Building Code Data

Existing LFRS SPSW

Fire Rating – **Composite Deck**

Dead and Live Loads

SAP2000 QP Model

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

INDEX OF APPENDICES

MECHANICAL & ENVELOPE

BUILDING CODE DATA (EXISTING)

- International Building Code 2000
- Business Group B Occupancy (§304, page 24)
- Type of Construction, Type IIIB, Sprinklered
 - 4 Story Office Building
 - Max. Height | 75'-0" (Table 503, page 71)
 - Max. Stories | 5 (Table 503, page 71)
 - Max Allowable Area Per Floor | 53,438 SF
 - 0 hour fire rating required

Similar results for existing classified in IBC 2009

BUILDING INTRODUCTION

PROBLEM STATEMENT

BUILDING CODE DATA (REDESIGN) WITH GLULAM PERIMETER

- - Max. Stories | 5

PROPOSED SOLUTION

• International Building Code 2009 Business – Group B Occupancy

"Floors shall be without" concealed spaces."

• Type of Construction, Type IV (HT) §602.4

– 4 Story Office Building

- Max. Height | 65'-0"

– Max Allowable Area Per Floor | 36,000 SF

– Minimum width and depth used for HT

BUILDING CODE DATA (REDESIGN) [ALTERNATIVE WITH STEEL PERIMETER]

- International Building Code 2009
- Business Group B Occupancy
- Type of Construction, <u>Type IIIB</u> §602.3
 - 4 Story Office Building
 - Max. Height | 75'-0"
 - Max. Stories | 4
 - Max Allowable Area Per Floor | 60,648 SF
 - 0 hour fire rating required

GRAVITY REDESIGN

LATERAL REDESIGN

"…the exterior walls are of noncombustible materials and the interior building elements are of any material permitted by this code."

EXISTING SPSW LATERAL DESIGN

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

CONCLUSION

3/8" Continuous Shear Steel Plate

FIRE RATING – COMPOSITE DECK

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (hours)

	TYPE I		TYPE II		TYPE III		TYPE IV	T	/PE V
BUILDING ELEMENT	Α	В	Ad	В	Ad	В	HT	Ad	В
Primary structural frame ^g (see Section <u>202</u>)	3 ^a	2 ^a	1	0	1	0	HT	1	0
Bearing walls									
Exterior ^{f, g}	3	2	1	0	2	2	2	1	0
Interior	3 ^a	2 ^a	1	0	1	0	1/HT	1	0
Nonbearing walls and partitions Exterior	See Table <u>602</u>								
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section <u>602.4.6</u>	0	0
Floor construction and secondary members (see Section <u>202</u>)	2	2	1	0	1	0	HT	1	0
Roof construction and secondary members (see Section 202)	1 ¹ / ^b 2	1 ^{b,c}	1 ^{b,c}	0 ^c	1 ^{b,c}	0	HT	1 ^{b,c}	0

rating

resistance

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

• $4\frac{1}{2}$ " of NW on unprotected deck required for a 2 hour fire

• Construction Type IIIB requires no floor construction fire

FLOOR-CEILING ASSEMBLIES WITH COMPOSITE DECK

Vulcraft Decks have been tested by Underwriters Laboratories Inc. for their Fire Resistance Ratings. In as much as new listings are continually being added, please contact the factory if your required design is not listed below. The cellular decks listed comply with U.L. 209 for use as Electrical Raceways

Restrained Assembly Rating	Type of Protection	Concrete Thickness & Type (1)	U.L. Design No. (2.3.4)
₃⁄4 Hr.	Unprotected Deck	2 1/2" LW	D914 #
	Emand Orid	0.1.1.1.1.1.1.1	D916 #
	Exposed Grid	2 1/2" NW	D216 +
		2" NW&LW	D743 *
			D703 *
	Cementitious		D712 *
		2 72 INVVALVV	D722 *
			D739 *
			D759
		2" NW&LW	D859 *
			D832 *
	Sprayed Fiber	2 1/2" NW&LW	D847 *
1 Hr.		_ / _ / / / / / / / / / / / / / / / / /	D858 *
			D871 *
			D902 #
			D914 #
		2 1/2" LW	D916 #
	Line water at a di Dis als		D918 #
	Unprotected Deck		D919 #
			D902 #
			D916 #
		3 1/2" INVV	D918 #
			D919 #
	Gynsum Roard	2 1/2" NIM/	DE00 *

