Jonathan Cann Mechanical Option

Advisor: Dr. Treado

Thesis Presentation Outline

Introduction	(1 slide)					
Building Overview	(1 slide)					
Existing Conditions						
ArchitecturalSpacesFloors	(3 slides)					
 Orientation Mechanical System System layout System details 	(3 slides)					
Proposed Alternative	(2 slides)					
 Depth: Ground Source Heat Pump Design and Assumptions Layout Pump/ condenser units 	(6 slides)					
 Breath: Construction Management Schedule Impact Site Layout Cost Analysis 	(4 slides)					
Breath: Acoustics	(1 slide)					
Energy Comparison						
LEEDPayback Period	(1 slide) (1 slide)					
Conclusion	(1 slide)					
Acknowledgements	(1 slide)					
Discussion Slides	(x slides)					

Total= 25 slides

ELEMENTARY SCHOOL ONE

TOWN, MARYLAND

Jonathan Cann Mechanical Option MAE/BAE

Advisor: Dr. Treado

Presentation Outline

Introduction
Building Overview
Existing Conditions
Proposed Alternative

- Mechanical Depth
- Construction Breath
- Acoustical Breath Energy Comparison Conclusion Acknowledgements

Ground Source Heat Pump

Replace the air-cooled VRF condensers to water-cooled condensers.

Couple the water-cooled condensers with a closed loop ground source heat pump.

Presentation Outline

Introduction
Building Overview
Existing Conditions
Proposed Alternative

- Mechanical Depth
- Construction Breath
- Acoustical Breath Energy Comparison Conclusion Acknowledgements

Ground Source Heat Pump

Water-cooled VRF Condenser coupled with ground source heat pump.

- Cooling Load =1,930,000 BTU/h
- Heating Load= 1,100,000 BTU/h
- Well Length = 33,700 ft
- Well Depth= 400 ft
- Number of Wells= 85 wells
- Total Flow = 480 gpm
- Well Flow= 5.65 gpm

	Water			Refrigerant			Air	
	Tin	Tout	GPM	Tin	Tout	GPM	Supply	Return
Cooling	74	83	480	76	50	280	53-55	78-80
Heating	44	36	480	105	89	280	78-81	68-70

Qa	240,500	275,000
Rga	0.23	0.23
Qlc	1924000	1100000
Wc	75,000	75,000
Rb	0.14	0.14
PLFm	1	1
Rgm	0.14	0.14
Rgd	0.12	0.12
Fsc	1.05	1.05
Tg	54	54
Twi	74	44
Two	83	36
Тр	2	2
	732624.5	406015.5
Length	27646.20755	33834.63
Length	27646.20755	33834.63

Cooling

Heating

Jonathan Cann Elementary School One Mechanical Option

Presentation Outline

Introduction
Building Overview
Existing Conditions
Proposed Alternative

- Mechanical Depth
- Construction Breath
- Acoustical Breath Energy Comparison Conclusion Acknowledgements

Site Layout

85 wells @ 15ft spacing = 15,020 ft62 Spaced used = 19,125 ft^2 6.5 in SDR 11 pipe

