
COMMUNITY HOSPITAL OF LANCASTER

WARWICK TOWNSHIP, PENNSYLVANIA

Robert J. Egan The Pennsylvania State University Architectural Engineering Mechanical

PENN<u>State</u>

New Replacement Facility COMMUNITY HOSPITAL OF LANCASTER

Robert J. Eqan Mechanical Design Option Faculty Consultant - James Freihaut

CPEP web address: http://www.arche.psu.edu/thesis/2004/rjel29

Design and Construction Team

Owner - Health Management Associates, Naples FL Architect - Helman Hurley Charvat Peacock, Maitland FL MEPFP - GRG Consulting Engineers, Maitland FL Structural - Stanley D. Lindsey & Assoc., Nashville TN Primary Contractor - Turner Construction, New York NY

Mechanical Systems

Central Energy plant system set for future expansion Six air handling units ranging from 5,065 - 13,980 CFM VAV with hot water terminal reheat Electric Radiant Heat Panels Two 450 ton centrifugal chillers Two 450 ton open cell cooling towers Two 300 HP gas/ oil fired boilers

Structural Systems

Slab on grade foundation Continuous perimeter footing Spot footings at framing base Steel framing with Curtain and load bearing walls

Construction Data

Construction dates ③ Start - October 2001 End - → June 2004 Approx. total cost (not including furniture or medical equip.) \$41 million Building Cost \$37 million Design Fees \$3.5 million Additional Medical Equipment and Furniture Cost \$14.4 million

Multi-tier three story structure Glass and red brick façade 114,000 sq. healthcare facility

Electrical / Lighting Systems

Hospital Service - 4000A 480Y/277V, 3ø Energy Plant Service - 3000A 480Y/277V, 3ø Emergency Generator - 1250kW/1562 kVA providing 480Y/277V

Lighting - Mainly 2 x 4 fluorescent lay-in ceiling fixtures Specialty lighting for O.R. and I.C.U. suites Some wall sconce and canister ceiling down lighting

Special Design Features

Lancaster is home to a high concentration of Amish residents. The hospital design includes some features that comply with the simple life of the Amish including: areas designated for horse and buggies hitching posts shed specifically for the Amish

Building height limited due to close proximity of → Lancaster Airport

Very large entry canopy

Memorial garden outside administration area

Waterside economizer on chilled water plant

Warwick Township, PA

Architecture

Executive Summary

To receive a Bachelor's of Architectural Engineering degree from The Pennsylvania State University, the candidate must write a Thesis and defend it in a presentation before a jury of his / her faculty, members of industry and peers. In the fall semester, the prospective candidate chooses a recently built or renovated building to research throughout that semester. The student learns all aspects of the building including architecture, electrical services, mechanical building systems, structure, delivery method, zoning issues and costs. Throughout the semester the student also submits technical assignments concerning his or her option. These assignments help the student learn the intricacies of the building with respect to their chosen field. At the end of the semester, a proposal is submitted by the student for review by the faculty. This is a proposal for a redesign of the student's building. The redesign consists of a depth in the student's option and at least two breadths in other option areas. The redesign takes the entire spring semester at the end of which all the research, information and results are gathered together and submitted in a Thesis. This is my 5th year senior design thesis.

Community Hospital of Lancaster is in the final stages of construction and will open in the next few months. Over the last eight months I have been studying all aspects of the facilities design, paying particular attention to the mechanical building systems, which is my option. I proposed to incorporate a ground coupled heat pump system to study the feasibility and performance of such a system.

The mechanical redesign of Community Hospital of Lancaster is restricted to the patient rooms on the second and third floors of the south west wing of the building. These rooms are served by a 100% O.A. unit with no energy recovery. 4 pipe fan coils serve each room and are controlled individually by room thermostats. The chilled water cooled 100% O.A. unit conditions the ventilation air down to 54 °F which is then supplied to the Fan coil units in each room. The air is terminally conditioned at the room and mixed with room air.

My redesign utilizes a total energy recovery wheel to precondition the ventilation air using energy harvested from the exhaust air. Just adding the wheel alone reduced energy consumption significantly. Water Source Heat Pumps replaced the 4 pipe Fan Coil Units and a ground water loop circulated through the building. The 200 bore well field is under the adjacent parking lot and provides the necessary heat sink for the WSHPs.

First costs were determined and then compared to annual energy savings to calculate a pay back period for the new system. The period was less than 5 years which is usually a cut off point for many owners. The building was simulated in HAP both before and after the redesign to ensure an unbiased and accurate comparison of the systems. The results were very promising and showed energy costs dropping over 50%. RS Means was used to compare the new and old systems as well to provide accuracy. The new system cost over 20% more than the original design. Some free demo software was used as well to simulate the bore field and estimate the cost of installing the ground loop.

The new WSHPs were selected and their performance data was used to determine the electrical load required by each. Conductors were sized to provide power from the designated panel and the panel was analyzed before and after the redesign. It was determined that WSHPs have a higher electrical demand than fan coils, most like due to the compressor that pumps the heat from one medium to the other.

Since it was determined that the new WSHP would not weigh much different than the fan coils they were replacing, a typical composite floor structure was analyzed instead. A simple redesign of the bay by adding an additional composite beam allowed for the selection of a shallower beam. This structural analysis and the previous electrical analysis are the breadth work of the thesis.

This thesis signifies the culmination of a year long educational project and a six year learning experience.

Table of Contents

		Page
Introduction		4
Project Team		5
Site and Architecture		6
	Site History and Zoning	8
	Major Model Codes	8
Existing Building Systems		9
Thesis Goals		13
Mechanical Redesign and Analysis		14
	Energy Consumption Comparison	25
	First Cost and Operating Cost	26
Electrical Analysis		29
Structural Analysis		36
Summary and Conclusions		40
Acknowledgments		41
References		42
Appendix		43

Introduction

The Community Hospital of Lancaster is a brand new replacement healthcare facility located in Warwick Township, Lancaster County, Pennsylvania. This new, state of the art hospital is located on a 43 acre parcel of land and is to be constructed on some 18 acres of that land. The main hospital structure is approximately 114,000 square feet, with a 3 story, multi-tiered structural design.

The hospital will facilitate a multitude of healthcare functions including MRI, Radiology, Pharmacy, Cardiology, and Neonatal care. The main building also is equipped with Emergency, Intensive care; Operation and Isolation areas. As with most hospitals, administration and inpatient rooms are also part of the facility's function. An attached single story structure is home specifically to Women's Healthcare.

The Mechanical system redesign of the Community Hospital of Lancaster includes utilization of high efficiency geothermal (ground coupled) heat pump systems. A central loop to circulate heat within the hospital building from which unitary room heat pumps will extract and reject heat will also be analyzed. The main electrical panel serving the mechanical systems will be resized (including feeders) to compliment the lower demand due to the higher efficiency of the equipment. An independent structural analysis will determine if beam depth can be reduced significantly by addition of a single member.

ROBERT J. EGAN Mechanical

Project Team

Owner	Health Management Associates
Architect	Helman Hurley Charvat Peacock / Architects, P.A.
Mechanical, Electrical, Plumbing & Fire Protection	GRG Consulting Engineers, Inc.
Structural	Stanley D. Lindsey & Associates, LTD.
Primary Contractor	Turner Construction Company
Landscape Architect	ECOS Environmental Design, Inc.
Civil Engineer	Rettew Associates, Inc.

Site and Architecture

Community Hospital of Lancaster is located on a 43 acre plot of land in Warwick Township, Pennsylvania. The building site is located off of Millport Road, less than a mile NW of Lancaster Airport on PA Route 501 (Lilitz Pike). The airport proximity placed some constraints on the building height and architecture. The new 114,000 ft² facility is virtually inline with the small landing strip at the airport. The rest of the site is surrounded with vast open fields of farming land,

including that of the local Amish farmers, as well as some residential homes. Some businesses are within eyesight of the hospital as well as a small industrial park less than a mile to the south.

The Architecture of Community Hospital of Lancaster is a simple, yet attractive red brick façade with highly reflective glazing. The structure is multi-tiered and is three (3) stories tall at the highest tier. The second and third floor of the south and west wings house semi-private patient rooms including three (3) isolation rooms per wing per floor. The first floor of these wings contains administrative facilities including offices, classrooms; file storage and conference rooms.