MECHANICAL & ENVELOPE

GRAVITY REDESIGN

LATERAL REDESIGN

Unrestrained Classified Deck Type Beam Rating Cellular Deck (5) Fluted Deck 1.5VLP, 2VLP, 3VLP 1.5VL,1.5VLI,2VLI,3VLI 1 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VL,1.5VLI,2VLI,3VLI 2VLP, 3VLP 2,3 Hr. 2VLI,3VLI 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1.5 Hr. 3VLP 2 Hr. ЗVLI 2VLI,3VLI 2VLP, 3VLP 1,1.5,2 Hr. 1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5,2,3,4 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5,2,3 Hr. 2VLI,3VLI 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VLI.2VLI.3VLI 1.5VLP. 2VLP. 3VLP 1,1.5,2,3 Hr. 2VLI,3VLI 3VLP 1,1.5,3 Hr. 2VLI,3VLI 2VLP, 3VLP 1,1.5,2,4 Hr. 2VLI,3VLI 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5,2,3 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr. 1.5VL,1.5VLI,2VLI,3VLI 1.5VLP, 2VLP, 3VLP 1,1.5 Hr.

EXISTING DESIGN - DEAD LOADS

Dead Loads							
Occupancy or Use	Load (psf)						
Floors (typical)	95						
Roof	30						

Breakdown of Floor Dead Loads								
Occupancy or Use	Load (psf)							
Concrete and steel deck	63							
Concrete ponding	8							
Computers	12							
Lights	4							
Mechanical	4							
Sprinkler	3							
Miscellaneous	1							

Provided by Cromwell Architects Engineers, Inc.

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

EXISTING DESIGN - LIVE LOADS

REDESIGN - DEAD LOADS

Live Loads							
Occupancy or Use	Load (psf)						
Floors (typical)	80						
Balcony	100						
Stairs	100						
Mechanical	150						
Sidewalk	250						
Roof Minimum	20						
Snow Load	10						
Ground Snow Load	10						

Breakdown of Floor Dead Loads								
Occupancy or Use	Load (psf)							
Concrete and steel deck	51							
Carpet	1.5							
Computers	12							
SDL (MEP+LTG+Sprinkler)	10							
Framing	10							

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

SAP2000 QUEEN POST MODEL

Axial Load Results

Member	Force	Percent Error (from actual)
Cable	172.97	7.1%
	168.14	
Cable	1	9.7%
Cable	172.97	7.1%
Post	-40.586	3.4%
Post	-40.586	3.4%

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

FLOOR SYSTEM COMPARISON

Potential Floor System	Advantages and Disadvantages
Tongue and groove wood plank	 ✓ Spacing will be an issue
Concrete floor system	\checkmark Additional weight may be of concern
	✓ Would not match architectural style of building
Composite concrete and wood system	 ✓ Intricate calculations required
Steel decking and concrete system	✓ In use in existing building
	✓ Would match redesign of building
Post tensioned slab	\checkmark Not an economical solution
	\checkmark Would have to span in the short distance thus
	decreasing the utility of the post tensioning

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

PROBLEM STATEMENT

BUILDING INTRODUCTION

PROPOSED SOLUTION

GRAVITY SYSTEM SIDE-BY-SIDE

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

Redesigned System

FLOOR-TO-FLOOR HEIGHT

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

Macalloy TechnoTensioner

Macalloy 460 Bar System

Table 1 - Tendon Capacities for Carbon Macalloy 460																
Thread	mm	M10	M 12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100
	inch	3/8	1/2	5/8	3/4	1	1 1/4	1 3/8	1 5/8	2	2 1/4	2 1/2	3	3 3/8	3 1/2	4
Nominal Bar Dia.	mm	10	11	15	19	22	28	34	39	45	52	60	72	82	87	97
	inch	0.39	0.43	0.59	0.75	0.87	1.1	1.34	1.54	1.77	2.05	2.36	2.83	3.23	3.43	3.82
Min. Yield Load	kN	25	36	69	108	156	249	364	501	660	912	1204	1756	2239	2533	3172
	kip	5.6	8.1	15.5	24.3	35.1	56	81.8	112.6	148.4	205	270.7	394.7	503.3	569.4	713.1
Min. Break Load	kN	33	48	91	143	207	330	483	665	875	1209	1596	2329	2969	3358	4206
	kip	7.4	10.8	20.5	32.1	46.5	74.2	108.6	149.5	196.7	271.8	358.8	523.6	667.4	754.9	945.8
Design Resistance to EC3	kN	24	35	66	103	149	238	348	479	630	870	1149	1677	2138	2418	3029
	kip	5.4	7.87	14.84	25.16	33.5	53.5	78.23	107.7	141.63	195.58	258.31	377	480.64	543.59	680.9
Nominal Bar Weight	(kg/m)	0.5	0.75	1.4	2.2	3	4.8	7.1	9.4	12.5	16.7	22.2	32	41.5	46.7	58
	(lb/ft)	0.34	0.5	0.94	1.48	2.02	3.23	4.77	6.32	8.4	11.22	14.92	21.5	27.89	31.38	38.97

