

Construction Option Sosue Fe



# Project Overview



OUTLINE

\_Project Overview

\_Delivery Method

\_BA Component

\_Sensible Wheel

\_Acknowledgement

#### Location:

\_Rockville, MD

#### Size:

\_285,000 Square Feet

\_4 Total Floors and 2 Sublevels

#### Function:

Retail & Residential Apts.

#### Schedule:

\_October 2012 - May 2014

\_20 Months



# Project Overview

Cost:

\_\$36 Million

Delivery Method:

\_Design-Bid-Build

Owner:

\_Federal Realty Investment Trust

















#### OUTLINE

\_Project Overview

# **Construction Conditions**

















\_Project Overview

# SIS ZA

abla

# Challenges





# Analysis Topics

Alternate Delivery Method

Analysis 1

Analysis 2

Analysis 3

Prefabrication of Brick Veneer

Building Energy Efficiency

Info./ Doc. Management HUB



# Analysis Topic 1: Alternate Delivery Method







#### OUTLINE

\_Delivery Method

#### Goal of Analysis #1

To validate the advatages and disadvantages of a contractor led Design-Build Delivery Method

# Current: DBB Delivery Method

#### Advantages:

- \_Familiar delivery method
- \_Construction price before construction starts
- \_Opportunity for competitive bidding

#### Disadvantages:

- \_No subcontractor input
- \_Design must be complete prior to construction
- \_Designer and contractor develop work autonomously
- \_Prices & schedules based on construction documents



#### Advantages:

- \_Construction input in the design phase
- \_Good communication & relationships
- \_Eliminates responsability and finger-pointing when conflict occurs
- \_Iterative cost estimating from early collaboration by constrcution team

#### Disadvantages:

- \_Difficult to provide firm, fixed price before project begins
- \_Owner may perceive less design control
- \_No independent oversight of work performed







### Delivery Method Difference

# Project Delivery Method Selection System

| OUTLINE              |
|----------------------|
|                      |
| _Project Overview    |
| _Delivery Method     |
| _Brick Veneer Panels |
| _BA Components       |
| _Sensible Wheel      |
|                      |
| _Acknowledgements    |
| Appendix             |

|                                                       | DBB w/ CM @ Risk | Design-Build |
|-------------------------------------------------------|------------------|--------------|
| Design complete before contractor involved            | No               | No           |
| Advesarial relationship between designer & contractor | Possible         | No           |
| Can fast track?                                       | Likely           | Yes          |
| Contractor feedback on design?                        | No               | Yes          |
| # of parties responsible for construction?            | 1                | 1            |
| List parties contracted with owner                    | 2                | 1            |
| Owner has design control                              | Yes              | Some         |

Organizational structural difference (Messner, 2012)

#### SCOPE ORGANIZATIONAL STRUCTURE CONTRACT ORGANIZATIONAL CONTRACT STRUCTURE STRATEGY STRATEGY 32 DON'T BUILD DON'T BUILD NONTBUILD DONTBUILD LEGEND (Organizational Structure): LEGEND (Contract Strategy): LS - Lump Sum D/B- Design-Build GMP- Guaranteed Maximum Price CMA- Construction Management (Agency) CPF- Cost Plus Fee CMGC- Construction Management (General Contractor) Table 5: The PDSS Model - Tabulated Solutions

The PDSS Model-Tabulated Solutions (Vesay, 1991)

#20- CMGC, D/B

# Schedule Comparison



# OUTLINE \_Project Overview \_Delivery Method \_Brick Veneer Panels \_BA Components \_Sensible Wheel \_Final Conclusions \_Acknowledgements Appendix

# Current: DBB Delivery Method



# Proposed: DB Delivery Method









#### OUTLINE

\_Delivery Method

# South Hall Project:

| Block 12 Problems | South Halls Benefits from Design-Build Delivery Method                                                    |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
|                   | Barton Malow assumes more risk for design mistakes, but is able to charge a higher fee.                   |  |  |  |  |
|                   | Delivery method allowed early subcontractor input before                                                  |  |  |  |  |
| Budget Overruns   | drawings were complete, which enabled real time cost tracki                                               |  |  |  |  |
|                   | during design                                                                                             |  |  |  |  |
|                   | Early input from subcontractors helped in owner decision making                                           |  |  |  |  |
|                   | process                                                                                                   |  |  |  |  |
| Project Turnover  | Harnessed a more collaborative enironment, leading to a much                                              |  |  |  |  |
| rioject rumovei   | more effective communication                                                                              |  |  |  |  |
| Profit Margins    | Project is on budget                                                                                      |  |  |  |  |
| Complex Concerns  | Early identification of desired energy efficient materials and equipement were identified early in design |  |  |  |  |