The hospital is a full service medical facility and is equipped with an Intensive Care Unit, Emergency Room, Operating Rooms, Radiology, CATH Labs, MRI, CAT scan and an entire centre for Women's Healthcare including Neonatal care. Plans for future phases of expansion include more floor space added to existing construction as well as two separate 20,000 ft² Medical Office Buildings.

One of the most striking architectural features of the building is the large entry canopy, which is noticeable immediately. Emergency ambulance vehicles have a separate entry canopy and the Woman's Centre also has its own entrance canopy as well. The highly reflective blue glass façade helps lower solar gain in the large south facing windows as well as provide a striking contrast to the red brick exterior walls. A memorial garden enhances the grounds to the west of the main building (north side of the west wing) just outside the dining and lounge areas.

Additional noteworthy features of the design are specifically intended to cater to the simple lifestyle of the local Amish population. They include areas designated solely for horse and buggy parking, hitching posts and a shed specifically for the Amish.

Site History and Zoning

The 43 acre site on which CHOL is being built is formerly used for farming. Agricultural use of the land is apparent due to the large number of farms within eyesight of the construction. The site is currently Zoned I-2 Campus Industrial because of the hospital construction and has to meet the local Warwick Township Zoning Ordinance.

Community Hospital of Lancaster is designed to be a replacement facility for the aging CHOL located in downtown Lancaster City.

Major Model Codes

AlA Hospital + Healthcare Facilities - 2001 BOCA - 1996 International Mechanical Code - 1996 International Plumbing Code - 1995 National Fire Protection Agency - 2002 National Electric Code - 2002

Existing Building Systems

Mechanical

The existing (designed) mechanical system for the Community Hospital of Lancaster consists of a centralized cooling and heating system. During the cooling season, heat is rejected from the

hospital campus via secondary chilled water loop which is pumped from the central energy plant (CEP) building. Two (2) 450 nominal ton centrifugal chillers extract the heat from the chilled water loop and reject it through

two (2) 450 ton open cell cooling

towers via the condenser loop. The system is also set up to take advantage of low temperatures by use of a 300 ton (3600 MBH) plate frame heat exchanger. The heat exchanger is designed to bypass the chillers when outdoor air temperatures fall below 55°F, thereby saving energy. Heating is provided by the CEP as well, which utilizes two (2) 300 HP gas / oil fired boilers. A separate hot water loop on which the boilers are set in parallel to provides the necessary heating, reheat and terminal heating.

Six (6) chilled water air handling units (AHUs) and twelve (12) chilled water rooftop units (RTUs) supply a total of 175,000 CFM re-circulated and conditioned fresh air to all the spaces of Community Hospital of Lancaster. All of the AHUs and RTUs (with the exception of AHU 5) precondition ventilation air with return air before entering the cooling and heating coils. A "Mee Fog" system is incorporated into some of the air systems to increase the humidity of the conditioned supply air in dry winter months. AHU 1 serves a VAV system which supplies air to the Administration, business and educational areas of the hospital. AHU 2

serves the Pharmacy and nearby open areas. AHU 3 serves the 2nd floor nurse station as well as open areas including second floor hallways. AHU 4 provides air for the Intensive Care unit on the 2nd floor. AHU 6 supplies the 3rd floor nurse station and open areas including hallways. AHU 5 is a 100% O.A. unit that serves Patient and Isolation rooms on the 2nd and 3rd floors of the south west

Robert J. Egan Mechanical

wing. Each room served by AHU 5 has a 4-pipe fan coil unit (FCU) which mixes the supply air with room air and is controlled by an individual thermostat in each room.

The RTUs serve the rest of the hospital spaces. RTU 1 serves Outpatient Holding while nearby RTU 2 supplies air to the Emergency Room. RTUs 3 and 4 are paired together to serve the Radiology Department. RTUs 5 and 6 are similarly paired together to serve the Operating Room. The Clinical Labs & Offices, General Storage, Kitchen and Restaurant are individually served by RTUs 7 thru 10 respectively. RTUs 11 and 12 are paired and serve the Women's Centre.

Electrical

Two main panels draw from the local utility, one at 4000A 480Y/277V 3ø the other at 3000A 480Y/277 3ø. The first panel is dedicated to the main hospital building, which includes the Woman's Pavilion. The second serves the central energy plant building and off its equipment including the cooling towers. The main hospital panel serves 10 separate panels without stepping down in voltage. From those 10 distribution

panels, the power is then distributed and stepped down as needed via dry type transformers. The central energy plant panel serves a multitude of mechanical and life safety systems. The plants main panel serves a multitude of secondary panels and is stepped down as needed for specific apparatus. Both the hospital panel and the energy plant panels are tied together and are set to receive emergency

power from a 1250kW/1562kVA Diesel Generator to keep life support systems functioning at all times. Multiple surge suppression devices are located on each major panel to ensure safety of the system from overload.

Lighting

Lighting mainly consists of 2x4 ceiling inlay fluorescent light fixtures with 32W lamps. This lighting is present in virtually all spaces of the hospital however wall sconces and directional ceiling canister lighting is used to highlight certain wall areas or desk areas. The lighting becomes very specialized in the surgery, intensive care and neonatal care zones of the hospital. This type of lighting was not within the specs of the MEPFP engineer and is under the design of a healthcare facility specialist.

Structural

Main hospital building has rigid frame construction with 8 inch slab on grade concrete. Steel structural columns are supported by rectangular concrete footings. Wide flange structural steel, beams, girders and columns with some load bearing concrete and masonry walls. Floor framing consists of 5 ¼ inch lightweight concrete slab resting on composite metal deck supported by wide flange steel beams. Fenestration is curtain wall construction tied into steel framing.

Project Delivery Method

The Community Hospital of Lancaster used the traditional Design - Bid - Build method.

Fire Protection

Passive fire protection systems include spray on fire proofing of all steel structure, fire retardant paint and fire rated doors and finishes. Active fire protection consists of a wet and dry pipe sprinkler system. Water is supplied from local utility and is boosted by a 1000 GPM electric fire pump. Fire pull alarms are located throughout facility and smoke and heat sensors monitor conditions as part of a pre-action suppression system.

Transportation

The building is multi-tiered, with the largest tier standing at 3 stories. 4 independent piston driven elevators allow ADA passage between all floors. Stair wells provide access and egress from each floor.

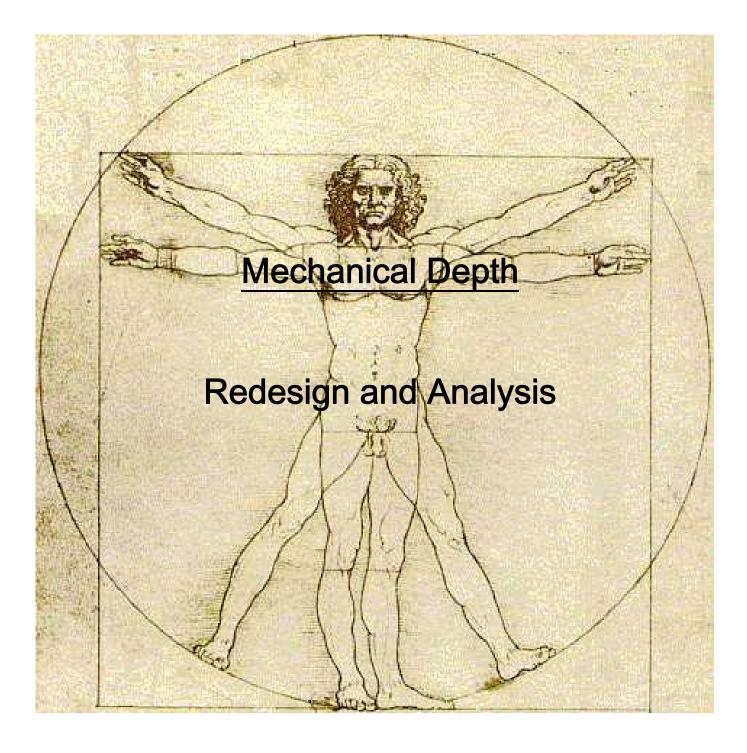
Telecommunications

Community Hospital of Lancaster utilizes intercom and P.A. systems as well as inside/outside line phone systems. Data, T.V. and voice ports are present in every patient room and at all nurse and office stations. Monitoring systems for patient rooms as well as security are present throughout the facility. Medical gas pressure monitors, water pressure monitors and I.A.Q. (CO2, CO etc...) monitors are located in all zones where applicable. Fire safety monitors and alarms (including pull stations and strobes for the visually impaired) are installed to work with the pre-action fire suppression system and alert local fire departments.