MECHANICAL & ENVELOPE

• Building not required to have a fire rating

• Assume a fire occurs on four sides of the member

• Assume member acts purely in compression (a column)

APA – The Engineered Wood Association

PROPOSED SOLUTION

PROBLEM STATEMENT

BUILDING INTRODUCTION

QUEEN POST FIRE RATING

$$t = 2.54 \cdot Z \cdot B \left[3 - \frac{B}{D} \right]$$

GRAVITY REDESIGN

Fire rating of glulam is approximately 1 hour and 15 minutes

LATERAL REDESIGN

MECHANICAL & ENVELOPE

LATERAL SYSTEM LAYOUT

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

Ground Level Only

First and Second Levels Only

All Levels

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

IRREGULARITY

§12.3.2, Table 12.3-1 ASCE 7-10

PROPOSED SOLUTION

BUILDING INTRODUCTION

PROBLEM STATEMENT

Torsional Irregularity				East Side	West Side
		1	Type 1a	-	-
		x-direction	Type 1b	Yes	Yes
		v dimension	Type 1a	-	None
		y-direction	Type 1b	Yes	-
Extreme Torsional Irregularity					

Nonparallel System Irregularity

 $A_x = \left[\frac{\delta_{max}}{1.2\delta_{avg}}\right]$

 $\Delta_a = 0.020 h_x$

X-direction Seismic Loading

	δ EX A + Ext	δ EX B + Ext	δ Average	δ Maximum				Irregularity Type 1a	Irregularity Type
Level 🚽	A (in) 🖵	B (in) 🖵	(in) 🖵	(in) 🖵	A _x	- 1.2(δ Average -	1.4(δ Average -	(Table 12.3-1) 👻	1b (Table 12.3-] -
Story3	0.380	0.244	0.312	0.380	1.03	0.374	0.436	NA	Type 1b
Story2	0.218	0.142	0.180	0.218	1.02	0.216	0.252	NA	Type 1b
Story1	0.073	0.047	0.060	0.073	1.03	0.072	0.084	NA	Type 1b
Controlling Case	E5								

EX A @ (-156.198, -393.277), trace Location 1 EX B @ (-379.546, -319.250), trace Location 3

Level 🖵	A _x	\mathbf{V}_{i} (kips) \mathbf{V}_{i}	e (ft) 🖵	M_z (k-ft) \neg	V _{apply} (kips -						
y3	1.03	186.15	11.26	2162	191.97						
y2	1.02	283.64	11.26	3266	290.03						
y1	1.03	331.55	11.26	3840	341.03						
		Eccentrictity calculated by RAM Frame									
	Shear only from x-direction of case E5, conservative assumption										

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

§12.7.3	Structural Modeling
§12.8.4.3	Amplification of Accidental Torsional Moment 🎺
§12.12.1	Story Drift Limit 🎺
Table 12.6-1	Equivalent Lateral Force Analysis Procedure 🎺
§16.2.2	Structural Modeling \checkmark

Amplification Factor - West Side of Heifer International Center

CONCLUSION

A

IRREGULARITY

ASCE 7-10

PROPOSED SOLUTION

BUILDING INTRODUCTION

PROBLEM STATEMENT

§12.5.3	Orthogonal Combination Procedure (30%/100%)
§12.7.3	Structural Modeling 🎺
Table 12.6-1	Equivalent Lateral Force Analysis Procedure 🎺
§16.2.2	Structural Modeling 🎸

IRREGULARITY

- Type 4 Vertical – Type 5b

§12.3.2, Table 12.3-2 ASCE 7-10

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

In-Plane Discontinuity in Vertical LFR Element X

Discontinuity in Lateral Strength-Extreme Weak Story Irregularity

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

CENTER OF MASS – WEST SIDE

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

CENTER OF RIGIDITY – WEST SIDE

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

CENTER OF MASS – EAST SIDE

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

CENTER OF RIGIDITY – EAST SIDE

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

SEISMIC FORCES

Seismic Shear Summary - West End							
Level	(kips)	(kips)					
Level 3	191.97	185.64					
Level 2	290.03	282.97					
Level 1	341.03	331.21					