# Conclusion:

Contractor led Design-Build Delivery Method is recommended





# Analysis Topic 2: Premanufactured Brick Veneer Panels

Thin Brick By Owensboro Panel Information

Section Cut



#### Goal of Analysis #2

To reduce the brick veneer installation time in order to accelerate the overall schedule





EXTERIOR WALL TYPE #1

WD/MTL STUD - MASONRY VENEER

NOMINAL 4" THICKNESS MASONRY VENEER (REF. ELEVATION FOR COLOR INDICATION)
AIR CAVITY

FELT PAPER (BOND BREAK)
2" RIGID INSULATION
1/2" WALL SHEATHING W/TAPED JOINTS
R-13 MIN. FRICTION FIT BATT
INSULATION
NOMINAL 2 X6 WD FRAMING MEMBER
5/8" MIN. FIN. GYPSUM BOARD

FYART'N YPE #30
5/8" MIN. FIN. GYPSUM BOARD

EXT WALL TYPE #1 - 6" WD STUD, MASONRY VENEER (SHOWN)
EXT WALL TYPE #18 - 6" MTL STUD, MASONRY VENEER (SIM)
EXT WALL TYPE #18 - 6" WD STUD (PARTITION TYPE P30, UL 210), MASONRY VENEER COURTESY of: WT



16" x 48" Panels

Current: 6-3/4"

Proposed: 6-3/4"

Util-A-Crete Panel System + 6" Polystyrene 3CI Panel

### Thermal Performance











\_5 Deliveries

One 48" Flatbed & Four 45" Flatbeds

\_176 total Pallets (18 panels per pallet)

Modular Brick= 177 days

Premanufactured Panels= 119 days

Assumption: 75% time saving on schedule

Time Saving= 43 Days

# Cost

# Recommendation







\_Brick Veneer Panels

Modular Brick=

Premanufactured Panels=

\$206,287.94

\$89,313.68

Difference=

\$116,974.26

General Conditions=

\$135,248.00

SAVINGS=

\$18,274.10

Premanufactured panels accelerate the schedule and yield savings. The premanufactured panels are recommended.





# Analysis Topic 3: Building Energy Efficiency



#### Goal of Analysis #3

To reduce the building's energy consumption to help maintain the building's energy efficiency.

# Building Automation Components (Residential Level)



Belkin Wemo



Nest Thermostat

# Components Layout Plan





#### OUTLINE

\_Project Overviev

\_B : I \/

\_BA Components

sensible Wheel

Final Conclusion

\_, temre meagements Appendix

# Plug Load Analysis (Typical Residential Unit)

| WeMo Insight<br>Switch # | Electronics              | Wattage | Phantom Load |
|--------------------------|--------------------------|---------|--------------|
|                          | 1                        |         |              |
|                          | Alarm Clock              | 4       | YES          |
|                          | Cell Phone Charger       | 10      | YES          |
|                          | Laptop                   | 60      | YES          |
| 1                        | Portable Electric Heater | 1200    | NO           |
|                          | Fans                     | 100     | NO           |
|                          | Desk & Table Lamps       | 100     | NO           |
|                          | Printer/ Scanner         | 100     | YES          |
|                          | •                        |         |              |
|                          | Hair Dryer               | 920     | YES          |
| 2                        | Hair Curler              | 320     | YES          |
|                          | Shaver                   | 20      | YES          |
|                          | Electric Tooth Brush     | 10      | YES          |
|                          |                          |         |              |
|                          | Television               | 100     | YES          |
|                          | DVD/VCR Player           | 40      | YES          |
| 3                        | Game Console             | 250     | NO           |
|                          | Stereo System            | 30      | YES          |
|                          | Aquarium                 | 1210    | NO           |
|                          |                          |         |              |
|                          | Coffee Maker             | 900     | YES          |
| 4                        | Toaster Oven             | 630     | NO           |
|                          | Blender                  |         | NO           |
|                          | 1                        |         |              |
| 5                        | Microwave                | 1050    | YES          |