Special Systems

Specialized patient monitoring systems including biological (heart, kidney ...etc) as well as security monitoring systems (electronic and magnetic door locking, key card readers, etc...) are installed in CHOL. Medical Gas and air flow sensors and monitors are also included. There are also specialized monitors for Radiology, neonatal care, Magnetic Resonance Imaging and similar equipment.

Thesis Goals


The goals of my 5th year Architectural Engineering Senior Thesis are as follows:

- $\sqrt{}$ Apply the knowledge, experience and skills I have learned and acquired during my studies at The Pennsylvania State University as well as summer internships.
- $\sqrt{}$ Illustrate my understanding of building mechanical systems, their design, function and use.
- Illustrate my understanding of other building systems including structural, electrical and construction management.
- $\sqrt{}$ Learn useful knowledge from my research about ground coupled heat-pumps, including how they function, proper application and efficient design.
- Apply the knowledge gained from my thesis research and combine it with previous knowledge to design an efficient mechanical system for the Community Hospital of Lancaster which utilizes the beneficial features of ground coupled heat pump loop systems.

Mechanical Analysis

Scope

The scope of my mechanical redesign will include the 2nd and 3rd floors of the SW hospital wing which includes Semi-Private, Private and Isolations rooms. This area was chosen because it will provide a realistic venue for Water Source Heat Pump application. In addition, it is in close proximity to large parking areas beneath which the Ground Loop heat exchangers will be located. Also, the area is served by a 100% O.A. unit which will be analyzed for possible heat recovery. Each Patient Room has an exterior wall that is largely fenestration, and will affect room loads depending on room location and orientation.

Introduction

The scope of my mechanical redesign and analysis includes only the 2nd and 3rd floors of the SW wing of Community Hospital of Lancaster. Specifically, it will include 60 semi-private and private patient rooms. The isolations rooms are left out of the analysis because they require direct exhaust and therefore cannot participate in the energy recovery analysis. The 60 spaces total 19,380 ft² or approximately 17% of the total hospital floor area.

The current design includes a chilled water cooled 100% O.A. unit which supplies conditioned ventilation air only, at 54°F which is ducted to each room's 4-pipe fan coil unit (FCU). The FCU combines room air with the supply air and terminally conditions it via cooling and heating coils to the room set point. Each FCU is governed by a thermostat located in its respective room. Room air is removed via the room's negatively charged toilet exhaust which is ducted to a roof mounted exhaust fan. The air is not re-circulated to prevent the

possibility of cross contamination. The existing design will deliver fresh conditioned air to each space effectively and properly. The goal of the redesign is to utilize the efficiency of Water Source Heat Pumps (WSHP), in addition to an Energy Recovery wheel, and to reject / harvest the heat energy to / from the constant ground temperatures of the earth. It is anticipated that proper use of these systems will result in considerable energy savings and reduce operating costs.

Design Requirements

Patient rooms must be kept at an acceptable temperature and humidity 24 hours a day, 7 days a week, 52 weeks a year. It is imperative that adequate fresh air is brought into each room and

additionally that room air not be returned to the supply ducts to prevent any possibilities of cross contamination of spaces. Each room must have the ability to control the room air temperature. Ventilation air must be properly filtered to prevent against outside contaminants being introduced into the patient rooms.

Design Conditions

Temperature Setpoints	db (°F)	wb (°F)
Cooling Supply Air	55	54
Heating Supply Air	55	54
Room Set Point Cooling	75	
Room Set Point Heating	70	
Design Summer Outdoor Air	92	74
Design Winter Outdoor Air	29	

Design Conditions from ASHRAE Handbook 2001 Table 1A

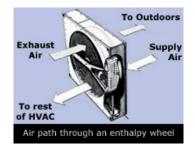
Design Concept

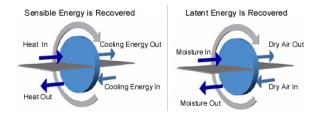
My design concept follows a simple proceedure. First use a total energy recovery wheel (also called enthalpy wheel) to transfer heat and moisture between the exhausted room air and the incoming ventilation air, thus preconditioning it and lowering the load on the cooling and heating coils. This simple change can have a large effect on the energy consumption of the 100% O.A. unit. Secondly, replace each room 4-piple FCU with a water source heat pump (WSHP). The WSHP will reject and harvest heat energy from a water loop which is to be installed in place of the 4-pipe chilled water / hot water loop. Lastly, install a field of vertical ground heat exchangers under the nearby parking area to reject / harvest heat energy from the earth. The WSHP and water loop system will have a much higher efficiency than the traditional terminal FCUs.

The new mechanical equipment consists of a 30 Ton 100% O.A. AHU equip with an enthalpy wheel, sixty (60) one ton WSHP and a 200 bore closed ground loop heat exchanger (including all the piping associated with it). Mechanical equipment removed from the previous design will include the simulated original 50 ton 100% O.A. unit, sixty (60) one ton 4-pipe FCUs (including the chilled and hot water piping).

Three scenarios will be simulated by Carriers Hourly Analysis Program (HAP 4.2). The first simulation will be run of the existing system only including the 60 private and semi-private rooms. The second simulation will consist of the simulated original system, with the inclusion of an enthalpy wheel. The third and final simulation will be of the new design which will include the use of an enthalpy wheel and sixty (60) WSHP units.

The results of the three energy analysis will be compared for energy savings. A first cost analysis of each of the three scenarios will follow.




Energy Recovery Wheels (Enthalpy Wheels)

Energy recovery wheels are usually associated with 100% O.A. units because of the wasted heat energy from exhausting air instead of re-circulating it to precondition the ventilation air. When exhaust is passed through the energy wheel, heat and moisture can be extracted a liquid desiccant that covers fins inside the wheel (or deposited depending on the season) and

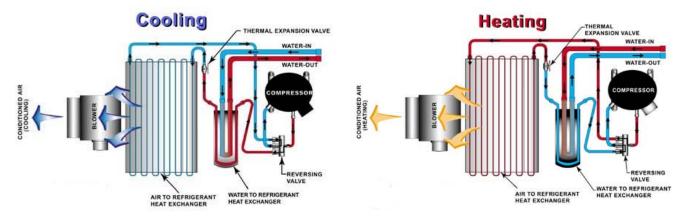
then deposited (or extracted) into the incoming stream of outdoor ventilation air. It's a simple concept that can save considerable energy. Community of Hospital of Lancaster does not use this energy saving device despite having ducted exhaust air from the patient rooms. Oddly enough, the vertical exhaust ducting to the roof is very close to the 100% O.A. AHU. Upon further investigation, I was informed by the MEP that the system was originally designed to support an energy wheel; however the Owner chose not to use the device fearing cross contamination.

This is not a new concern when dealing with energy recovery wheels. To combat any possibility of cross contamination, a purge cycle has been introduced. The purge cycle is a small wedge of

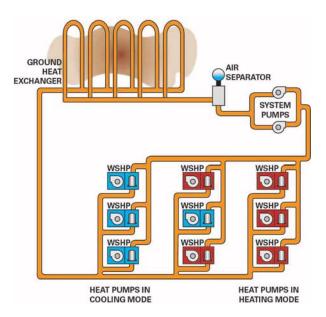
the wheel that takes fresh incoming outdoor air and "purges" the section of the wheel that is about rotate into the supply air stream. This ensures that the supply side of the wheel is always uncontaminated.

Water Source Heat Pumps (WSHP)

Water source heat pumps are not new in the HVAC industry. They have been around for nearly 40 years and continue to be made more efficient and effective. WSHP consist simply of a fan, a coil, a refrigerant loop, a compressor and are connected to building water loop. The fan coil units that are currently installed in CHOL have a 4-pipe system. This means that there are two (2) coils, one for heating and one for cooling. Those coils are fed by hot water (heating coil) and chilled water (cooling coil) and condition the air using one or the other (sometimes both). A WSHP has only one coil and uses only one water loop to perform the necessary conditioning. If heating is called for, the WSHP will extract heat from the building water loop using an evaporation cycle and then condense the refrigerant in the coil to reject the heat into the air stream. If cooling



PENNSTATE


is called for, the process is exactly opposite and heat is rejected into the water loop. It's a simple process and is very efficient.

