edition

ACI 318-05 - "Building Code Requirements for Structural Concrete"

# **Materials**

| Structural Steel                                |                                 |
|-------------------------------------------------|---------------------------------|
| Wide Flanges                                    | ASTM A992 Grade 50              |
| Plates, Bars, and Angles                        | ASTM A36                        |
| HSS Rectangular Members                         | ASTM A500 Grade B               |
| HSS Round Members                               | ASTM A500 Grade B               |
| Anchor Rods                                     | ASTM F1554 Grade 36             |
| ¾″ High-Strength Bolts                          | ASTM A325-X                     |
| Welding Electrode                               | E70XX                           |
| Concrete                                        |                                 |
| Pile Caps                                       | f'c = 4000 psi                  |
| Slab on Grade                                   | f'c = 4000 psi                  |
| Foundation Walls                                | f'c = 4000 psi                  |
| Column Pedestals                                | f'c = 4000 psi                  |
| Strut Beams                                     | f'c = 4000 psi                  |
| Note: all concrete is normal weight concrete (1 | 45 pcf)                         |
| Reinforcement                                   |                                 |
| Reinforcing Bars                                | ASTM A615 Grade 60              |
| Welded Wire Fabric                              | ASTM A185                       |
| Decking                                         |                                 |
| Floor Deck                                      | 2" Composite Metal Deck, 20 Ga. |
| Roof Deck                                       | 1 ½" Metal Roof Deck, 20 Ga.    |
| ¾" Shear Studs                                  | ASTM A108                       |
| Masonry                                         |                                 |
| Grout (micropiles)                              | f'c = 4500 psi                  |

# **Gravity and Lateral Loads**

The following live loads were determined using ASCE 7-10 while most of the dead loads are assumed based on the industry standard. Where specific gravity loads could not be determined, estimation was made with basic research.

#### **Dead and Live Loads**

| Dead Loads                                  |                                        |
|---------------------------------------------|----------------------------------------|
| Normal Weight Concrete                      | 145 pcf                                |
| Structural Steel                            | 490 pcf                                |
| 2" Deep Metal Deck                          | 69 psf                                 |
| Superimposed Dead Load                      | 30 psf                                 |
| Aluminum Cladding                           | 0.75 psf                               |
| Note: Superimposed Dead Load includes MEP : | systems, ceiling weights, and finishes |
| Live Loads                                  |                                        |
| Lobbies/Moveable Seat Areas                 | 100 psf                                |
| Corridors (First Floor)                     | 100 psf                                |
| Corridors (Above First Floor)               | 80 psf                                 |
| Classrooms, Scientific Labs, Offices, Etc.  | 80 psf                                 |
| Electrical and Mechanical Rooms             | 250 psf                                |
| Stairs and Landings                         | 100 psf                                |
| Storage Areas: Light Storage                | 125 psf                                |
| Storage Areas: Heavy Storage                | 250 psf                                |
| Computer Rooms                              | 100 psf                                |
| Courtyards                                  | 100 psf                                |
| Future MRI Space                            | 215 psf                                |

#### Wind Load Calculations and Diagrams

Wind load analysis is a critical factor in the structural design of the Children's Hospital. The wind forces were determined using ASCE 7-10 for Main Wind Force Resisting Systems (MWFRS). The structure was analyzed as a 352.3 ft by 131.3 ft rectangle with a building height of 85.5 ft to the top of the parapet. The wind pressures were calculated for each face and then distributed to each story level. The total base shear and overturning moment were subsequently calculated for the building. Further factors and hand calculations for the wind analysis can be found in Appendix A of this report.

The following pages provide various tables that were used in determining the wind forces:

Table 1 provides the basic wind factors defined by the site location and topography

Table 2 shows the gust effect factor since 0.85 for rigid buildings could not be assumed

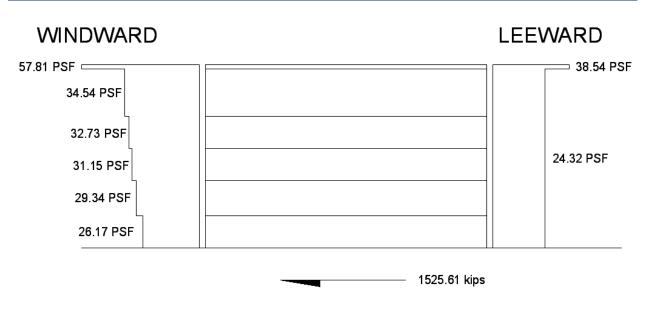
Table 3 shows the calculated wind pressures on each face of the building.

Table 4 calculates the total base shear and overturning moment

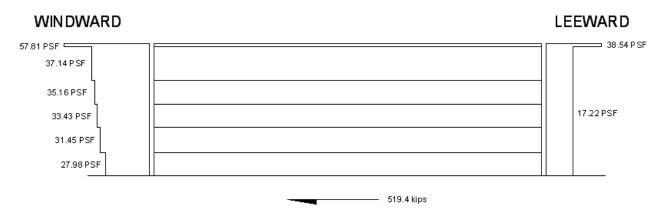
#### **Conclusion to Wind Load Analysis**

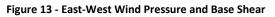
From Figure 11, the total base shear was calculated to be 1525.61 kips for the North-South wind loading. The total base shear for the East-West wind loading was determined to be 519.4 kips in Figure 12. The large difference in base shear is attributed to the face of the building normal to each wind direction. Since the North and South facades have about three times larger surface area than the East and West faces, the wind pressure is expected to be larger on those faces. The wind data gathered from this analysis will be used in further thesis reports when analyzing the response of the existing lateral system and confirming of the design. Matthew V Vandersall Structural Option