# Phantom Load Analysis (Typical Residential Unit)



# Simple Payback

5 Belkin WeMo Components

Phantom Load= \$2.16 /month\*12 months = \$25.92 /year Payback Period= 17 years



# Nest Thermostat- Energy Savings (Typical Residential Unit)



#### OUTLINE

\_Project Overview \_Delivery Method

\_BA Components

\_Sensible Wheel

Acknowledgements

Component Energy Savings on Heating and Cooling Costs

Nest Learning Thermostat 2nd Generation \$173 per year 19.5% per device

\* Results obtained from the "Nest Learning Thermostat Efficiency Simulation: Update Using Data from First Three

Months" report done by Nest Labs on April 2012

# Simple Payback

#### 1 Nest Thermostat

Yearly Savings= \$173 /year Payback Period= 2 years

### Recommendation

\_Belkin WeMo is not recommended for this project



\_Nest Thermostat is recommended





# OUTLINE \_Project Overview

Sensible Wheel

# Mechanical Beadth: Sensible Wheel (Retail Level)

#### Goal of Mechanical Breadth

To reduce the building's energy consumption to help maintain the building's energy efficiency.

### Sensible Wheel in RTU Unit



#### Advantages

- \_Wheels are compact and can achieve high heat transfer effectiveness
- \_Low air pressure drop (0.4-0.7 in. of water)
- \_Potential for cooling or heating equipment size reduction

#### Disadvantages

- \_Initial first cost of equipment and fan power requirement to overcome resistance
- \_Requires periodical maintenance of rotating mechanism and cleaning of fill medium
- \_Some cross-contamination of two air streams, due to carryover and leakage

# Energy Model- TRANE TRACE



#### OUTLINE

\_Project Overview \_Delivery Method

\_BA Components

\_Sensible Wheel

\_Acknowledgements

# Energy Use (Retail Level)

| Monthly Energy Usage |                   |                   |                     |                      |                      |                     |  |  |  |  |  |
|----------------------|-------------------|-------------------|---------------------|----------------------|----------------------|---------------------|--|--|--|--|--|
|                      |                   | Energy            |                     |                      | Gas                  |                     |  |  |  |  |  |
| Month                | Baseline<br>(kWh) | Redesign (kWh)    | Difference<br>(kWh) | Baseline<br>(therms) | Redesign<br>(therms) | Difference (therms) |  |  |  |  |  |
| January              | 19,845            | 24,875            | (5,030)             | 4,525                | 1,677                | 2,848               |  |  |  |  |  |
| February             | 18,018            | 22,478            | (4,460)             | 4,011                | 1,515                | 2,496               |  |  |  |  |  |
| March                | 24,413            | 27,737            | (3,324)             | 2,928                | 1,652                | 1,276               |  |  |  |  |  |
| April                | 23,296            | 25,038            | (1,742)             | 1,846                | 1,305                | 541                 |  |  |  |  |  |
| May                  | 30,175            | 31,163            | (988)               | 433                  | 403                  | 30                  |  |  |  |  |  |
| June                 | 32,467            | 33,198            | (731)               | 36                   | 24                   | 12                  |  |  |  |  |  |
| July                 | 31,982            | 32,507            | (525)               | -                    | -                    | -                   |  |  |  |  |  |
| August               | 35,153            | 35,950            | (797)               | 23                   | 13                   | 10                  |  |  |  |  |  |
| September            | 28,204            | 29,093            | (889)               | 311                  | 286                  | 25                  |  |  |  |  |  |
| October              | 26,313            | 27,563            | (1,250)             | 1,864                | 1,308                | 556                 |  |  |  |  |  |
| November             | 23,692            | 25,726            | (2,034)             | 2,397                | 1,479                | 918                 |  |  |  |  |  |
| December             | 19,565            | 24,037            | (4,472)             | 3,989                | 1,677                | 2,312               |  |  |  |  |  |
|                      |                   | Largest Differnce | (5,030)             |                      | Largest Differnce    | 2,848               |  |  |  |  |  |
|                      |                   | Average Value     | (2,186.83)          |                      | Average Value        | 918.67              |  |  |  |  |  |