Seismic Shear Summary - East End							
Level	(kips)	(kips)					
Level 3	221.73	180.16					
Level 2	329.23	274.77					
Level 1	347.62	325.55					

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

Wind Shea	r
Level	
Level 3	
Level 2	
Level 1	

Wind Shear Summary - East End									
	V _x V _y								
Level	(kips)	(kips)							
Level 3	35.04	47.25							
Level 2	67.36	91.1							
Level 1	63.31	86.02							

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

WIND FORCES

Summary - West End						
V _x	Vy					
(kips)	(kips)					
35.04	53.91					
57.36	103.94					
53.31	98.15					

CONCLUSION

A

MECHANICAL DUCTWORK SIZING

				Max Supply	Min Outside	Return Air	Rounded	Ductulator [®]	Alternative Ductulator®
Mark 🗸	Location 🔻	Services 💌	Type 💌	(CMU) 🔽	Air (CMU 💌	(CMU) 🔻	Max Supr 🗸	Size (in) 🔽	Size (in)
AHU-1E	1st	East	HOR2	6544	2452	4092	7000	25x30	20x38
AHU-1W	1st	West	HOR2	8920	1715	7205	9000	25x36	20x48
AHU-2E	2nd	East	HOR2	11122	1655	9467	11000	25x42	20x55
AHU-2W	2nd	West	HOR2	14403	2839	11564	14000	25x50	20x70
AHU-3E	3rd	East	HOR2	11400	1655	9745	11000	25x42	20x55
AHU-3W	3rd	West	HOR2	14842	2839	12003	15000	25x55	20x75
AHU-4E	4th	East	HOR2	10355	2620	7736	10000	25x40	20x50
AHU-4W	4th	West	HOR2	12503	2811	9692	13000	25x50	20x65
OSA-1E	-	East	HOR2	8400	8400	-	8000	25x32	20x42
OSA-1W	_	West	HOR2	10200	10200	_	10000	25x40	20x50

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

TRANE Ductulator[®] Duct Sizing from Air Handling Units (AHU)

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

THERMAL BRIDGE ELIMINATION

Outsid Alumi Batt I Alumi Inside

Thermal Batt FIBERGLAS® Insulation (Owens Corning Insultating Systems, LLC, 2007) Almaxco ACP Mechanical Properties (Almaxco, 2012)

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

Redesigned HSS Envelope

Material	Depth (in)	R (BTU-in/h-ft ² -°F)	U (1/R)	
de Air Film	-	0.17	5.88	
inum Composite	0.5	0.06	15.86	
Insulation	3	11.45	0.09	
inum Composite	0.5	0.06	15.86	
e Air Film	-	0.68	1.47	
	Sum	12.43	0.08	

HSS Section Batt Insulation HSS Section

GRAVITY REDESIGN

LATERAL REDESIGN

- History of Heifer International
- Character of the Campus
 - Site Circulation
 - Movement on the Site
- Character of Buildings
- Character of the Interior Space

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

In all my travels around the world, the important decisions were made where people sat in a circle, facing each other as equals. – Dan West

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

CONCLUSION

A

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

ARCHITECTURAL GUIDELINE

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

CONCLUSION

A

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

MECHANICAL & ENVELOPE

GRAVITY REDESIGN

LATERAL REDESIGN

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

PROPOSED SOLUTION

BUILDING INTRODUCTION

PROBLEM STATEMENT

TIMBER-CONCRETE COMPOSITE

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

Used with permission from Dr. David Yeoh, Universiti Tun Hussein Onn Malaysia

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

TIMBER-CONCRETE COMPOSITE

SHEAR CONNECTOR AND WIRE MESH

Concrete har Connect

Used with permission from Dr. Peggi Clouston, University of Massachusetts

SHEAR KEY CONNECTION

GRAVITY REDESIGN

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

HILTI AND SHEAR KEY CONNECTION

Figure from Gutkowski et al. 2010

LATERAL REDESIGN

MECHANICAL & ENVELOPE

TIMBER-CONCRETE COMPOSITE

GLUED COMPOSITE MEMBERS

Used with permission from João Negrão, University of Coimbra

CUSTOM LAG BOLT SYSTEM

BUILDING INTRODUCTION

PROBLEM STATEMENT

PROPOSED SOLUTION

Used with permission from Mr. Jim Swenson, KPFF Consulting Engineers

GRAVITY REDESIGN

LATERAL REDESIGN

MECHANICAL & ENVELOPE