Dr. Richard Behr


| Table 1: General Requirer       | ments    |
|---------------------------------|----------|
| Occupancy Category              | IV       |
| Exposure Category               | С        |
| V (MPH)                         | 120      |
| K <sub>d</sub>                  | 0.85     |
| K <sub>zt</sub>                 | 1.0      |
| <b>Enclosure Classification</b> | Enclosed |

| Table 2: Gust Effect Factor  |          |          |
|------------------------------|----------|----------|
|                              | N-S      | E-W      |
| B (ft)                       | 352.3    | 131.3    |
| L (ft)                       | 131.3    | 352.3    |
| h (ft)                       | 85.5     | 85.5     |
| n <sub>1</sub>               | 0.632    | 0.632    |
| β (assumed 1%)               | 0.01     | 0.01     |
| Structure ( $\eta_1 < 1$ Hz) | Flexible | Flexible |
| ga                           | 3.4      | 3.4      |
| gv                           | 3.4      | 3.4      |
| g <sub>R</sub>               | 4.08     | 4.08     |
| Z                            | 51.3     | 51.3     |
| Lz                           | 546.12   | 546.12   |
| lz                           | 0.152    | 0.152    |
| Q                            | 0.804    | 0.860    |
| Vz                           | 122.43   | 122.43   |
| N <sub>1</sub>               | 2.82     | 2.82     |
| R <sub>n</sub>               | 0.0726   | 0.0726   |
| η for R <sub>h</sub>         | 2.03     | 2.03     |
| R <sub>h</sub>               | 0.373    | 0.373    |
| η for $R_B$                  | 8.37     | 3.12     |
| R <sub>B</sub>               | 0.11     | 0.27     |
| η for R <sub>L</sub>         | 10.44    | 28.01    |
| RL                           | 0.09     | 0.04     |
| R                            | 0.418    | 0.632    |
| G <sub>f</sub>               | 0.902    | 0.988    |


| Table 3: Wir | nd Pressure on N- | S Face and E | -W Face |       |               |           |  |
|--------------|-------------------|--------------|---------|-------|---------------|-----------|--|
|              | Level             | Height Kz    |         | ~     | Wind Pressure |           |  |
|              |                   | (ft)         | Nz      | qz    | N-S (psf)     | E-W (psf) |  |
|              | 2                 | 15           | 0.85    | 26.63 | 26.17         | 27.98     |  |
|              | 3                 | 31.5         | 0.99    | 31.02 | 29.34         | 31.45     |  |
| Windward     | 4                 | 46.5         | 1.07    | 33.53 | 31.15         | 33.43     |  |
| willuwalu    | Penthouse         | 61.5         | 1.14    | 35.72 | 32.73         | 35.16     |  |
|              | Roof              | 83.5         | 1.22    | 38.23 | 34.54         | 37.14     |  |
|              | T.O. Parapet      | 85.5         | 1.23    | 38.54 | 57.81         | 57.81     |  |
| Leeward      | 2 to Roof         | 85.5         | 1.23    | 38.54 | -24.32        | -17.22    |  |
| Leewaru      | T.O. Parapet      | 85.5         | 1.23    | 38.54 | -38.54        | -38.54    |  |


| Table 4: Story | Shear ar       | d Overtur    | ning Mor      | nent          |               |               |                    |               |  |
|----------------|----------------|--------------|---------------|---------------|---------------|---------------|--------------------|---------------|--|
|                | Total Pressure |              | Story Force   |               | Story Shear   |               | Overturning Moment |               |  |
|                | N-S<br>(psf)   | E-W<br>(psf) | N-S<br>(Kips) | E-W<br>(Kips) | N-S<br>(Kips) | E-W<br>(Kips) | N-S (ft-kips)      | E-W (ft-kips) |  |
| 2              | 50.49          | 45.20        | 280.15        | 93.47         | 1525.61       | 519.40        | 50874.35           | 17477.91      |  |
| 3              | 53.66          | 48.67        | 297.73        | 100.64        | 1245.46       | 425.92        | 30324.28           | 10450.16      |  |
| 4              | 55.47          | 50.65        | 293.12        | 99.75         | 947.73        | 325.28        | 16108.33           | 5570.92       |  |
| P.H.           | 57.05          | 52.38        | 371.83        | 127.23        | 654.61        | 225.53        | 6289.12            | 2187.91       |  |
| Roof           | 58.86          | 54.36        | 248.84        | 85.65         | 282.78        | 98.30         | 67.89              | 25.30         |  |
| T.O. Parapet   | 96.35          | 96.35        | 33.94         | 12.65         | 33.94         | 12.65         | 0.00               | 0.00          |  |

| BASE S  | SE SHEAR BASE MOMENT |                 |                  |
|---------|----------------------|-----------------|------------------|
| N-S     | E-W                  | N.C. (ft. king) | T )A( (ft. king) |
| (Kips)  | (Kips)               | N-S (ft-kips)   | E-W (ft-kips)    |
| 1525.61 | 519.40               | 73758.55        | 25268.89         |









#### **Seismic Load Calculations and Diagrams**

Despite the site location being in an area of the country where the effects of earthquakes are minimal, it is still necessary to analyze the structure in terms of its seismic response. Seismic analysis was performed using ASCE 7-10 for seismic design criteria. To determine the base shear for the structure, the total weight for all floors above grade was calculated, see Appendix B. The weight was estimated to be around 25,350 kips. The base shear was calculated by finding the seismic response coefficient and multiplying that by the weight of the structure. The seismic response coefficient  $C_s$  was determined to be 4.6% which is comparable for a five story building. The calculations for determining the seismic response coefficient can be found in Appendix C.

#### **Conclusion to Seismic Load Analysis**

The base shear for the structure was determined to be 1166.1 kips. Table 5 and Figure 13 show how each level experiences a different percent of the base shear based on the weight of that floor in relation to the overall weight. Comparing the base shear under wind loads to the base shear under seismic loads, the wind loads were determined to be the controlling case. Since the site is located on the East Coast where predominantly wind controls, it is not surprising that this is the case. However, since the weight of the building was estimated based on a rough footprint area and assumed self-weights, a more accurate account for the weight will yield different results for the base shear.

| Table 5: Bas | Table 5: Base Shear and Overturning Moment |                                          |                                             |                 |                                 |                                      |                                 |  |  |
|--------------|--------------------------------------------|------------------------------------------|---------------------------------------------|-----------------|---------------------------------|--------------------------------------|---------------------------------|--|--|
| Level        | Height<br>h <sub>x</sub> (ft)              | Story<br>Weight<br>w <sub>x</sub> (kips) | w <sub>x</sub> *h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | Lateral<br>Force F <sub>i</sub> | Story Shear<br>V <sub>x</sub> (kips) | Moment<br>M <sub>x</sub> (ft-k) |  |  |
| 2            | 15                                         | 4576.23                                  | 127967.62                                   | 0.048           | 55.45                           | 1110.65                              | 831.77                          |  |  |
| 3            | 31.5                                       | 4539.24                                  | 316158.69                                   | 0.117           | 137.00                          | 973.65                               | 4315.45                         |  |  |
| 4            | 46.5                                       | 4437.05                                  | 498955.09                                   | 0.185           | 216.21                          | 757.44                               | 10053.68                        |  |  |
| Penthouse    | 61.5                                       | 4588.29                                  | 727724.93                                   | 0.270           | 315.34                          | 442.10                               | 19393.37                        |  |  |
| Roof         | 83.5                                       | 4416.09                                  | 1020263.34                                  | 0.379           | 442.10                          | 0.00                                 | 36915.57                        |  |  |
| Total        |                                            | 22556.9                                  | 2691069.66                                  |                 | 1166.10                         | 1166.10                              | 71509.85                        |  |  |