Ground Coupled Water Loop

In many WSHP building water loops, heat is rejected / extracted from the outside air using a cooling tower. In a growing number of other cases, the water loop exchanges heat with the earth. There are essentially two (2) ways the water loop can do this. One is the water loop can exchange with a surface body of water, like a spring fed lake or a river / stream. Even the ocean can be used. The other is with ground water. The ground water can either be an underground aquifer or the water inside the pores of the surrounding soils. An open loop can be used when dealing with bodies of water and underground aquifers. This loop draws water from one area,

passes it through the building directly or uses a heat exchanger of some type (plate frame, water to water heat pump, etc...) and then deposits the rejected water at a different location. A closed loop can also be used with these bodies of water, but it is the only system that can be used with a horizontal or vertical system. A closed system uses the same water in a continuous loop. Heat is exchanged to the earth via horizontal or vertical bore fields of heat exchangers.

ROBERT J. EGAN Mechanical

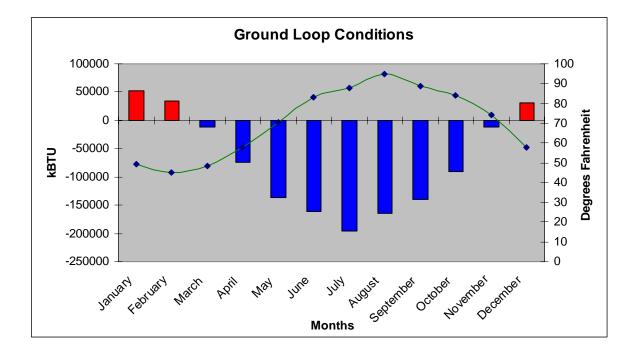
The benefits of these systems include relatively constant ground temperatures, unlike outdoor air which can vary greatly throughout the year. Also the systems can be far more efficient than traditional rejection systems if designed properly. They require just enough energy to pump the water through the loop. In the past, first costs have been prohibitive; however in recent years the cost has dropped substantially and systems have been designed to be even more efficient. In some cases there is virtually no first cost difference between ground loop systems and traditional HVAC systems. Energy cost savings can be substantial.

Design Procedure

In order to compare the existing system with the proposed system, I chose to model them utilizing Carriers Hourly Analysis Program (HAP). I was able to obtain much of the design data used by the MEP engineer and entered it into HAP so that I could simulate the existing design accurately. Because my redesign does not include the isolations rooms, I had to simulate the loads of the 100% O.A. unit and FCUs in only those 60 spaces. I chose not to include the isolation rooms for the simple reason that the exhaust from these rooms is directly ejected outside because of the

potentially harmful contaminated and disease that might be present in the room air. Therefore, I only sized and simulated the system for what it would be if it only served the 60 spaces included in the analysis. Therefore, I simulated 60 individual zones on the system and my original design 100% O.A. unit sized at 50 tons and my ventilation air is 5981 CFM. This system had a max heating load of 280 MBH.

The first redesign step was quite simply to add an energy recovery wheel to the existing system. I was curious how much load would be taken off of the system with this simple addition. I choose a wheel, using SEMCO's Wheel selection procedure, with an effectiveness of 84% and .41 in. wg. pressure loss. With the energy wheel, the cooling coil load dropped to 41.4 tons and the heating load dropped to 86.6 MBH. This means with a simple energy wheel addition, cooling and heating loads on the 100% O.A. unit dropped 17% and 70% respectively. In the energy cost analysis we will see that this wheel alone pays for itself in less than one year.



For my ultimate redesign, I inputted a WSHP in each zone and was sure to set the supply air temperature to the same 55°F that was supplied by the original FCUs. The energy recovery wheel was used as well to maximize the efficiency of the design. Since HAP does not have a specific analysis for a Ground Coupled heat loop, I chose to use the open loop surface water option for analysis. In doing so, I was able to input a water loop temperature for each month of the year. This temperature affects the efficiency of the heat pumps and is very important to get an accurate simulation.

To choose the temperatures I assumed that the water temperature would fluctuate between 40 and 95°F between the heating and cooling seasons respectively. The bottom of the sine curve occurs just after the peak of the heating season (40°F) and the top of the curve occurs just after the peak of the cooling season (95°F).

To determine the loop temperature I used HAP load outputs to determine the heat energy range between the largest cooling month and the largest heating month. Every month in between those two peaks is a percentage of that range. The temperature would be proportional to that month's percentage of the range.

	Loop
	Temp (°F)
January	49.2
February	45.0
March	48.6
April	57.9
May	70.5
June	83.3
July	88.0
August	95.0
September	88.7
October	83.9
November	74.0
December	57.9

Using these temperatures, HAP can account for the change in efficiency due to the swing in loop water temperature. The simulation showed a considerable drop in the cooling coil load to 27.5 tons, which is 45% smaller than that of the original design. This will allow for a smaller 100% O.A. unit to be chosen as well as increase the overall efficiency of the entire system. Each WSHP was sized at just over ½ ton. Due to the CFM requirements, I chose a 1 ton Trane unit for each of the spaces.

To size the vertical ground loop exchanger, I utilized free software found on the Geothermal Heat Pump Consortium website. The program called GS Heat Pump Design KISS (keep it simple & solid). It is found as a demo version on <u>www.geokiss.com</u>. The program allowed me to use block loads from my design cooling and heating days in combination with Annual Equivalent Full Load Hours to determine the necessary performance of the field. I was also able to determine the shape of my field (L x W) as well as the configuration for my ground loops. Soil conductivity and ground water temperature were also parameters that could be set by the user.

For my exchanger field I chose 5 inch diameter wells in a 20 by 10 pattern. My exchanger pipes will be 2 ¼" in diameter. The 200 well exchanger field will be located in close proximity to CHOL's south west wing, where the Patient rooms are located. The bores will be spaced 20 ft apart and have a duel exchanger per loop configuration. This means that loop water will travel into the ground twice before entering the return (building supply) header pipe. The ground temperature was set at the researched value of 52°F.

ROBERT J. EGAN MECHANICAL

According to the GSHPD my well will have to be 752 ft deep per bore. This is a total of 150360 ft of bore. This is based on the worst case scenario for cooling. The necessary length of exchanger is determined by the following two equations.

Length required for cooling

 $L_{c} = \frac{q_{a}R_{ga} + (q_{lc}-3.41^{*}W_{c})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{T_{g} - ((t_{wi} + t_{wo})/2) - t_{p}}$

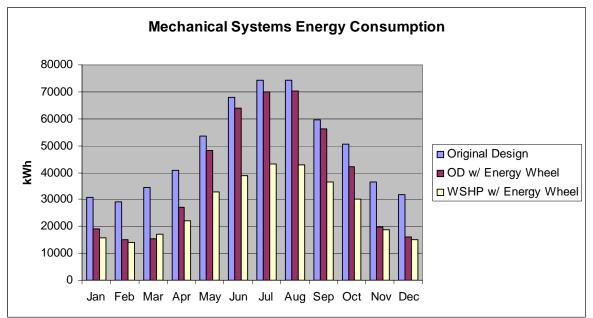
Length required for heating

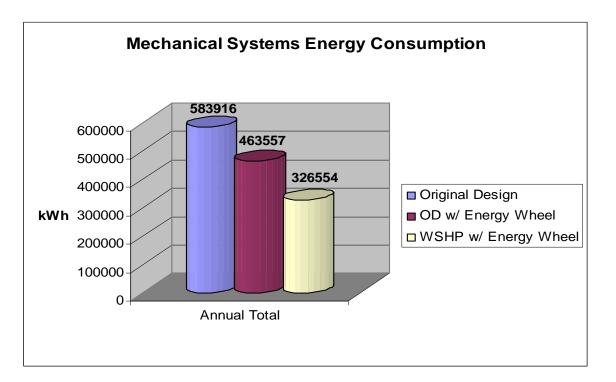
 $L_{h} = \frac{q_{a}R_{ga} + (q_{lh}-3.41^{*}W_{h})(R_{b} + PLF_{m}R_{gm} + R_{gd}F_{sc})}{T_{g} - ((t_{wi} + t_{wo})/2) - t_{p}}$

These formulas were found in the 2000 ASHRAE System and Equipment Handbook

The larger of the two values governs the bore length. Divide the total bore length by the number of bores to determine how deep each bore must be. This value is given by the program as a worst case scenario, meaning little ground water movement. A second value is given if the ground water movement is considerable to high. In this particular case, the bore length dropped to 76410 ft of bore or 383 ft per bore. This is a 50% drop in bore length. A third value given is the hybrid bore value.

