Intramural Building Addition and Renovation – Phase I

University Park, PA

Penn State AE Senior Capstone Project

Gonzalo Lay- Construction Management Option

Advisor: Ray Sowers

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Addition: 48,000 SF New Construction

Renovation: 100,000 SF 2-Stories Above Grade Structural Steel Frame

Function: Recreational Use, Gymnasium

Construction Information

Schedule: Start | February 2013

End | February 2014 *Turned Over March, 2014

Delivery Method: CM @ Risk

Contract: Guaranteed Maximum Price

Project | \$ 26.1 Million Cost:

Construction | \$ 19 Million

Gonzalo Lay

Project Summary

Intramural Building Project

Construction Management

Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Analysis #1 – Prefabrication of Building Enclosure

Looks into the use of prefabricated brick panels and unitized curtain wall to accelerate the schedule and reduce project costs.

Mechanical Breadth – Thermal properties and moisture performance were analyzed.

Analysis #2 – Prefabrication Structural Effects

Looks into the structural implications of using prefabricated brick panels on the building frame.

Structural Breadth – Resizing of exterior structural columns and beams.

Analysis #3 – Integrated Project Delivery Implementation

Looks into the use of a different delivery method to improve the planning, coordination and outcome of the project

Analysis #4 – Occupied vs. Vacant Renovation

Evaluates the decision making of the owner on how the project should be constructed, while implementing construction standards to improve the health and safety of occupants.

Project Summary

Gonzalo Lay Intramural Building Project

Construction Management

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
    Proposed Brick Façade vs Current System
         Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
    Proposed System vs Current
         Advantages / Disadvantages
         Takeaways
Analysis #4: Occupied vs Vacant Renovations
    Proposed System vs Current
```

Construction Noise & Vibration vs Productivity Construction Standards Recommendations

Acknowledgements

Analysis #1 – Prefabricated Building Enclosure

Gonzalo Lay Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Problem Identification

Exterior Enclosure duration 20 weeks

Critical Path

Finished before Interior activities begins

Background

Contractor performance issues

Coordination between trades during installation

PROJECT DELAYS

Potential Solutions

Use of prefabrication would lead to faster installation, lower labor costs, improve quality and lower risks of onsite accidents.

Prefabrication of Building Enclosure

Gonzalo Lay
Construction Management

Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Location of Brick Façade on Mtl stud

CURRENT BRICK FACADE

3 5/8" Norman Brick

Thermal Insulation (Rigid & Spray on) 6" Metal Stud back-up framing

7090 SF of brick installed

ESTIMATED COST: \$372,934

DURATION: 92 days

PROPOSED – SLENDERWALL SYSTEM

½" Thin Brick

2" Reinforced Precast concrete layer

Batt Insulation

6" Galv. Steel Studs

Lightweight Design – 30 lbs./ft²

Increased Floor Space

Reduced installation time

Variety of finishes and textures

Prefabrication of Building Enclosure

Gonzalo Lay Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations

Acknowledgements

PANEL SIZES

Building not designed for panel application
8 Different Widths & 5 Different Heights
Layout of panels designed to avoid architectural changes
Productivity can be increased and cost of panels reduced if
Multipurpose room windows re-arranged

South Wall Panels

Prefabrication of Building Enclosure

Gonzalo Lay Construction Management

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
    Proposed Brick Façade vs Current System
         Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
     Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
Analysis #4: Occupied vs Vacant Renovations
     Proposed System vs Current
    Construction Noise & Vibration vs Productivity
    Construction Standards
Recommendations
Acknowledgements
```

COST EVALUATION

Cavity Wall Cost

Includes all building components not required by SlenderWall

Total: \$ 372,934

SlenderWall Cost

Based on avg cost of \$42/SF

Includes delivery, erection and insulation

General Conditions

Scaffolding eliminated

Crane rental required

Material Hoist eliminated

Total Savings

\$75,613

SlenderWall Sy	stem	Breakdown	Cost	
anel System	SF	7,090.00	42.0	\$ 291,060.00
Sypsum Board 5/8" (3 Layers)	SF	7,090.00	1.5	\$ 10,395.00
OTAL				\$ 301,455.00

(System	Co	st Com	parison		
	Unit	Q	uantity	Cost/Unit	Total	
Panel System	SF	7,	090.00	43.5	\$301,455.00	
Current System	SF	7,	090.00	52.6	\$372,934.00	
				Difference	\$71,479.00	
·						