Figure 14 - Seismic Load Diagram

#### **Snow Load Calculations**

A snow load analysis was determined to provide an adequate estimate for the roof loading under seasonal conditions. Using ASCE 7-10 Chapter 7, the ground snow load was found to be 30 psf for the site. After considering the exposure of the roof, the importance factor, and thermal factor, a roof snow load of 20.79 psf was determined. Since there is a parapet that runs along the perimeter of the roof, a separate drift snow load was calculated. The maximum intensity of the drift surcharge load was calculated to be 53.34 psf increasing linearly from a distance of 16 ft away from the parapet. The calculations and a diagram showing the distribution of these snow loads along the roof level can be found in Appendix D

# **Spot-Checks of Typical Framing Elements**

#### **Composite Metal Deck Analysis**

The typical composite slab used throughout the structural plans is a 2" deep, 20-gage composite metal deck with a 4  $\frac{1}{2}$ " topping thickness as noted in the "Floor System" section of this report. The metal decking of the composite slabs span perpendicular to the direction of the beams. A section of the slab was analyzed to check the adequacy of the selection to use this specific composite floor system. Figure 14 shows the slab area that was considered for the spot checks.

From the "Vulcraft Deck Catalog," a maximum unshored clear span for 3 or more spans utilizing the same composite system is 8' 4" which is greater than the given tributary width of 6' 4". Similarly, the catalog specifies a maximum superimposed live load of 385 psf which is greater than the 110 psf loading that was determined for that section. Therefore, it is apparent that the use of this composite floor system is adequate for this section. For more details and hand calculations, see Appendix E.

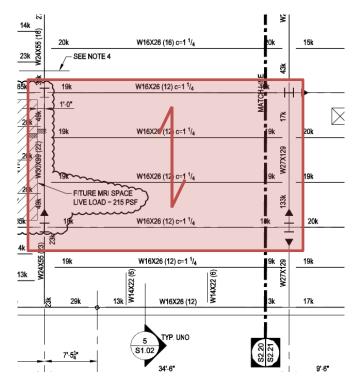



Figure 15 - Composite Slab Spot Check

#### Typical W16x26 Beam Analysis

Figure 15 shows the beam that was taken to be a typical representation of all the beams within the section that was checked. Since it is a composite floor system, shear studs allow interaction between the slab and the supporting member. For this composite beam, the drawings specified that 12 shear studs would be needed to provide adequate shear. As a result it was necessary to check the strength and serviceability requirements for the composite beam.

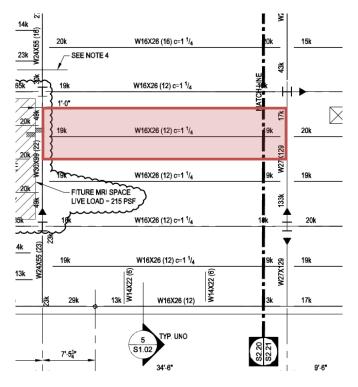



Figure 16 - Typical W16x26 Check

Hand calculations for the spot check of the typical composite beam are shown in Appendix E. The number of shear studs used in conjunction with the composite beam was confirmed to be  $12 - \frac{3}{4}$ " diameter shear studs. The composite beam was determined to be adequate under strength requirements, having a moment capacity of 252 ft-kips while the moment due to service loads was calculated to be 233.6 ft-kips. While checking the deflection, the wet concrete deflection was found to exceed the allowable limit of l/240. To correct this issue, a camber of  $1\frac{3}{4}$ " was used to allow the composite beam to meet all serviceability requirements as specified on the structural drawings.

#### **Girder Analysis**

The analysis of the girder was determined necessary since the purpose is to transfer the floor loadings to the columns. The girder in this section was designated a W27x129. One of the complications that arose while spot checking this specific girder is that one end was moment connected as can be seen in Figure 16. In the analysis, a fixed-pinned beam was considered with two point loads at the locations where the W16x26 composite beams frame in.

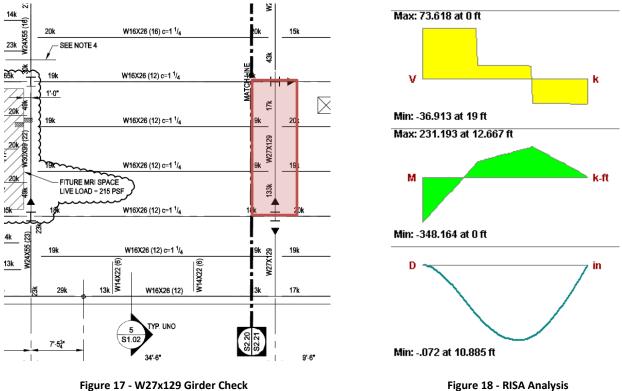



Figure 17 - W27x129 Girder Check

Since the fixed-pinned condition is a statically indeterminate beam, for efficiency reasons, RISA-2D was used to obtain the maximum moment and deflection for the beam under the given service loads. The moment due to the loading was 348.2 ft-kips while the maximum allowable bending moment at an unbraced length of 19 ft was 1090 ft-kips. Similarly, the live load deflection was 0.072 in while the serviceability limit was 0.633 in. The large difference between the nominal and design values are most likely attributed to the moment connections on the member. The large capacity in the member is to aid the structure in resisting lateral forces rather than gravity loads.

#### **Column Analysis**

The column that is highlighted in Figure 18 is a W14x342 that is located on the second level supporting the total weight of the floors above it. The floor to floor height for level two is 16.5 ft. Table 6 shows the weight contribution of each floor above level two based on various load cases. The maximum load case was taken for each floor and then summed to obtain the total load P<sub>u</sub> on top of the column.