| Yearly Energy Usage and Cost |         |      |        |  |          |    |                               |  |          |    |         |      |                  |     |         |
|------------------------------|---------|------|--------|--|----------|----|-------------------------------|--|----------|----|---------|------|------------------|-----|---------|
|                              | Basel   | line |        |  | Redesign |    | <b>Energy Cost for Change</b> |  |          |    |         |      |                  |     |         |
|                              | Use     |      | Cost   |  | Use      |    | Cost                          |  | Use      |    | Cost    |      | Unit Cost of I   | ner | gy      |
| Electricity (kWh)            | 313,122 | \$   | 36,413 |  | 339,366  | \$ | 39,465                        |  | (26,244) | \$ | (3,052) | Elec | tricity (\$/kWh) | \$  | 0.11629 |
| Gas (therms)                 | 22,363  | \$   | 21,021 |  | 11,338   | \$ | 10,658                        |  | 11,025   | \$ | 10,364  | Ga   | as (\$/therms)   | \$  | 0.94000 |
| Building (Btu/ft^2-yr)       | 69,065  | \$   | -      |  | 65,671   | \$ | -                             |  | 3,394    | \$ | -       |      |                  |     |         |
| Source (Btu/ft^2-yr)         | 168,651 | \$   | -      |  | 177,481  | \$ | -                             |  | (8,830)  | \$ | -       |      |                  |     |         |
|                              |         |      |        |  |          |    |                               |  |          |    |         |      |                  |     |         |
| Floor Area (ft^2)            |         |      |        |  | 112940   |    |                               |  |          |    |         |      |                  |     |         |
|                              |         |      |        |  |          |    |                               |  |          |    |         |      |                  |     |         |

|                | Yearly Environmental Impact |           |                          |  |  |  |  |  |  |  |
|----------------|-----------------------------|-----------|--------------------------|--|--|--|--|--|--|--|
|                | Baseline                    | Redesign  | Increase in<br>Emissions |  |  |  |  |  |  |  |
|                | Use                         | Use       | Use                      |  |  |  |  |  |  |  |
| CO2 (lbm/year) | 4,534,850                   | 5,121,007 | 13%                      |  |  |  |  |  |  |  |
| SO2 (gm/year)  | 16,212                      | 18,307    | 13%                      |  |  |  |  |  |  |  |
| NOX (gm/year)  | 6,920                       | 7,815     | 13%                      |  |  |  |  |  |  |  |

|                                          | Yearly Energy Savings   |  |
|------------------------------------------|-------------------------|--|
|                                          | Cost                    |  |
| Electricity (kWh)<br>Gas (kBtu)          | \$<br>(3,052)<br>10,364 |  |
| Savings for Building with Enthalpy wheel | \$<br>7,312             |  |

\_Increase electricity
\_Decrease gas
\_\$7,312 yearly energy savings





#### OUTLINE

\_Project Overvie

\_Delivery Methoc

D 4 6

\_Sensible Wheel

\_Final Conclusions

\_Appendix

### Coil Selection

| Coil Selection |                   |                       |                    |                        |                   |                              |           |           |  |  |  |
|----------------|-------------------|-----------------------|--------------------|------------------------|-------------------|------------------------------|-----------|-----------|--|--|--|
|                |                   | Heating Coi           | l Selection        | Cooling Coil Selection |                   |                              |           |           |  |  |  |
|                | Capacity<br>(Mbh) | Coil Airflow<br>(CFM) | Ent. (°F)          | Lvg. (°F)              | Capacity<br>(Mbh) | Coil Airflow<br>(CFM)        | Ent. (°F) | Lvg. (°F) |  |  |  |
| Baseline       | (812.8)           | 14,297                | 17.0               | 68.0                   | 545.7             | 14,297                       | 90.6      | 69.8      |  |  |  |
| Redesign       | (187.7)           | 14,297                | 56.2               | 68.0                   | 354.2             | 14,297                       | 79.1      | 69.8      |  |  |  |
| Change         | 77%<br>reduction  | ı                     | 39.2 °F higher ent | ering temp             | 35%<br>reduction  | 11.2 °F higher enter<br>temp |           |           |  |  |  |