	Additi	onal Cost	s Bene	efits/Impleme	nts	
Scaffolding	CSF	148.8	\$	130.13	\$	19,363.34
Crane	Mo	-1.0	\$	17,289.00	\$	(17,289.00)
Material Hoist	Ea.	1.0	\$	2,060.00	\$	2,060,00
			Diffe	erence	\$	4,134.34

Prefabrication of Building Enclosure

Intramural Building Project

Gonzalo Lay

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
    Proposed Brick Façade vs Current System
         Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
    Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
```

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations Acknowledgements

SCHEDULE EVALUATION

Installation Sequence

Begin after steel erection is completed and floor slabs are poured

Start at West façade in a counterclockwise direction

Install one floor at the time, spandrel and wall panels

Schedule Impact

2 hr. installation per panel - modified

Original duration: 92 days

SlenderWall duration: 13 days

Building Enclosure Schedule

Reduced by 12 Days

Elevation	Quantity	Productivity (hr.)/ Panel	Duration (hr.)	Days
West	6	2	12.0	1.5
South	31	2	62.0	7.8
East	6	2	12.0	1.5
North @ East	6	2	12.0	1.5
			Total	13

Prefabrication of Building Enclosure

Gonzalo Lay Intramural Building Project Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results **Mechanical Breadth** Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations

Acknowledgements

THERMAL PERFORMANCE

R-Value Comparison

Cavity Wall: 27.335 Slender Wall: 27.090

Heat Transfer

Summer

Cavity Wall: 3,600 Btu/hr. Slender Wall: 3,632 Btu/hr.

Winter

Cavity Wall: 15,642 Btu/hr. Slender Wall: 15,783 Btu/hr.

Conclusion

Thermal performance of SlenderWall system will not affect the design of mechanical system

Mechanical Breadth

Gonzalo Lay Intra Construction Management

Intramural Building Project

Heat Transfer

Btu/Hr

3,600.00

3,632.56

(32.56)

15,642.25

15,783.72

(141.47)

Area

SF

6,930.00

6,930.00

Difference

6,930.00

6,930.00

Difference

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
    Proposed Brick Façade vs Current System
          Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
     Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
Analysis #4: Occupied vs Vacant Renovations
     Proposed System vs Current
    Construction Noise & Vibration vs Productivity
    Construction Standards
Recommendations
Acknowledgements
```

MOISTURE PERFORMANCE

Conditions

Winter

Indoor 70F | 25% RH Outdoor 8.3F | 67% RH

Summer

Indoor 70F | 50% RH Outdoor 84.2F | 72% RH

Cavity Wall

Summer: No Condensation

Winter: Chance of 17 grains/(ft2-day) in vapor barrier

SlenderWall

Summer: No Condensation

Winter: Chance of 112 grains/(ft2-day) in air cavity

Preventions

Apply vapor barrier to back of studs

Mechanical Breadth

Gonzalo Lay Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Problem Identification

Stick-built curtain wall system leads to longer on-site installation and increased labor costs

Potential Solutions

Implementing a unitized curtain wall panel system that can be delivered on time

Location of Major Curtain Wall Area

Prefabrication of Building Enclosure

Gonzalo Lay
Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

STICK BUILT CURTAIN WALL

ros

Efficient Delivery

Flexibility and Ease of Installation

Lower costs of materials

Cons

Longer installation times
Limited quality of product
Site Congestion

Current – Kawneer 1600 Wall System

PROPOSED UNITIZED SYSTEM

ros

Faster installations

Higher quality product

Decreased site congestion

Cons

Multiple deliveries
Higher costs of materials

Equipment required

Proposed – Kawneer 1600 SS (Pre-glazed system)