A hybrid system would make use of both ground coupled heat exchangers as well as water to air cooling towers. Essentially, this system would reject and harvest the same amount of heat energy per year. This would prevent soil temperatures from rising over time. All of the excess heat from the loop would be rejected via the cooling tower. The bore length for a hybrid system is 21870 ft. or 109 ft. per bore. Of course in a system like this you would vastly decrease the size of the vertical loop field. The field could be realistically downsized to 40 bores.


ROBERT J. EGAN MECHANICAL



Energy Consumption

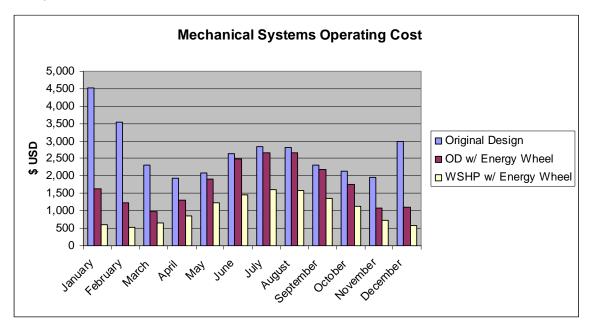
A comparative analysis was performed in HAP. The results of this analysis show that a WSHP consumes far less energy than the other two systems, especially the original design. The combination of WSHPs and an energy recovery wheel prove to be the most efficient design from an energy standpoint consuming over 60% less energy.

First Cost and Operating Costs Analysis

The two major costs associated with mechanical systems are first cost and operating costs. Using the 2003 Mechanical Cost Data edition of RSMeans, I estimated what the current system components would cost and then estimated the installed components for the new WSHP and ground loop. Since RSMeans does not specifically address ground loop systems, I utilized a program written by the University of Alabama call the Geothermal System cost estimator. This includes all HDPE piping, headers as well as drilling and back filling costs. The pump, which was sized by the GS Heat Pump Design (geokiss.com) was priced using RSMeans and will circulate the loop water.

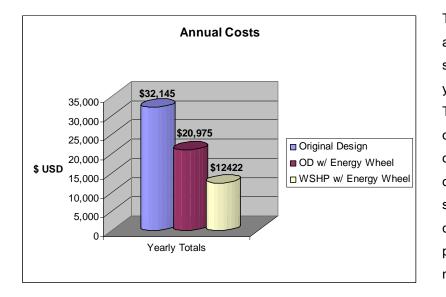
Original Des	sign		WSHP with Energy Whee	əl
50 Ton 100% O.A.unit	\$	140,600	30 Ton 100% O.A. unit \$	126,600
			Enthalpy	10,200
60 Fan Coil Units		91,578	60 WSHP	138,000
			30 HP ground loop pump	18,600
Stainless Steel Piping		113,380	Estimated ground loop field	125,000
			Used Geothermal Systems Cost estimator	
Total	\$	345,558	\$	418,400

It's obvious from the above table that a WSHP system utilizing a ground loop is still quite expensive. The difference between the two first costs is approximately \$73000 which is a hefty 21% increase over the original design. While this is a considerable amount of money, it would be wise first to check the cost break down of the energy analysis simulation. The WSHP system and accompanying ground loop should be very efficient and cut the operating costs considerably.



Operating Costs

Utilizing Carriers Hourly Analysis Program (HAP) I was able to obtain a cost breakdown for the three different designs. The original design had Mechanical Operating costs of around \$32,000 dollars. With the addition of the Energy wheel, the costs dropped dramatically to around \$21,000 dollars. Because of the efficiency of reclaiming the heat and moisture from the exhaust, there was incredible savings in the cooling months of the year. When compared with the cost of the enthalpy wheel (\$10,200) we see that the payback is one year, after which the savings can accrue. In all cases the WSHP and Energy wheel fell well below the operating costs of the other two systems.

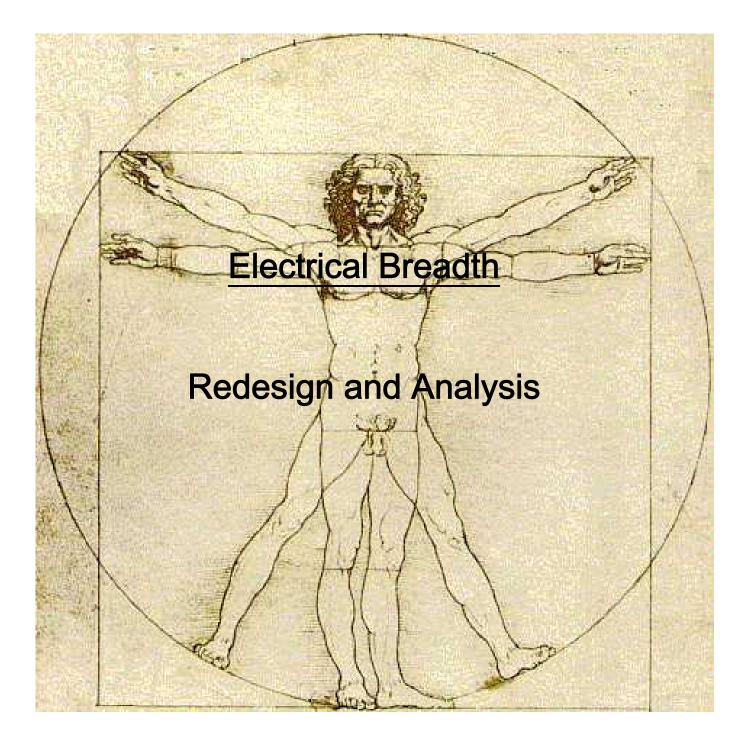


ROBERT J. EGAN MECHANICAL

The WSHP, energy wheel and ground loop design save about \$20,000 a year in operating costs. This represents an operating cost reduction of nearly 62% from the original design. With some simple division we can roughly calculate the payback period of the new design.

\$73000 / \$19723 per year = 3.7 years payback

Mechanical Analysis Conclusion


Ground Source Heat systems are incredibly efficient. Despite a 20% jump in initial first costs, the new design was still able to have a relatively quick payback because of the huge increase in energy savings. One aspect of the analysis, which is particularly noteworthy, is how the enthalpy wheel paid for itself in less than one year's time. Energy recovery wheels are a very simple and proven tool when it comes to heat recovery. It is easy to understand the worry about cross contamination from the energy wheel, however, with the purge cycle and designing the intake to be blow thru and the exhaust draw thru a pressure differential is created which prevents any exhaust air from entering the supply side.

This analysis provided a great deal of knowledge involving Water Source Heat Pumps, building water loops and of course Ground coupled heat exchangers. It is a simple technology that needs to be made further use of. Whenever possible this type of system should at minimum be explored and considered. In a time where fuel prices are rising rapidly and air quality is an issue, ground loop exchangers will be explored and perfected further.

Electrical Analysis

Scope

The scope of electrical analysis is the electrical service to the water source heat pumps. Two sub panels (2Q/A and 3Q/A) currently serve the existing Fan coil units. Panel 2Q/A serves the 30 FCUs on the second floor and panel 3Q/A serves the 30 FCUs on the third floor. The analysis will examine how the new WSHPs affect the loads on each panel.

The use of Water Source Heat Pumps in place of the 4-pipe fan coils will vary the power requirement for each space. Fan coils draw load for the delivery fan inside the unit. A Water source heat pump has a fan as well as a compressor to run the evaporation and compression cycle which "pumps" heat from either the air, or the building water loop. Since WSHP were not part of the original design, we will need to incorporate them into the power supply.

I have selected a Trane heat pump model number GEH 012. According to the manufacturer's Electrical performance data, this model has a Total Full Load Ampacity of 12.2, when drawing from a 115 V power supply at 60 Hz and single phase. The National Electric Code, the governing electrical code for the Community Hospital of Lancaster, specifies that a "branch circuit conductor that supplies a single motor in a continuous duty application must have a rating of 125% of the full load current. This percentage rating will be used as the design ampacity.