\_35% Cooling coil reduction \_77% Heating coil reduction

### Recommendation

The sensible wheel is recommended for yearly energy savings and further savings in reduction of coils













Final Conclusions

### Final Conclusions

#### Alternate Delivery Method:

- More collaborative
- \_Early contractor input
- \_Maintain project on budget







#### Prefab. of Brick Veneer:

\_Higher R-Value

\_Higher cost, but GC savings - \$18k \_Schedule accelerated 43 days







#### Building Energy Efficiency:

\_Belkin WeMo Component \_17 yr. payback period \_Nest Thermostat Component \_2 yr. payback period



#### Sensible Wheel:

\_\$7,312 yearly energy savings

\_35% cooling coil reduction

\_77% heating coil reduction



#### Alternate Delivery Method:

\_Contractor led Design-Build delivery method is recommended, and could have helped in hindsight

Recommendation



#### Prefab. of Brick Veneer:

Recommended for cost savings and schedule acceleration



#### Building Energy Efficiency:

Belkin WeMo component is not recommended, long payback period



\_Nest Thermostat component is recommended, short payback period



#### Sensible Wheel:

\_Implement sensible wheel for energy savings and cooling/ heating coil reduction













#### OUTLINE

\_Acknowledgements

# Acknowledgements

#### Academic Acknowledgements

Penn State Architectural Engineering Faculty & Staff Dr. Craig Dubler

#### Special Thanks!

Steven Rogers Patrick Laninger Gabe Powers Family & Friends



















#### OUTLINE

\_Appendix

# Questions?









OUTLINE

\_Appendix

# Appendix: Analysis 2

#### R-value

| Thin Brick By Owensboro Panels w/ 6" 3CI Insulation Panel (1'-2") |           |                      |                  |                  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------|----------------------|------------------|------------------|--|--|--|--|--|
| Component                                                         | Thickness | R-Value per Inch     | R-Value per Unit | R-Value          |  |  |  |  |  |
|                                                                   | (in.)     | (hr*ft^2*°F/BTU*in.) | (hr*ft^2*°F/BTU) | (hr*ft^2*°F/BTU) |  |  |  |  |  |
| Outside                                                           | _         |                      | 0.17             | 0.17             |  |  |  |  |  |
| 1/2" Thin Brick, 1/4" Util-A-Crete, and 6" Polystyrene            | 6-3/4"    | -                    | 30.00            | 30.00            |  |  |  |  |  |
| Zip Wall (Taped)                                                  | 1/2       | -                    | 0.62             | 0.62             |  |  |  |  |  |
| Mtl Stud Fram. with R-19 Batt Ins.                                | 6         | -                    | 7.10             | 7.10             |  |  |  |  |  |
| G.W.B.                                                            | 5/8       | -                    | 0.56             | 0.56             |  |  |  |  |  |
| Inside                                                            | -         | -                    |                  | 0.68             |  |  |  |  |  |
| R-Value of Thin Brick Assembly                                    |           |                      |                  |                  |  |  |  |  |  |

| Component Thickness R-Value per Inch R-Value per Unit R-Value |       |                      |                  |                  |  |  |  |  |  |  |
|---------------------------------------------------------------|-------|----------------------|------------------|------------------|--|--|--|--|--|--|
|                                                               | (in.) | (hr*ft^2*°F/BTU*in.) | (hr*ft^2*°F/BTU) | (hr*ft^2*°F/BTU) |  |  |  |  |  |  |
| Outside                                                       | _     | _                    | 0.17             | 0.17             |  |  |  |  |  |  |
| Brick                                                         | 4     | -                    | 0.44             | 0.44             |  |  |  |  |  |  |
| Air Gap                                                       | 3/4   | -                    | 1.00             | 1.00             |  |  |  |  |  |  |
| Rigid Insulation                                              | 2     | 4.80                 | -                | 9.60             |  |  |  |  |  |  |
| Zip Wall (Taped)                                              | 1/2   | -                    | 0.62             | 0.62             |  |  |  |  |  |  |
| Mtl Stud Fram. with R-19 Batt Ins.                            | 6     | -                    | 7.10             | 7.10             |  |  |  |  |  |  |
| G.W.B.                                                        | 5/8   | -                    | 0.56             | 0.56             |  |  |  |  |  |  |
| Inside                                                        | -     | -                    |                  | 0.68             |  |  |  |  |  |  |