Prefabrication of Building Enclosure

Gonzalo Lay
Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Elevation	Productivity panels/day	No. Panels	Duration
South	15	140	9.33
South	7	41	5.86
East	15	22	1.47
Atrium	15	30	2.00
Atrium	7	15	2.14
		Total	20.80

sk Name	Duration 💂	Start _	Finish 🕌	July		August		September		ĺ
				6/30 7/7	7/14 7/21	7/28 8/4	8/11 8/18 8/2	25 9/1 9/	8 9/15 9/22	2
D. 11-11	co ca d	111-17/40/42	T 40/45/40							
Building Enclosure	69.61 days	Wed 7/10/13	Tue 10/15/13	1 <u> </u>						
□ Prefabricated Panels	12.3 days	Wed 7/10/13	Fri 7/26/13	_						
Install West Elevation	1.5 days	Wed 7/10/13	Thu 7/11/13	D 1	_					
Install South Elevation	7.8 days	Thu 7/11/13	Tue 7/23/13	i i						
Install East Elevation	1.5 days	Tue 7/23/13	Wed 7/24/13		ď					
Install North Elevation	1.5 days	Wed 7/24/13	Fri 7/26/13		Ď					
■ Metal Wall Panel	46 days	Fri 7/12/13	Fri 9/13/13						-	
Metal Wall Panel W	11 days	Fri 7/12/13	Fri 7/26/13			1				
Metal Wall Panel S-E	12 days	Mon 7/29/13	Tue 8/13/13							
Metal Wall Panel S-W	8 days	Wed 8/14/13	Fri 8/23/13							
Metal Wall Panel E	5 days	Mon 8/26/13	Fri 8/30/13							
Metal Wall Panel A	10 days	Mon 9/2/13	Fri 9/13/13							
☐ Unitized Curtain Wall	21.61 days	Mon 9/16/13	Tue 10/15/13						-	
Glazing South	15.2 days	Mon 9/16/13	Mon 10/7/13						ζ	
Glazing East	1.47 days	Tue 10/8/13	Wed 10/9/13							
Glazing Atrium	4.14 days	Wed 10/9/13	Tue 10/15/13							

Schedule

Original Duration 99 days Proposed Duration 70 days

Accelerated building enclosure schedule by 29 Days

Cost

Item	Quantity	Unit	Unit Total	Total
Stick Built System	8,663.00	SF	\$ 110.00	\$ 952,930.00
			Subtotal	\$ 952,930.00
Unitized System	8,663.00	SF	\$ 132.00	\$ 1,143,516.00
			Subtotal	\$ 1,143,516.00
			Difference	\$ (190,586.00)

\$190,586 added to Project Cost

Prefabrication of Building Enclosure

Gonzalo Lay Intramural Building Project
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Analysis #3 - IPD Implementation

Gonzalo Lay Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

Problem Identification

Discrepancies between design team and contractors caused project

Contractor performance issues

Coordination between trades during installation

Potential Solutions

Early involvement of project main members will result in better project planning and diminish the risk of project delays and changes.

IPD Implementation

Gonzalo Lay Intrama Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

CM AT RISK

Construction Manager holds risks of construction

Holds contracts with subcontractors to perform work Guarantees completion of project for a negotiated GMP

CM not involved in project until Design Development Phase

RFIs and change orders are likely

Success is measured by self interests

INTEGRATED PROJECT DELIVERY

Collaborative efforts to succeed as a team

Shared risks between owner, design team and construction manager

High quality for reasonable price

CM involved early in project

Change Orders likelihood diminishes

RFIs have faster response rates

Construction Schedule Reduced

Construction Management

Gonzalo Lay

Higher level of planning eases flow of construction

IPD Implementation

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

MAIN BENEFITS

Early contributions to design

Reduced design conflicts

Improved schedule management

Reduced design document time

Traditional Project Delivery		Integrated Project Delivery
Fragmented, ad-hoc, hierarchical,	Participants	Team of project constituencies,
controlled		open and collaborative
Linear, segregated, limited	Process	Concurrent, project life-cycle
information exchange		oriented, shared information,
		collaborative
No	Early Contractor	Yes
	Involvement	
Individually managed	Risk	Managed and shared risks in a
		collective manner
Cost-based, individually focused	Compensation	Performance and value based
Not shared, Minimal communication	Documentation	Shared, Open Communication

SUCCESS CRITERIA

Meet owners criteria
Budget and Schedule met
Improved overall quality

SUCCESS FACTORS

Clearly defined scope
Contractor experience
Synergy and good relationships
Owner participation

IPD Implementation

Gonzalo Lay Intramural Building Project
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation **Proposed System vs Current** Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

IPD IMPLEMENTATION

RFQ to A/E's and CMs **Team Selection** Representative from each party – Day workshop | project related **Team Interview Process** Project design ideas | approval by BOT Response to Proposal-Must be signed by all parties (Owner, CM, AE) – later involve Subs **Shared Risk Contract** Design, budgeting, scheduling, planning activities takes place Planning Between Key Members-Collaboration enforced throughout project Construction