NEC 310-16 was used to size the conductors. Copper thermoplastic wire (THW) was chosen for the conductor and size kcmil 14 was selected. Conduit sizing was obtained from NEC Table C1. Metallic tubing was chosen as the material for the conduit and size 16 (1/2" dia) was selected. Circuit breaker maximum sizes were specified as 25 amps in the manufacturer's data. However a simple calculation yielded 20 amps as an appropriate size.

12.2 * 1.25 = 15.25 A 12.2 * 1.75 = 21.35 A The breaker has to be larger than 125% but less than 175% of the rated capacity. = 20 A

The following table provides all of the values for the Typical WSHP included in this design.

Voltage	HP	Full Load Current	VA	125% Amperage
115/60/1	1/6	12.2	1753.75	15

175 % Amperage	Circuit Breaker	Conductor	Conduit Size	
21.35	20	#14 THW	16 (1/2")	

Panel Boards

The two panel boards directly affected by the new mechanical systems are panels 2Q/A and 3Q/A. They are each fed by panel 2PQ/A and 3PQ/A respectively. Prior to the redesign, each panel had relatively low loads on them. Panel 2Q/A read 79 adjusted amps and panel 3Q/A showed 64 adjusted amps. The panel schematics follow, first with each original design and then with the redesign.

The existing design combined two Fan Coil units on to many of the breakers. The breakers were sized at 15 Amps single phase. Each FCU had a 696 VA load. Many of the breakers served a circuit in which two fan coils were present. From the table above, it is apparent that the WSHPs are drawing much more load. Each WSHP has a 1753 VA design load. This is well over twice the previous design. Due to this, there is no opportunity to pair up circuits as was possible with the FCUs. In addition, the fault protection had to be upgraded to a 20 Amp breaker. Panel 2Q/A now shows a load of 159 adjusted amps and like wise Panel 3Q/A now show a load of 151 adjusted amps. This is a substantial increase from the previous design, however each panel has a BUS Rating of 225 A. I was unable to determine what the design conductors were for the panel however I would assume that they are sized for 225 A. Using THW as the conductor wire, the necessary size would be 4/0 kcmil.

Electrical Analysis Conclusion

As expected, the Water Source heat pumps put a greater load on the local panel. Due to the larger draw of the new equipment, I would suggest that another panel be added if possible to support specifically the function of the heat pumps. The panels appeared to be quite maxed out and would realistically need to be made larger if this system were to be put in place.

						PA	N	EL	20	A/C						
					VOLTAGE 208Y/120V/ BUB RATING 225 A MAIN: 150 A MCB	SPH.4W					10k AIC RATH 46/20 1:48 /	04				
Ĩ	LOAD (VO	LT AMPS)		CN KO		CB	P	HAS	BE	CB	LOAD SERVED	OLT AMPS	0			
LTG	REC	MOTOR	HEAT	T.		AMP/P	A	0	C	AMP/P	1	T	LTG	REC	MOTOR	HEAT
100.00		1392	Same	1	FCU	15/1		7		15/1	FOU	2	1.000	10000	1382	8-12-6
		1392			FOU	15/1	-	•	-	15/1	FOU	1.4			1392	
	_	1392	_	_	FCU	15/1	-	-	٠	15/1	FOU	8			1392	1
		1392		1	FCU	15/1	Ľ.		-	15/1	FOU		- 1	1	1382	
		696 1392			FCU FCU	15/1	1	1	1.	15/1	FOU	10			1382	
	-	1392	_		FCD FCU	15/1	÷	-	-	15/1	Fou	14	_	-	1392	<u> </u>
		1392			FCU	15/1				20/1	SPARE	15			5396	
		1976			SPARE	15/1			4	20/1	SPARE	18				
-	-	696	-		EF-15	15/1	-	-		15/1	FCU-8	20	-	-	696	-
		895			EF-18	15/1				15/1	EF-9	22			528	
					SPARE	15/1					SPACE	24				
_	-	695			EF-40	15/1	1	-	-	15/1	EF-60	26	-		864	-
		864			EF-48	15/1	-		-	15/1	EF-61	28			864	
		864		29	EF-49	15/1	1.1			16/1	EF-62	30		c - 2	686	
	<u> </u>	696			EF-64	15/1	4	+	-	20/1	SPARE	32				
				33	SPARE	20/1		+	-	20/1	BRARE	34				
		1 1		35	SPARE	20/1		\mathbf{r}	+	20/1	SPARE	36		2 8		
				37	SPARE	20/1					SPACE	36				
		I I		39	SPARE	20/1	-	•	+		SPACE	40				
			_	41	SPARE	20/1	-	+	٠		BPACE	42		5		
16		· · · · · ·		FEE	DER SIZE: SEE ONE LIN	E DIAGRAM	÷.,			LLM STORY ALL				3 - A		8 1
0		14952		i				110			e appropriate:		.0			2 1
	SUBT	OTALS		MOL	FROM PANEL 2PQ/A INTING: SURFACE ATION: ELEC. EQUIP: 250				_	200 % N FEED-TH SHUNT 1 OUTDOO	ON GROUND BUS EUTRAL IRU LUGS IRUP MAIN CB DR EINCLOSURE ISS STEEL COVER			ः । ५७८ १	TOTALS	
				FOO	TNOTES:							- 4			10000	
				1.11	(1) = SHUNT TRIP CB	22						- 1	0.5		TOTALS	
	1.1.1.1.1	2020		1	(2) = GROUND FAULT C		11	10.2	202	010301		- 4	0		28344	
LTG		LOADING	10.14	-	(3) = DEMAND FACTOR	FROM NEC	; 70	AF	anc.	LE 220	LOOMERATTE SUL TAT		LTG	REC	MOTOR 28.34	HEAT
	the second se	MOTOR 12000	and the second se	-	PHASE A	-					CONNECTED KVA TOT DEMAND FACTOR	ALS	0.00	0.00		0.0
0	_			-	PHASE B	-					ADJUSTED KVA TOTAL		1.25	0.00	1.00	0.0
0	-			-	PHASE C	-					TOTAL CONNECTED K		28.34	1/1	20.34	0.0
-	A.	R	~	1	Prince to	-					TOTAL ADJUSTED KW		28.34	9		
	12000	9216	7128		TOTALS						THREE PHASE VOLTA		206	9		
	12000	3610			LANCASTER C.H.						TOTAL PANEL	-	640	21 - C		
					20254.00						ADJUSTED AMPERAGE		79			