#### Transportation Logistics

#### Thin Brick Panel Truck Delivery Schedule

| Deliverv # | Delivery # Truck Type |              | iels        | Bric         | kettes          | Truck Capacity      |                |  |
|------------|-----------------------|--------------|-------------|--------------|-----------------|---------------------|----------------|--|
| ,          | <i>,</i> ,,           | # of Pallets | # of Panels | # of Pallets | # of Brickettes | Material Load (lbs) | Max Load (lbs) |  |
|            |                       |              |             |              |                 |                     |                |  |
| 1          | 48" Flatbed           | 38           | 684         | 2            | 250             | 39,120              | 45,000         |  |
| 2          | 45" Flatbed           | 35           | 630         | 2            | 250             | 36,300              | 45,000         |  |
| 3          | 45" Flatbed           | 35           | 630         | 2            | 250             | 36,300              | 45,000         |  |
| 4          | 45" Flatbed           | 35           | 630         | 2            | 250             | 36,300              | 45,000         |  |
| 5          | 45" Flatbed           | 33           | 594         | 1            | 250             | 32,720              | 45,000         |  |
| 7          | Total:                | 176          | 3,168       | 9            | 1 250           |                     |                |  |
| Total:     |                       | 1/6          | 3,108       | 9            | 1,250           |                     |                |  |

#### Schedule

#### Scheduled Modular Brick Construction Durations

| Elevation           | Size  | Productivity | Duration |
|---------------------|-------|--------------|----------|
|                     | SF    | SF/Day       | Days     |
|                     |       |              |          |
| North Elevation     | 2,582 | 78           | 33       |
| South Elevation     | 4,117 | 94           | 44       |
| West Elevation      | 4,597 | 96           | 48       |
| East Elevation      | 2,976 | 80           | 37       |
| Courtyard Elevation | 2,391 | 159          | 15       |
| -                   |       | -            |          |

#### **Projected Thin Brick Construction Durations**

| Elevation           | Size  | Productivity | Duration |
|---------------------|-------|--------------|----------|
|                     | SF    | SF/Day       | Days     |
|                     |       |              |          |
| North Elevation     | 2,582 | 140          | 18       |
| South Elevation     | 4,117 | 140          | 29       |
| West Elevation      | 4,597 | 140          | 33       |
| East Elevation      | 2,976 | 140          | 21       |
| Courtyard Elevation | 2,391 | 140          | 17       |
|                     |       |              |          |

| Total Duration | 119 |
|----------------|-----|
|----------------|-----|











#### OUTLINE

\_Appendix

# Appendix: Analysis 2

#### Cost

#### **Brick Construction Cost Comparison**

|   | Cost Difference  |        |                           | \$    | 116,974.26 |            |
|---|------------------|--------|---------------------------|-------|------------|------------|
| T | hin Brick Panels | 16,663 | \$                        | 12.38 | \$         | 206,287.94 |
|   | Modular Brick    | 16,663 | \$                        | 5.36  | \$         | 89,313.68  |
|   |                  | (SF)   | (\$/                      | 3F)   |            | (\$)       |
|   | Material         | Area   | Cost per Unit<br>(\$/ SF) |       | Total Cost |            |

$$\frac{43 \ Working \ Days \ of \ Time \ Saved}{6 \ Working \ Days} * \frac{\$1,509,749.46 \ General \ Conditions \ Cost}{20 \ Months} = \$135,248$$











#### OUTLINE

\_Appendix

# Payback- Belkin WeMo

Appendix: Analysis 3

5 Switches \* 24 hours active \* 1.5 W \* 30 days active \* 0.11629 \$ per kWh = \$0.63 $1000 \frac{kW}{kWh}$ 

 $\frac{63.60 \$ per unit * 5 units}{\$25.92 / year - \$7.54 / year} = 17 years$ 

Payback- Nest Thermostat

 $\frac{265 \$ per unit * 1 unit}{\$173 / year} = 2 years$