IPD Implementation

Gonzalo Lay Intramural Building Project
Construction Management

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
     Proposed Brick Façade vs Current System
          Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
     Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
Analysis #4: Occupied vs Vacant Renovations
    Proposed System vs Current
    Construction Noise & Vibration vs Productivity
    Construction Standards
Recommendations
Acknowledgements
```

EVALUATION

DURATION

Construction schedule is reduced.

Design phase is extended

Courtesy of http://network.aia.org

IPD Implementation

Intramural Building Project

Construction Management

Gonzalo Lay

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
     Proposed Brick Façade vs Current System
          Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
    Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
Analysis #4: Occupied vs Vacant Renovations
    Proposed System vs Current
    Construction Noise & Vibration vs Productivity
    Construction Standards
Recommendations
Acknowledgements
```

EVALUATION

DURATION

Construction schedule is reduced.

Design phase is extended

COLLABORATION

Big room – daily team interaction

Courtesy of http://network.aia.org

IPD Implementation

Intramural Building Project

Construction Management

Gonzalo Lay

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

EVALUATION

DURATION

Construction schedule is reduced. Design phase is extended

COLLABORATION

Big room – daily team interaction

COST

Elimination of RFIs and Change Orders during construction Project costs are more controlled

IPD Implementation

Gonzalo Lay Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

EVALUATION

DURATION

Construction schedule is reduced. Design phase is extended

COLLABORATION

Big room – daily team interaction

COST

Elimination of RFIs and Change Orders during construction Project costs are more controlled

QUALITY

Improved work coordination Access to information

IPD Implementation

Gonzalo Lay Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

<u>Takeaways</u>

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

TAKEAWAYS

Early Team Involvement

Improved synergy

Reduced issues (Design and Construction)

Collaboration

Shared information

Ease of coordination

Increased productivity

Shared Risks

Working towards same goal Cost savings (litigations and lawsuits)

Efficient Construction

Less waste

No change orders

Owner must be have prev. experience Time involvement

Contract

Owner must generate a contract or use standard Liabilities and shared risks must be evaluated

IPD Implementation

Gonzalo Lay Intramural Building Project Construction Management

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
    Proposed Brick Façade vs Current System
         Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
    Proposed System vs Current
         Advantages / Disadvantages
         Takeaways
Analysis #4: Occupied vs Vacant Renovations
```

Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations Acknowledgements

Analysis #4 - Occupied vs Vacant Renovations

Gonzalo Lay
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations Acknowledgements

Problem Identification

Unexpected construction activities can disrupt the comfort of building occupants in a phased renovation.

Background

Building occupants are expected to work together with the construction crews to prevent disturbances and allow to perform daily work.

Potential Solutions

Alternative to vacate the existing building and allow construction activities to be ongoing

Produce construction guidelines for improved occupant health and safety

Occupied vs Vacant Renovations

Gonzalo Lay Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

VACANT RENOVATION

Larger scope of work

Funding available*

Decreased project duration

Lowered Risks of Accidents/Injuries/Complains

Improved Quality of work

Ease of coordination and planning

Occupant relocation

Building use demands

Conflict of activities

Project costs

Occupied vs Vacant Renovations

Gonzalo Lay
Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Acknowledgements

OCCUPIED RENOVATION – Controlling Noise and Vibration

Stationary Equipment

Mobile Equipment

Affected phases

TABLE G-16 - PERMISS	SIBLE NOISE EXPOSURES (1)
Duration per day, hours	Sound level dBA slow response
	90
6	92
4	95
3	
2	100
1 1/2	102
1	105
1/2	110
1/4 or less	115
i	

Courtesy of OSHA

Intramural Building Project

Occupied vs Vacant Renovations

Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations

```
Project Summary
Analysis #1: Prefabrication of Building Enclosure
     Proposed Brick Façade vs Current System
          Results
    Mechanical Breadth
    Proposed Curtain Wall vs Current
          Results
Analysis #3: Integrated Project Delivery Implementation
     Proposed System vs Current
         Advantages / Disadvantages
          Takeaways
Analysis #4: Occupied vs Vacant Renovations
     Proposed System vs Current
    Construction Noise & Vibration vs Productivity
    Construction Standards
Recommendations
Acknowledgements
```

OCCUPIED RENOVATION – Productivity

Disruptive sounds

High / low frequencies
Intermittent / Continuous

Tasks

Simple / Complex

Effects

Stress
Frustration
Adaptation – Increase HR
Blood Pressure
Adrenaline and Cortisol

PREVENTION

Hours of Operations and Noise levels

Mobile Equipment	Time	Educational Facility	Residential
Daily	7:00 am to 5:00 pm	85 dBA	70 dBA
Weekends	9:00 am to 5:00 pm	65 dBA	60 dBA
Stationary Equipment			
Daily	7:00 am to 5:00 pm	70 dBA	60 dBA
Weekend	9:00 am to 5:00 pm	60 dBA	50 dBA

Communication

Low Frequency Panel absorber

Occupied vs Vacant Renovations

Gonzalo Lay Intramural Building Project Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity **Construction Standards** Recommendations

Acknowledgements

ADAPTED CONSTRUCTION STANDARDS

Communication

Primary Contact, weekly meetings Look ahead schedule, coordination Occupant/Contractor feedback

Fire Safety

Evacuation layout plan, means of egress
Signage and frequent interaction with shutdown systems

House Keeping

Wet cleaning techniques and HEPA vacuum Contractor work area clean

Weather

Door mats required @ means of egress Signage for identified hazards

Interior Traffic

Airtight temp. partitions – travel paths
Physical barriers for penetrations

Indoor Air Quality

Negative air pressure (cont.) in construction area
Daily cleaning
HVAC temp. shutdown when high levels of pollutants

Noise

Appropriate worker volume communication
High Noise level activities must be approved by PM
Acoustical enclosures for noisy equipment

Vibration

Gonzalo Lay

Logistics, vehicular traffic far from bldg. footprint Sequencing activities

Occupied vs Vacant Renovations

Intramural Building Project

Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

ANALYSIS #1 – Prefabrication of Building Enclosure

SlenderWall Panels –reduce exterior enclosure schedule by 12 days reduce project costs by \$75,613

quality product, increase floor space, less safety concerns

Unitized Curtain Wall – reduce exterior enclosure schedule by 29 days adds \$190,586 to project costs

better use if larger area

ANALYSIS #4 – Occupied vs Vacant Renovation

Vacant – allow for larger scopes of work, reduced risks facilitates planning and coordination funding must be available

Occupied – helps meet recreational student demand

Construction Standards

Improve the health and safety of building occupants

Co-location of project party ease communication

Early involvement improves project outcome

Reduced risks of change orders and RFIs

Shared-risk and liabilities questionable

Recommended applications

Collaboration – big room Early involvement

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations

Acknowledgements

THANKS!

ACADEMIC ACKNOWLEDGEMENTS

Ray Sowers, CM Academic Adviser John Betchtel, CM Adviser Ali Memari, Building Enclosure Adviser Penn State AE Faculty

PENNSTATE

SPECIAL THANKS

Family & Friends