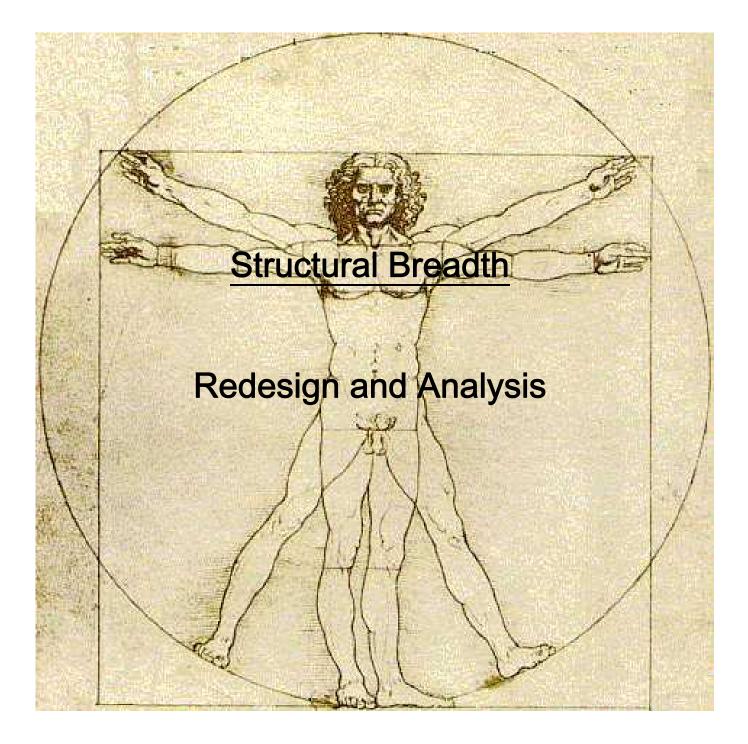
Original Design

0 0 8352 0 PHASEA DEMAND FACTOR 1.25 (3) 1.00 1.0					E		P/	٨N	EL	30	A/C		10.0	1				
LIG REC MOTOR HAT T LOAD SERVED KO LOAD SERVED KO LOAD VOLT AMPS) LTG REC MOTOR HEAT T FOLA 1011 F-28 2 LTG REC MOTOR HEAT 4 668 3 SRARE 2011 - - 1151 F-28 2 LTG REC 93 6 864 7 BF32 1511 - 1511 FOU 10 6 864 864 1 SRACE 1511 FOU 10	8					BUB RATING: 225 A	PH.4W	7900 2	113	- 4	6282)	4/5/20	04					
0 0 0 1 PCU-4 PCU-4 PCU-4 PCU-4 PCU-4 PCU	LTG REIC MOTOR 898 898 898 898 898 898 898 1392 139			LOAD SERVED	CB	P	HAB	BE	CB	LOAD SERVED		1-3	LOAD (V	OLT AMPS)				
- -	LTG	REC		HEAT	T	and the second s		1	0	C			T	LTG	REC		HEAT	
Image: constraint of the state of			696								15/1							
064 7 II-32 15/1 * - 13/1 FOU 13/2 <th13 2<="" th=""> <th13 2<="" th=""> <th13 2<="" th=""></th13></th13></th13>							20/1	+	•	-								
Image: state in the s			-					-	+	٠				· · · · · ·		696		
Image: state in the ima	2 3	1	864				15/1	1.	+	-						E	-	
Image: https://www.imaximum.com/im									11									
1382 15 FCU 16/1 + + 10/1 FCU 18 1382 1382 13 FCU 15/1 - - 10/1 FCU 1392 1392 13 FCU 15/1 - - 19/1 FCU 1392 1392 21 I/CU 15/1 - - 19/1 FCU 22 1392 696 23 FCU 15/1 - + 10/1 FCU 24 1392 20 696 23 FFU 10/1 FCU 28 686 21 7 SPARE 20/1 + - SPARE 28 686 23 SPARE 20/1 + - SPARE 38 - - 33 SPACE 4 - - SPACE 38 - - - SPACE 38 - - - SPACE 40							_	-	÷				_					
1382 17 FCU 16/1 - * 16/1 FOU 18 1392 1392 10 FCU 15/1 + - 19/1 FCU 20 1392 1392 21 FCU 15/1 + - 19/1 FCU 22 1392 696 23 FCU 15/1 + - 19/1 FCU 24 1392 20 23 SPARE 20/1 + - 10/1 FCU 24 1392 21 23 SPARE 20/1 + - 20/1 SPARE 30 - - - 36 - - 36 - - - SPARE 30 - - - SPARE 30 - - - SPARE 30 - - - - SPARE 30 - - - - SPARE 30 - -	6					127		1.	1	-				1			-	
1982 19 FCU 1911 * - 1911 FCU 1932 21 1932 21 1932 21 1932 21 1932 21 1932 21 1932 22 1932 23 1932 22 1932 <th1932< th=""> <th1932< th=""> <th1932< td="" th<=""><td></td><td></td><td></td><td></td><td>1.1.1.1.1.1</td><td></td><td></td><td>4</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1932<></th1932<></th1932<>					1.1.1.1.1.1			4	1	1								
1992 21 PCU 1911 - * - 1911 PCU 22 1332 0 23 FCU 16/1 - * - 1911 PCU 24 1332 1 1 23 SPARE 20/1 + + 20/1 SPARE 28 1392 23 SPARE 20/1 + + 20/1 SPARE 28 666 23 SPACE 21 SPACE 30 - - SPACE 34 - - - SPACE 34 - - - - - SPACE 34 - - - + SPACE 34 - - - + - SPACE 38 - - +<								-	-	•								
0 006 23 FCU 15/1 - + 10/1 FOU 28 1382 2 25 SPARE 201 + - 10/1 FOU 26 . 896 2 28 SPARE 201 + - 10/1 SPARE 20 . . 896 2 28 SPARE 201 + .		-					1.00000	1.	-	-				1 1				
25 SPARE 20H * - 16H FOU 26 896 27 SPARE 20H * - 20H * 20H SPARE 30 SPACE SPARE 30						125 T		-	1.	-								
27 SPARE 201 + + 201 SPARE 28 28 29 SPARE 201 + + 201 SPARE 30 - <			696						. 4	•								
Image: State in the ima	- a - a	2	S					1.	+	•				1		696		
Image: State of the s								-	*	•								
Image: State of the second state of the sec							20/1			•	20/1			· · · · ·				
Image: State in the ima	2						10000	1.	-	-	answith a			1		- N		
37 SPACE 1 SPACE 38 39 SPACE 39 SPACE 40 41 SPACE 40 0 0 9216 0 FEEDER SIZE: SEE ONE LINE DIAGRAM SPACE 42 42 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td><td></td><td>-</td><td></td><td>SPACE</td><td></td><td></td><td></td><td> </td><td></td></t<>								1.5		-		SPACE						
39 SPACE - + SPACE 40 0 41 SPACE - + SPACE 42 - - - - + SPACE 42 - - - + * * SPACE 42 - - - * <	S				35	SPACE	· · · · ·	-	-	•		SPACE	- 36			6 - X/		
Image: Constraint of the stress of			1				1 1	1.	1					1 1		1 - C		
0 0 9216 0 13920 SUB TOTALS FED FROM: ISOLATION GROUND BUS SUB TOTALS SUB TOTALS SUB TOTALS PANEL 3PG/A 200 % NEUTRAL 0 0 13920 SUB TOTALS SUB TOTALS FED FROM: ISOLATION GROUND BUS SUB TOTALS SUB TO TALS SUB								-	•	-								
0 0 9216 0 0 0 13920 0 SUB TOTALS FED FROM: ISOLATION GROUND BUS ISOLATION GROUND BUS BUB TOTALS BUB TO	10	3			41	SPACE		+	+			SPACE	42			S		
SUB TOTALS FED FROM: ISOLATION GROUND BUS SUB TOTALS PANEL 3PQ/A 200 % NEUTRAL 200 % NEUTRAL PANEL 3PG/A 200 % NEUTRAL MOUNTING: SLRFACE SHUNT TRIP MAIN CB OUTDOOR INCLOSURIE PANEL 3PG/A ELEC. EQUIP. 360 STAINLESS STEEL COVER FOOTNOTES ITOTALS PANEL TOTALS (1) = SHUNT TRIP CB (2) = GROUND FAULT CIB 0 0 23136 0 (2) = GROUND FAULT CIB (3) = DEMAND FACTOR FROM NEC 70. ARTICLE 220 ITO REC MOTOR HEAT 0 0 43592 0 PHASE B 0.00 0.00 2314 0.0 0 0 6860 0 PHASE B TOTAL S 0.00 0.00 2314 0.0 0 0 6860 TOTALS TOTAL CONNECTED KVA TOTALS 0.00 2314 0.0 0 0 6860 TOTALS TOTAL CONNECTED KVA 2314 0.0 0 0 6860 TOTALS TOTAL PANEL 200 2314 <td></td> <td></td> <td></td> <td></td> <td>FEE</td> <td>DER SIZE: SEE ONE LINE</td> <td>DIAGRAM</td> <td>í</td> <td></td> <td></td> <td>· · · · · ·</td> <td>200.001</td> <td></td> <td></td> <td></td> <td></td> <td></td>					FEE	DER SIZE: SEE ONE LINE	DIAGRAM	í			· · · · · ·	200.001						
PANEL JPG/A 200 % NEUTRAL MOUNTING: FEED-THRU LUGS SLRFACE SHUNT TRIP MAIN CB LOCATION GUIDCOR INCLOSUIRII ELEC. EQUIP. 360 STAINLESS STEEL COVER FOOTNOTES (1) = SHUNT TRIP CB (2) = GROUND FAULT CB 0 (2) = GROUND FAULT CB 0 (3) = DEMAND FACTOR FROM NEC 70. ARTICLE 220 LTG REC MOTOR 0 4302 0 4302 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 10	0	0	9216	0	1				.710	nik w	dh an Xa	lo appropriate:		- 0	0	13920		
PARE LOADING PANEL TOTALS O O PANEL TOTALS O O PANEL TOTALS O O O O O O O O O O O <th col<="" td=""><td></td><td>SUBT</td><td>OTALS</td><td></td><td>MOU</td><td>PANEL 3PG/A NTING: SURFACE ATION ELEC. EQUIP. 360</td><td></td><td></td><td></td><td></td><td>200 % N FEED-TH BHUNT1 OUTDOO</td><td>EUTRAL IRU LUGS TRUP MAIN CB DR [INCLOSUR]]</td><td></td><td></td><td>BUB1</td><td>OTALS</td><td></td></th>	<td></td> <td>SUBT</td> <td>OTALS</td> <td></td> <td>MOU</td> <td>PANEL 3PG/A NTING: SURFACE ATION ELEC. EQUIP. 360</td> <td></td> <td></td> <td></td> <td></td> <td>200 % N FEED-TH BHUNT1 OUTDOO</td> <td>EUTRAL IRU LUGS TRUP MAIN CB DR [INCLOSUR]]</td> <td></td> <td></td> <td>BUB1</td> <td>OTALS</td> <td></td>		SUBT	OTALS		MOU	PANEL 3PG/A NTING: SURFACE ATION ELEC. EQUIP. 360					200 % N FEED-TH BHUNT1 OUTDOO	EUTRAL IRU LUGS TRUP MAIN CB DR [INCLOSUR]]			BUB1	OTALS	
(2) = GROUND FAULT CIII 0 0 23136 PHASE LOADING (3) = DEMAND FACTOR FROM NEC 70, ARTICLE 220 LTG REC MOTOR HEAT LTG REC MOTOR HEAT CONNECTED KVA TOTALS 0.00 23.14 0.00 0 0 6352 0 PHASE A DIIMAND FACTOR 1.25 (3) 1.00 1.0 0 0 7824 0 PHASE B ADJUSTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 66900 0 PHASE C ADJUSTED KVA TOTALS 0.00 0.00 23.14 0.0 4 B C TOTAL CONNECTED KVA TOTALS 2.00 0.00 23.14 0.0 4 B C TOTAL ADJUSTED KVA 23.14 0.0 0 0.00 23.14 0.0 48302 7824 6800 TOTALS TOTAL ADJUSTED KVA 23.14 0.0 Project Name: LANCASTER C.H. TOTAL PANEL 206 TOTAL PANEL														-	DANEL	TOTALS	_	
PHASE LOADING LTG REC MOTOR HEAT LTG REC MOTOR HEAT CONNECTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 4352 0 PHASE DEMAND FACTOR FROM INEC 70, ARTICLE 220 0.00 0.00 23.14 0.0 0 0 4352 0 PHASE DEMAND FACTOR 1.25 (3) 1.00 1.0 0 0 7824 0 PHASE 6 TOTAL CONNECTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 6960 0 PHASE C TOTAL CONNECTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 6960 0 PHASE C TOTAL CONNECTED KVA 23.14 0.0 4 B C TOTAL S TOTAL ADJUSTED KVA 23.14 0.0 8/302 7824 6860 TOTALS TOTAL PASE VOLTAGE 206 Project Name: LANCASTER C.H. TOTAL PANEL							6							6			0	
LTG REC MOTOR HEAT CONNECTED KVA TOTALS 0.00 0.00 23.14 0.00 0 0 4502 0 PHASILA DILMAND FACTOR 1.25 (3) 1.00 1.0 0 0 7824 0 PHASE B DILMAND FACTOR 1.25 (3) 1.00 1.0 0 0 6960 0 PHASE C TOTAL CONNECTED KVA 23.14 0.0 A B C TOTAL CONNECTED KVA 23.14 0.0 4.3302 7824 6980 TOTALS TOTAL S 208 Project Name: LANCASTER C.H. TOTAL PANEL TOTAL PANEL 208		PHASE	CADING					2 70	AF.	TIC	LE 220		- 1				HEAT	
0 0 4352 0 PHASE A DEMAND FACTOR 1.25 (3) 1.00 1.0 0 0 7824 0 PHASE B ADJUSTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 66900 0 PHASE C TOTAL CONNECTED KVA 23.14 0.0 4 8 C TOTAL CONNECTED KVA 23.14 0.0 8302 7824 6960 TOTALS TOTALS 206 Project Name: LANCASTER C.H. TOTAL PANEL 208	LTG			HEAT	-	py - Dennie mener	The first state			1114	tota della	CONNECTED KVA TOT	ALS				0.00	
0 0 7824 0 PHASE B ADJUSTED KVA TOTALS 0.00 0.00 23.14 0.0 0 0 6990 0 PHASE C TOTAL CONNECTED KVA 23.14 0.0 A B C TOTAL SUBSTED KVA 23.14 23.14 0.0 8302 7824 6960 TOTALS TOTALS 206 Project Name: LANCASTER C.H. TOTAL PANEL TOTAL PANEL 206		-		_	-	PHASE A	1								and the local division of the local division	-	the second se	
0 0 6960 0 PHASE C TOTAL CONNECTED KVA 23.14 A B C TOTAL ADJUSTED KVA 23.14 B 3202 7824 6980 TOTALS Project Name: LANCASTER C.H. TOTAL PANEL	n n				_	1.110.0008.0.1	1					P. M. (1) 2 4 P. 1119 1411	5		1.2		0.00	
A B C TOTAL ADJUSTED KVA 23.14 8302 7824 6980 TOTALS THREE PHASE VOLTAGE 208 Project Name: LANCASTER C.H TOTAL PANEL	×			0	-		1						_			- am 14		
8302 7824 6960 TOTALS THREE PHASE VOLTAGE 208 Project Name: LANCASTER C.H. TOTAL PANEL		A	8	C	-		1											
Project Name: LANCASTER C.H. TOTAL PANEL		8390	7824	6910		TOTALS												
		-	1.004			Contraction of the second s	0					THE REPORT OF A PROPERTY OF A DESCRIPTION						
			-											4.8				