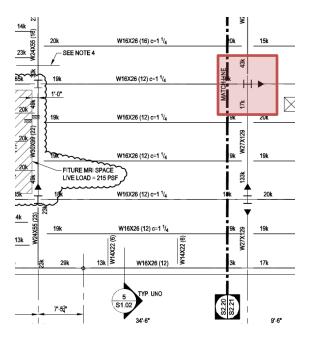



Figure 19 - W14x342 Column Check

| Table | Table 6 – Load on Level 2 Column     |             |             |              |                   |               |                           |        |             |                     |                        |
|-------|--------------------------------------|-------------|-------------|--------------|-------------------|---------------|---------------------------|--------|-------------|---------------------|------------------------|
| Floor | Tributary<br>Area (ft <sup>2</sup> ) | DL<br>(psf) | LL<br>(psf) | SDL<br>(psf) | Total DL<br>(psf) | Snow<br>(psf) | Column<br>Weight<br>(Ibs) | 1.4D   | 1.2D + 1.6L | 1.2D +1.6S<br>+0.5L | Total<br>Weight<br>(k) |
| Roof  | 759                                  | 76.85       | 80          | 30           | 106.85            | 20.8          | 0                         | 113.54 | 97.45       | 122.62              | 122.62                 |
| P.H.  | 759                                  | 76.85       | 80          | 30           | 106.85            | 0             | 6226                      | 122.26 | 104.92      | 104.83              | 244.87                 |
| 4     | 759                                  | 76.85       | 80          | 30           | 106.85            | 0             | 4245                      | 119.48 | 102.54      | 102.45              | 364.36                 |
| 3     | 759                                  | 76.85       | 80          | 30           | 106.85            | 0             | 5130                      | 120.72 | 103.60      | 103.51              | 485.08                 |

From Table 6, the axial load on the column was determined to be 485 kips. The axial strength capacity for a W14x342 with an effective length of 16.5 ft is 3840 kips. This large difference, similarly with the design of the girder, can be attributed to the increased strength required to act with the moment frame to transfer lateral forces into the foundation of the structure. Another possibility for such a high strength member is to support the weight of the additional floors that will be added at a later time.

# **Evaluations and Summary**

A summary of the structural concepts and existing conditions of the Penn State Hershey Medical Center Children's Hospital can be found on page 9 of this report.

After determining the resulting base shear due to both wind and seismic responses, it was determined that the wind loading controlled in the design of the structure. A base shear of 1525.61 kips was determined for the North – South controlling lateral force. This can be verified by inspection since the length of the North and South facades is about 352 ft allowing for a larger surface area. Another factor that wind would be the controlling factor is that the site location is on the East coast where variable wind speeds are more common than seismic activity.

After performing spot checks on certain members of the structure, it was determined that components such as girders and columns were oversized. While this seems like a concern, numerous factors play into the structural designer's selection of these members. Since a detailed lateral analysis of the frame system has not yet been performed, the member sizes should account for additional wind forces.

Technical Report 2 is to follow which will focus on the pros and cons of alternative floor systems.

# **APPENDIX**

# **Appendix A: Wind Calculations**

| MATT VANDERSALL      | TECH REPORT #1                                                                                                | WIND ANALYSIS                                                                                        | 4 |
|----------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|
| GENERAL REQUIREMENTS |                                                                                                               |                                                                                                      |   |
| OCCUPANCY CATAGO     | RY III                                                                                                        |                                                                                                      |   |
| BASIC WIND SPEE      | D, V = 120 MPH                                                                                                |                                                                                                      |   |
| WIND DIRECTIONA      | LITY FACTOR Ka = 0.85                                                                                         |                                                                                                      |   |
| EXPOSURE CATEGO      | DRY = C                                                                                                       |                                                                                                      |   |
| TOPOGRAPHIC FACT     |                                                                                                               |                                                                                                      |   |
| GUST EFFECT FACTOR   | R - CANNOT ASSUME                                                                                             |                                                                                                      |   |
| 26.9.2.1-            | - LIMITATIONS FOR APPRO                                                                                       | KIMPATE NATURAL FREQUENCY                                                                            |   |
| 1. Eu                | ILDING HEIGHT . 85.5'L                                                                                        | 300' .: OF                                                                                           |   |
| 2. But               | LOINE HEIGHT = 85.5 2 4 1                                                                                     | Leff ?                                                                                               |   |
|                      | in Ehil:                                                                                                      |                                                                                                      |   |
|                      | Left = WHEFE                                                                                                  | h; = HEIGHT ABOUE ERADE LEVEL C                                                                      |   |
| *                    | ž ki                                                                                                          | h: = HEIGHT ABOUE GRADE LEVEL i<br>L: = BUILDING LENGTH AT LEVEL i<br>PARALLEL TO THE WIND DIRECTION |   |
|                      | N-S DIRECTION                                                                                                 |                                                                                                      |   |
|                      | Leff = (85.5 F) (131.3 FT)                                                                                    | = 131.3 FT                                                                                           |   |
|                      | 4(13,1,3 FT) = 525.2 F                                                                                        |                                                                                                      |   |
| FOR                  | E-W DIRECTION                                                                                                 |                                                                                                      |   |
|                      | Leff . 352.3 PT                                                                                               |                                                                                                      |   |
|                      | 4(352.3 PT) = 1409.2 F                                                                                        | T > 85.5 FT : 0                                                                                      |   |
| 26.9.3-AP            | PROXIMATE NATURAL FREQUENCY                                                                                   |                                                                                                      |   |
|                      | STEUCTURAL STEEL MOMENT                                                                                       |                                                                                                      |   |
|                      | Na = 22.2 / h WHE                                                                                             | RE h=MEAN ROOF HEIGHT (PT)                                                                           |   |
|                      | Na = 22.2/(85.5 FT) 0.8                                                                                       |                                                                                                      |   |
|                      | Na = 0.632 < 1.0 Hz.                                                                                          | FLEXIBLE                                                                                             |   |
| 26.9.5 -             | FLEXIBLE BUILDINAS                                                                                            |                                                                                                      |   |
| Gi                   | $= 0.925 \left( \frac{1+1.7 I_2}{1+1.7 g_v} \int_{g_v}^{1} G_v^2 + \frac{1+1.7 g_v}{1+1.7 g_v} I_1^2 \right)$ | $g_{\mathbb{R}}^2 \mathbb{R}^2$                                                                      |   |
|                      | 1+1.7g, I                                                                                                     | £ J                                                                                                  |   |
|                      | I-S WIND :                                                                                                    |                                                                                                      |   |
|                      | go = g, = 3.4                                                                                                 |                                                                                                      |   |
|                      | 3== J2. In (3600 ni) + J                                                                                      | 0.577 = 4.08                                                                                         |   |
|                      | R, = Na= 0.632                                                                                                |                                                                                                      |   |
|                      | $R = \int_{B}^{1} R_{1} R_{2} R_{3} (0.53 + 0.4)$                                                             | = 0.418                                                                                              |   |
|                      |                                                                                                               | ,                                                                                                    |   |
|                      | $R_n = \frac{7.47N_1}{(1+10-2N_1)^{5/3}}$                                                                     | $- = \frac{7.47(2.82)}{(1+10.3(2.82))^3} = 0.0726$                                                   |   |
| *                    |                                                                                                               | (0.632)(546.12)<br>122.43 = 2.82                                                                     |   |
|                      |                                                                                                               |                                                                                                      |   |
|                      | $L_2 = l\left(\frac{\overline{z}}{\overline{z}\overline{z}}\right)^{\varepsilon} =$                           | 500 (0.6(85.5')) 5 546.12                                                                            |   |
|                      |                                                                                                               |                                                                                                      |   |