Jason Toso – Mortenson Construction Jeremy Smith - Easi-Set Industries Dominick Baruffi – Sto, StoPanel Matt Christian - Harmon Inc. Office of Physical Plant **Intramural Building Staff**

INDUSTRY ACKNOWLEDGEMENTS

Acknowledgements

Gonzalo Lay Intramural Building Project Construction Management

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

<u>Acknowledgements</u>

Questions

Gonzalo Lay
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations

Acknowledgements

dth (ft.)	Height (ft.)	Area (SF)	# Panels	Total Area (SF)	Opening?	Location	Weight per SF	Panel Weight (lbs.)
10.0	15.5	155.0	1	155.0	N	East Wall	30.0	4,650.0
10.0	18.5	185.0	1	185.0	N	East Wall	30.0	5,550.0
12.0	15.5	186.0	1	186.0	N	East Wall	30.0	5,580.0
12.0	18.5	222.0	1	222.0	N	East Wall	30.0	6,660.0
38.0	3.5	133.0	1	133.0	N	East Wall	30.0	3,990.0
38.0	8.0	304.0	1	304.0	N	East Wall	30.0	9,120.0
6.0	15.5	93.0	1	93.0	N	North @ Ea.	30.0	2,790.0
6.0	18.5	111.0	1	111.0	N	North @ Ea.	30.0	3,330.0
8.0	15.5	124.0	1	124.0	Υ	North @ Ea.	30.0	3,720.0
8.0	18.5	148.0	1	148.0	N	North @ Ea.	30.0	4,440.0
10.0	15.5	155.0	1	155.0	N	North @ Ea.	30.0	4,650.0
10.0	18.5	185.0	1	185.0	N	North @ Ea.	30.0	5,550.0
10.0	13.5	135.0	5	675.0	Υ	South Mech	30.0	20,250.0
6.0	15.5	93.0	1	93.0	N	South Wall	30.0	2,790.0
8.0	15.5	124.0	6	744.0	Υ	South Wall	30.0	22,320.0
12.0	15.5	186.0	6	1,116.0	Υ	South Wall	30.0	33,480.0
20.0	3.5	70.0	1	70.0	N	South Wall	30.0	2,100.0
20.0	6.0	120.0	5	600.0	N	South Wall	30.0	18,000.0
30.0	3.5	105.0	1	105.0	N	South Wall	30.0	3,150.0
40.0	3.5	140.0	6	840.0	N	South Wall	30.0	25,200.0
6.0	15.5	93.0	3	279.0	N	West Wall	30.0	8,370.0
6.0	18.5	111.0	2	222.0	Υ	West Wall	30.0	6,660.0
10.0	13.5	185.0	1	185.0	Υ	West Wall	30.0	5,550.0
Total			49	6930				187,320.00

Current Exterior Brick Veneer System Breakdown Cost									
	Unit	Quantity	Cost/Unit	Total					
Brick	SF	7,090.00	23.0	\$ 163,070.00					
Rigid 2.5" Insulation	SF	7,090.00	2.5	\$ 17,725.00					
Vapor Retardant	SF	7,090.00	3.5	\$ 24,815.00					
Spray-On Insulation	SF	7,090.00	4.0	\$ 28,360.00					
6" Mtl Stud	SF	7,090.00	12.0	\$ 85,080.00					
Caulking & Sealants	SF	7,090.00	0.3	\$ 1,772.50					
Gypsum Board	SF	7,090.00	7.3	\$ 51,402.50					
Misc. Metals	SF	7,090.00	0.1	\$ 709.00					
TOTAL				\$ 372,934.00					
Nitterhouse Concrete	Brick V	eneer Systen	n Breakdow	n Cost					
Panel System	SF	6,930.00	40.0	\$ 277,200.00					
Sheathing, 6" Mtl Stud, Gyp	SF	6,930.00	12.0	\$ 83,160.00					
Rigid 2.5" Insulation	SF	6,930.00	2.5	\$ 17,325.00					
Vapor Retardant	SF	6,930.00	3.5	\$ 24,255.00					
Spray-On Insulation	SF	6,930.00	4.0	\$ 27,720.00					
Gypsum Board	SF	7,090.00	7.3	\$ 51,402.50					
Misc. Metals	SF	7,090.00	0.1	\$ 709.00					
TOTAL				\$ 429,660.00					
SlenderWa	all Syste	em Breakdow	n Cost						
Panel System	SF	6,930.00	42.0	\$ 291,060.00					
Gypsum Board 5/8" (3 Layers)	SF	6,930.00	1.5	\$ 10,395.00					
TOTAL				\$ 301,455.00					
StoPanel	Systen	n Breakdown	Cost						
Panel System	SF	6,930.00	72.0	\$ 498,960.00					

Elevation	Quantity	Productivity (hr)/ Panel	Duration (hr.)	Days
est	6	2	12.0	1.5
uth	31	2	62.0	7.8
st	6	2	12.0	1.5
orth @ East	6	2	12.0	1.5
			Total	13

ppendix

Gonzalo Lay Intramural
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

appendix

Gonzalo Lay
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards

Recommendations

Acknowledgements

System Cost Comparison							
	Unit	Quar	ntity	Cost/Unit		Total	
el System	SF	6,930	0.00	43.5		\$301,455.00	