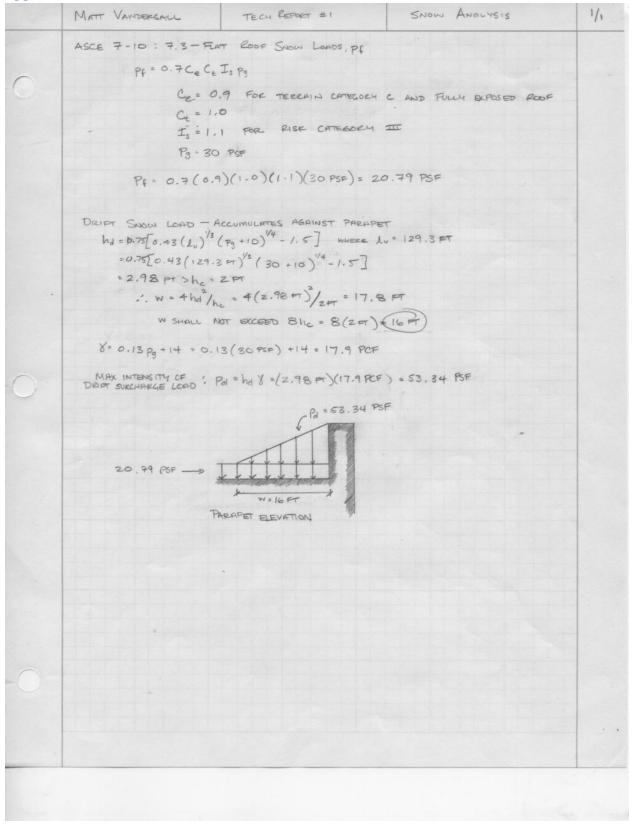
#### Matthew V Vandersall Structural Option Dr. Richard Behr

#### PSU HMC Children's Hospital Hershey, Pennsylvania Technical Report 1

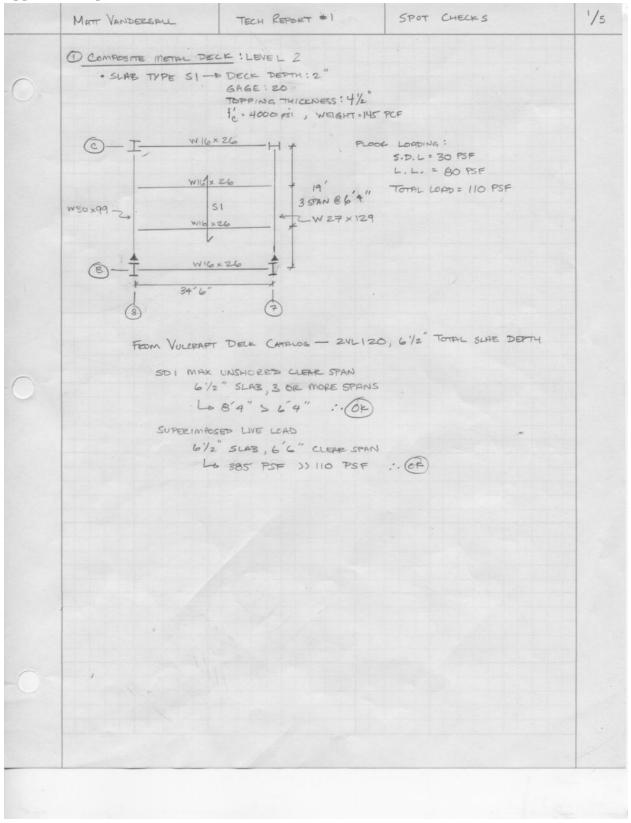
| MATT VANDERSALL TE      | ECH REPORT #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | WIND A   | NALMEIS                                             | 2/:  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|-----------------------------------------------------|------|
|                         | $\overline{V}_{\overline{z}} = \overline{D} \left( \frac{\overline{z}}{33} \right)^{\overline{\alpha}} \left( \frac{1}{33} \right)^{\overline{\alpha}$ | 88)V<br>60)V<br>(85.5) | ×4.5 ( B | 8) (120) = 122.43                                   |      |
| R.:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          | 5.5) = 2.03 >0                                      |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |
| N N N                   | $R_{\rm h} = \frac{1}{\eta} - \frac{1}{2\eta^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1-e=2%)               | )=       | $\frac{1}{2(2.03)^2} \left(1 - e^{-2(2.03)}\right)$ |      |
|                         | R = 0.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |          |                                                     | -    |
| Ry: A                   | $\eta = \frac{4.6 n_1 B}{V_2} = \frac{4}{V_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122                    | 32)(352. | 3) = 8,37 > 0                                       |      |
|                         | R = 1 = - 1/2(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .37) [1-               | -2(8,87  | )= 0.11                                             |      |
| RL:                     | M = 15.4 M.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.4(0                 | 122.43   | (131.3) = 10.44 >0                                  |      |
|                         | $R_2 = \frac{1}{10.44} - \frac{1}{2(10)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |          |                                                     |      |
| Assur                   | ME B = 0.01 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GR STEE                | L BUIL   | DINES                                               | 1.80 |
| φ:                      | $\sqrt{\frac{1}{1+0.65\left(\frac{B*}{1}\right)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | . 0.80   | 54                                                  |      |
|                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 /                    |          |                                                     |      |
| Iş                      | $= C\left(\frac{10}{\overline{z}}\right)^{1/6} = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 (                    | 85.5)    | 6 = 0 - 152                                         |      |
| 91. For                 | N-S WIND, GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 0.8                  | 19       |                                                     | 2    |
|                         | SEE SPREADSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          | NO GUST FACTOR)                                     |      |
| ENCLOSURE CLASSIFICAT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |
| INTERNAL PRESSURE O     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |
| VELOCITY PRESSURE EXPOS | SURE COEPFICIENT, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ez or fi               | SEE S    | 2 /16/22                                            |      |
| VELOCITY PRESSURE 9 .   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Rat Kd V | (>++ )                                              | -    |
| EXTERNAL PRESSURE       | ALL - SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | I Co     | USE WITH                                            |      |
|                         | WINDWARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALL                    | 0.8      | 92                                                  |      |
|                         | LEEWARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37                   | -0.5     |                                                     |      |
|                         | SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALL                    | -0.7     | 9n                                                  |      |
| E-W WIND : WAY          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4s                     | 1 60     | VSE WITH                                            |      |
| L . WHU WHU             | WINDWARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALL                    | 6.8      | 9.2                                                 |      |
|                         | LEE WARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.68                   | -0.27    | 9 h                                                 |      |
|                         | SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ALL                    | -0.7     | 9 h                                                 |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |                                                     |      |