rent System	SF	7,090	0.00	52.6		\$372,934.00	
				Difference		\$71,479.00	
Additional Costs Benefits/Implements							
folding	CSF	148.8	\$	130.13	\$	19,363.34	
ne	Mo	-1.0	\$	17,289.00	\$	(17,289.00)	
terial Hoist	Ea.	1.0	\$	2,060.00	\$	2,060.00	
			Difference			4,134.34	

Total Savings				
SlenderWall Savings	\$71,479.00			
Crane Usage	(\$17,289.00)			
Removal of Scaffold	\$19,363.00			
Removal of Hoist	\$2,060.00			
	\$75,613.00			

Appendix

Gonzalo Lay Intramural Building Project
Construction Management

Project Summary Analysis #1: Prefabrication of Building Enclosure Proposed Brick Façade vs Current System Results Mechanical Breadth Proposed Curtain Wall vs Current Results Analysis #3: Integrated Project Delivery Implementation Proposed System vs Current Advantages / Disadvantages Takeaways Analysis #4: Occupied vs Vacant Renovations Proposed System vs Current Construction Noise & Vibration vs Productivity Construction Standards Recommendations Acknowledgements

0 4 8 0 12 16

Standard Wall

....No Condensation..

Cond. 17 grains/(ft²·d)

WALL SECTION & TEMPERATURE GRADIENTS

Intramural Building Project

Construction Management

WALL SECTION & VAPOR

Analysis #1: Prefabrication of Building Enclosure

Proposed Brick Façade vs Current System

Results

Mechanical Breadth

Proposed Curtain Wall vs Current

Results

Analysis #3: Integrated Project Delivery Implementation

Proposed System vs Current

Advantages / Disadvantages

Takeaways

Analysis #4: Occupied vs Vacant Renovations

Proposed System vs Current

Construction Noise & Vibration vs Productivity

Construction Standards

Recommendations

Acknowledgements

evation	Length of Glazing (ft.)	Avg. Glass Width (ft.)	SF of Glazing	
	130.00	3	807.00	E
South	150.00	3	1,105.00	Sc
South	280.00	3	4,035.00	Sc
	12.00	3	173.00	Ea
East	36.75	3	858.00	Sc
	40.00	3	701.00	Ea
Atrium	15.00	3	342.00	Sc
Atrium	27.00	3	430.00	Ea
	20.00	3	212.00	So
		Total	8,663.00	Ea

Elevation	Size		SF	No. Panels	Total SF	
Elevation	Width	Height	ЭГ	NO. Paneis	IOLAI SF	
South	3	2.66	7.98	93	742.14	
South	6	2.66	15.96	1	15.96	
East	3	2.66	7.98	11	87.78	
South	3	7	21.00	141	2961.00	
East	3	7	21.00	11	231.00	
South	3	4.5	13.50	70	945.00	
East	3	4.5	13.50	11	148.50	
South	3	8.75	26.25	3	78.75	
East	3	8.75	26.25	11	288.75	
Atrium	3	9	27.00	15	405.00	
Atrium	3	8.75	26.25	15	393.75	
Atrium	3	2.66	7.98	15	119.70	
Atrium	3	4.5	13.50	30	405.00	
Atrium	3	3.66	10.98	6	65.88	
South	3.5	4.5	15.75	38	598.50	
South	3.5	2.66	9.31	10	93.10	
			Total	481	7703.00	

Flouration	Size		. CE	No Donale	Total CE	
Elevation	Width	Height	SF	No. Panels	Total SF	El
South	3.00	14.25	42.75	70	2,992.50	Sc
South	3.00	10.75	32.25	23	741.75	So
South	3.00	9.00	27.00	3	81.00	Ea
South	3.00	7.00	21.00	47	987.00	At
South	3.50	7.00	24.50	10	245.00	At
South	3.50	6.00	21.00	28	588.00	
East	3.00	14.25	42.75	11	470.25	
East	3.00	9.00	27.00	11	297.00	
Atrium	3.00	13.00	39.00	15	585.00	
Atrium	3.00	10.00	30.00	6	180.00	
Atrium	3.00	8.00	24.00	15	360.00	
Atrium	3.00	6.50	19.50	9	175.50	
			Total	248	7,703.00	

ation	Productivity panels/day	No. Panels	Duration
th	15	140	9.33
th	7	41	5.86
	15	22	1.47
ım	15	30	2.00
ım	7	15	2.14
		Total	20.80

tem	Quantity	Unit	Unit Total	Total	
Stick Built System	8,663.00	SF	\$ 110.00	\$	952,930.00
			Subtotal	\$	952,930.00
Jnitized System	8,663.00	SF	\$ 132.00	\$	1,143,516.00
			Subtotal	\$	1,143,516.00
			Difference	\$	(190,586.00)

ppendix

Gonzalo Lay
Construction Management