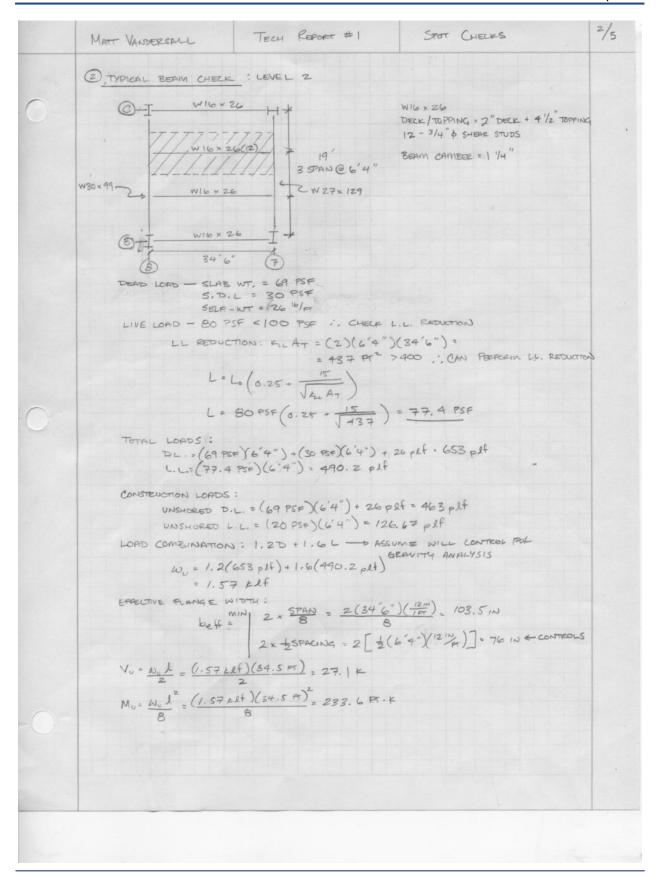
#### Matthew V Vandersall Structural Option Dr. Richard Behr

|   | MATT VANDERSALL TECH REPORT #1 WIND ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 373     |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|   | WIND PRESURE PR ENCLOSED FLEXIBLE BUILDING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |  |  |  |
|   | $P = 9G_f C_p - 9; (GC_p;) (1^{b}/4^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +       |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
| - | Top PARAPET:<br>$p_p = q_p (GC_{pn}) (1b/4^2) GC_{pn} = +1.5$<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |  |  |  |
|   | WINDWARD -> P. = 38.54(1.5) = 57.81 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |
|   | LEEWARD -> P. = 38.54 (-1.0) = -38.54 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |  |
|   | DESIGN WIND PRESSURES :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |  |
|   | N-S WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |  |
| 1 | WINDWARD, p= 92 (0.902) (0.8) - (38.54) (±0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
| 1 | P = 6.722 92 + 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |
|   | ADD Pp . 57. BI psf TD PARATET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |
| - | LEEWARD, p = (38.54)(0.902)(-0.5)-(38.54)(±0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |  |  |  |
| - | P = -24.32 pst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |  |
|   | ADD Pp = - 38.54 psf TO PARAPET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   | E-W WIND -<br>WINDWEED, P = 92 (0.788)(0.8) - (38.54)(=0.18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 4 1 2 |  |  |  |
|   | $P = 0.79 q_2 + 6.94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |  |
|   | ADD P = 57.81 pst TO PARAPET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   | LEEWARD, P = (38.54)(0.938)(-0.27) - (38.54)(20.12)<br>P = -17.22 psf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |  |
|   | ADD P. = - 38.54 pst TO PARAPET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   | The Free State Sta |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 32    |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |


Appendix B: Total Weight

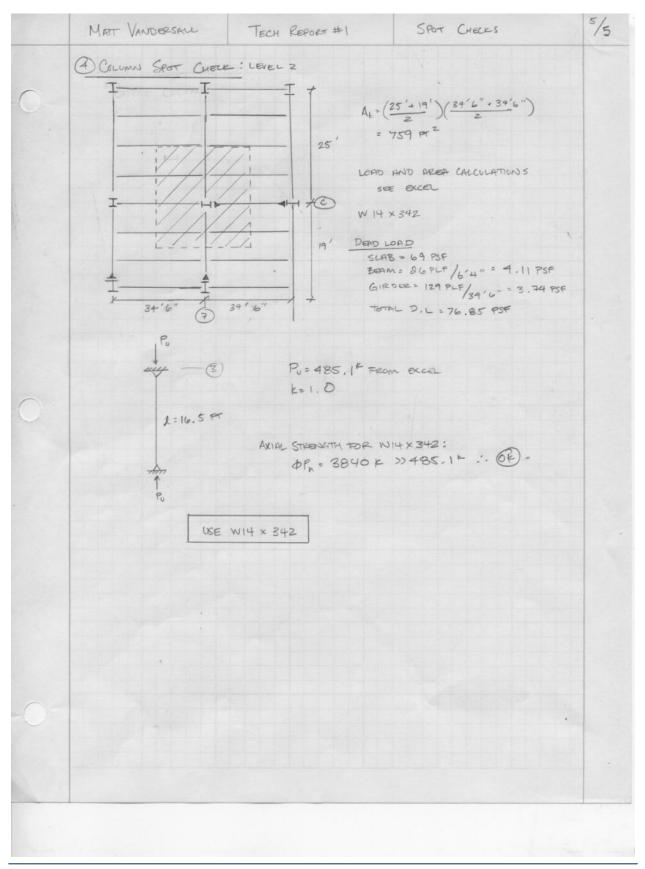
| MATT VANDERSALL                            | TECH REPORT #1               | TOTAL WEIGHT                           |
|--------------------------------------------|------------------------------|----------------------------------------|
| THE WEIGHT OF THE S                        | TRUCTURE WILL INCLUDE:       |                                        |
| · FRAMINA MENT                             |                              |                                        |
| · COLUMNS                                  |                              |                                        |
| · COMPOSITE FLO                            | OR SLAB LOAD                 | HVAC DUCTS, L/E, FIRE PROTECTION, ETC. |
| · COLLATERAL L<br>· FACADE                 | DAN - CEICINGS, MACCHINER,   |                                        |
| FRAMING MEMBERS (BEAN                      | US AND GIRDERS)              |                                        |
| · WEIGHTS WERE CAL                         | CULATED FROM PEVIT STRUCTURE | MODEL                                  |
| FIRST FLOORS = 0 -                         | - SINCE AT GROUND LEVEL      |                                        |
| SECOND FLOOR : 47                          | 3.68 K                       |                                        |
| THIRD FLOOR = 427                          |                              |                                        |
| FORETH FLOOR = 34:                         | 7.16 K                       |                                        |
| PENTHOUSE = 441.6                          |                              |                                        |
| PENTHOUSE Roof = 391                       | 1.01 K                       |                                        |
| COLUMNS                                    |                              |                                        |
|                                            | IT CALCULATED FROM MODEL     |                                        |
|                                            | 42 K/A)/(5 PLOORS) = 15.     |                                        |
|                                            | 484 4/07)(15 07)= 233.26     |                                        |
| SELOND FLOOR = (15.                        | 484 4(A)(16.5 A)= 255.4      | 9*                                     |
| THIED FLOOR = 232.                         |                              |                                        |
| FOURTH FLOOR = 23:                         | 2.26×                        |                                        |
| PENT HOUSE = (15.48<br>PENT HOUSE ROOF = C | 84 =/m)(22 m)= 340.65        | ⊭ '                                    |
| SLAB WEIGHT . FROM VULCRAPT CA             | T- 2"DEEP 20 GAGE W/4 1/2    | SLAB - 69 PSF -                        |
|                                            | TO HAVE SAME AREA = 388      |                                        |
|                                            |                              | 6.99 cr 2)(69 735)= 2681.13 K          |
| COLLATERAL LOAD                            |                              |                                        |
| . FROM DRAWINGS, COL                       | LATERAL LOAD = 30 PSF        |                                        |
| LOAD ON FLOORS :                           | 2- P.H. ROOF = (38856,99 F   | 72)(30 PSE)=1165.7 K                   |
| FACADE                                     |                              |                                        |
| · ALUMINUM CLADDING                        | FOR PACADE = 0.75 PSF        | b and lb loop                          |
| PERIMETER WEIGHT                           | OF FACADE = (0.75 PSF (96    | 0 FT): 720 -1PT                        |
| FIRST FLOOR = (720 10)                     | (m)(15 PT) = 10.8 K          |                                        |
| SECOND FLOOR = (720 1                      | 0/FT)(16.5 FT)= /1.88 K      |                                        |
| THIRD FLOOR = 10.81                        |                              |                                        |
| FOURTH FLOOR = 10.8                        |                              |                                        |
| PENTHOUSE 200F = C                         | P/PH)(22 FT)= 15,84 K        |                                        |
| 1                                          |                              |                                        |
| Torrel 24                                  | DILDING WEIGHT = 25350 K     |                                        |
| Low M                                      |                              | 1                                      |
|                                            |                              |                                        |
|                                            |                              |                                        |
|                                            |                              |                                        |


#### **Appendix C: Seismic Calculations**


1/1 MATT VANDERSALL TECH REPORT #1 SEISMIC ANALYSIS Seismic Use GROUP : IV STE CLASS : D SPECTRAL RESPONSE Accel. SHORT, S5 = 0.207g (USGS) SPECTRAL RESPONSE Accel. LONG, S, = 0.055g (USGS) STE COEPFICIENT, Fa = 1.6 SITE COEFFICIENT, FV = 2.4 Soil modified Accel, Sms = Fa Ss Sms = (1.6) (0.207) = 0.3312g SOIL MODIFIED ACCEL, SMI = FV S, Smi = (2.4)(0.055) = 0.132g DESIGN SPELTEAL RESPONSE, SHORT, Sps = 2/3 Sms SDS = 2/3 (0.3312)= 0.221g DESIAN SPECTRAL RESPONSE, ISEC., Sp1 = 2/3 Sm1 SDI = 2/3 (0.132) = 0.088 g RESPONSE MODIFICATION FACTOR, R = 3 (TABLE 12, 2-1: STEEL AND CONCRETE COMPOSITE ORDINARY MOMENT PRAMES ) IMPORTANCE FACTOR, Ie = 1.50 SEISMIC DESIGN CATEGORY . C ( TABLE 11.6-1 FOR RISK CATEGORY II : 0.167 5 5ps 2 0.33 - C 0.067 5 50, 2 0.133 -> C ) APPROX. PORIOD PARAMETER: (7 = 0.02 )(TABLE 12.8-2) X = 6.75 STEVETURAL HEIGHT : h. = 85.5 FT APPROX. FUNDAMENTAL PERIOD: Ta = Crhn Ta=0.02(85.5)= 0.562 COEFFICIENT FOR UPPER UNIT ON CALCULATED REPLICE : CU = 1.7 (TABLE 12.8-1) FUNDAMENTIPL PERIOD:  $T = C_U T_a$  $T_*(1, 7)(0, 562) = 0,955$ CHECK LONZ-PERIOD TRANSMON PERIOD : TI = 6 SEC. SEISMIC RESPONSE COEFFICIENT + Cs= MIN SDE/(RII) - 0.221/(3/1.5)=0.111 FOR TSTL: SDI/[T. P/I]= 0.088/[0.955.3/1.5]=0.046 (NOTE: Co SHALL NOT BE LESS THAN 0.01) BASE SHEAR: Vb = Cs . W = (0.046)(25350 K) N.= 1166.1 K STEUCTURAL PERIOD BRONDAT : 01.55 CT: 0.955 2 2.55 -> INTERPOLATE FOR K k= 1.23

**Appendix D: Snow Calculations** 




**Appendix E: Spot Checks** 





|    | 1 - bef -> 1                            | ASSUME a                                                 | 51"                                    |
|----|-----------------------------------------|----------------------------------------------------------|----------------------------------------|
|    | a I <u>the capital and and a</u>        | 41/2" ET ZQN V2-                                         | t - a/2 = 6.5" - 0.5" = 6              |
|    |                                         | 172 y2 Qn=                                               | 17.2 K FOR ISTUD/RIB, 4KS1, NWC        |
|    |                                         |                                                          | r. L. DNA = 7                          |
|    |                                         | - 16×26- \$ Mp=160 #<br>DMn=252                          | PT. K, ZQN = 96 K                      |
|    |                                         | CHECK: 2QN                                               | 1-96K .037" =1" : OF                   |
|    |                                         | a= 0.85 fébeff 0.8                                       | 5(4K1)(76IN)=0,37"=1" : OF             |
|    |                                         | Y2= t - 9/2 = 6.5".                                      | $-\frac{0.37}{2}=6.32^{"}>6^{"}.0^{"}$ |
| 1  | NUMBER OF SHE                           | AR STUDS : 96 = 5.58                                     |                                        |
|    |                                         | 17.2 K/5100                                              |                                        |
|    | CHECK UNSHORED                          |                                                          |                                        |
|    | $\omega_{pL} = 0.4$                     |                                                          |                                        |
|    | WLL = 0.1                               |                                                          |                                        |
|    | LOAD COMB                               | SINATIONS: (1) $W_{u} = 1.4 W_{DL}$                      | N                                      |
|    |                                         | = 1.4 (0.463 kl                                          |                                        |
|    |                                         | (2) Wu = 1.2 Wol + 1.60<br>= 1.2 (0.463 klf              | )+ 1.6 (0.127 KLF)= 0.759 KLF          |
|    | Mu=10.7                                 | 159 KIF (86.5 Pr) = 126.4 PT                             | · × < \$ Mp = 166 PT · K :. OF         |
| 19 |                                         | 0                                                        |                                        |
|    | CHECK STEENGTH : C                      | ØMN=252 A.K > 233.6 PT-K                                 | ·                                      |
|    | CHECK L.L. DEREC                        | TON:                                                     |                                        |
|    | W12=(77.41                              | PSF)(6'4")= 0.49 Klf                                     |                                        |
|    | ILR = 5951                              |                                                          | CAMBER                                 |
|    | Λ = 5ω                                  | 1 5(0.49 ELF) (36.5 m) (172                              | 8) 1.13 IN-125 IN=-0.12->0             |
|    | 384 EI                                  | 384 (29000 HEI) (595 IN")                                | 8) = 1.13 m-1.25 m=-0.12→0             |
|    | h/2, = (36.                             | 5 + ) (12 11/ + ) /360 = 1.21 IN >                       | 0 :. (0E)                              |
|    |                                         |                                                          | _                                      |
|    | CHECK WET CONCRETE                      | = $periections:$<br>= $\chi(6'7'')$ + 26 plf = 0.463 klf |                                        |
|    | Iv = 301 in                             |                                                          | CAMBER                                 |
|    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                                          | 728) = 2.12 IN - 1.25 IN = 0.87 IN     |
|    | AWE = - JW A                            | 384 (29050 KSI) (301 IN                                  | = 2.12 IN - 1.23 IN = 0.07 IN          |
|    |                                         |                                                          | ~                                      |
|    | Dwc MAX = 724                           | 40 = (36.5#)(12)/240 = 1,82                              | 510 30107 110 01                       |
| -  | 1                                       |                                                          |                                        |
|    | USE WIG                                 | x 26 (12) C=1 1/4"                                       |                                        |
|    |                                         |                                                          |                                        |
|    |                                         |                                                          |                                        |
|    |                                         |                                                          |                                        |
|    |                                         |                                                          |                                        |
|    |                                         |                                                          |                                        |

|    | MATT VANDERSALL                | TECH REPOR              | <del>,</del> #1  | SPOT CHECKS                           | 4/5     |  |
|----|--------------------------------|-------------------------|------------------|---------------------------------------|---------|--|
|    | 3 and and and                  | 1606 2                  |                  |                                       |         |  |
|    | 3 GIRDERE SPOT CHECK : LEVEL 2 |                         |                  |                                       |         |  |
| 0- | V77777777                      | 6                       | RDER PBD:        | 4.04 K P0=54.04 K                     |         |  |
|    | VININ                          |                         | Tu= 51           | SELF WT. = 0.129                      | LE      |  |
|    | 1/15- 1. 20                    | 19'<br>PAN@6'4"         |                  |                                       |         |  |
|    |                                | MM C 6 4                | 6'4"             | 6'4" 6'4"*                            |         |  |
|    | M //                           |                         |                  |                                       |         |  |
|    | 1/1/1/1 - C                    | 3                       |                  |                                       |         |  |
|    | ¥ 17.25' (7) 17.25'            |                         |                  |                                       |         |  |
|    | Toral LOADS: DL = 0.65         | 3 KLF (17.25 FT)        | (2)= 22.5 K      | GIRDER SELF WT.                       |         |  |
|    | CONSTRUCTION LOADS : D.L.      | KLF (17.25 PT)          | 2)= 16.9 4       |                                       |         |  |
|    | CONSTRUCTION LOADS : U.C       | (0.127 KLF)(17          | 25 = )(2) = 4    | .38 4                                 |         |  |
|    | Pu= 1.2 DL + 1.61              | 4                       | •                |                                       |         |  |
|    | = 1.2(22.5+)+                  | 1.6(16.94)=5            | 4.04 K           |                                       |         |  |
| 0  | FROM PISA ANALYSI              |                         |                  |                                       |         |  |
| -  | Mu= 348.0                      | 9 PT.K<br>STEEL MANUAL: |                  |                                       |         |  |
|    |                                |                         | 2 l. 19 pt.      | -00Mm= 1090 AF =>34                   | 18.0975 |  |
|    |                                | DEFLECTION: P           | 16.9 E           |                                       | : OF    |  |
|    |                                | NI 220.                 | 1                | 0                                     |         |  |
|    | 1/560                          | =(19 PT)(10 PT))        | / = 0.633<br>360 | 3 > 0.022IN : OR                      | 1       |  |
|    | USE W27 ×                      |                         |                  | IS WERE INDICATED                     |         |  |
|    |                                |                         |                  | PURNS, THEREFORE<br>POSITE FLOOR SLAB |         |  |
|    |                                |                         | INDEPENDE        |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |
| 0  |                                |                         |                  |                                       |         |  |
|    | -                              |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       | 1       |  |
|    |                                |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |
|    |                                |                         |                  |                                       |         |  |