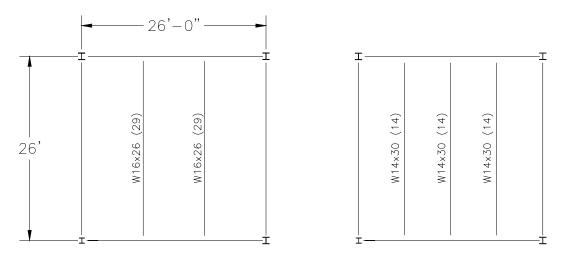
Original Design

						P/	١N	EL	20	A/۵						
				l	VOLTAGE: 208Y/120V, BUS RATING: 225 A MAIN: 150 A, MCB	SPH.4W					10k AIC RATIN 46/20 1.43 A	04				
	LOAD (VOLT AMPS)			CN KO	LOAD SERVED	CB	P	HAS	SE	CB	LOAD SERVED	C N KO		OAD (VO	LT AMPS	
LTG	REC	MOTOR	HEAT	T.		AMP/P	A	11	C	AMP/P	100 100 100 100 COSA	11	LTG	RIC	MOTOR	HEAT
		1753	E State of the	1	WSHP	20/1		+	1	20/1	WSHP	2.		1000	1753	an a
		1753		3	WSHP	20/1	-		-	20/1	WSHP	4			1753	
_	10 A	1753	· · · ·	5	WSHP	20/1	-	-	•	20/1	WSHP	6			1753	_
		1753		7	WSHP	20/1	L.	1	-	20/1	WSHP	a			1753	
		1753		9	WSHP	20/1	1	1		20/1	WSHP	10			1753	
_	-	1753		11	WSHP WSHP	20/1	÷	+	-	20/1	WSHP	12	-		1753	_
		1753		13	WSHP	20/1 20/1	1			20/1	WSHP	16			1753	
		1753			WSHP	20/1	11	1	1.1	20/1	WSHP .	10			1753	
_		696	<u> </u>		EF-15	15/1	-	-	-	15/1	FCU-8	20	-		696	_
		690			EF-16	15/1		-		15/1	07-9	22			528	
		0.00			SPARE	15/1	0				SPACE	24				
_	-	696	-		EF-40	15/1	÷	-		15/1	EF-60	28	-		864	_
		864			EF-48	15/1		+	1	15/1	EF-61	28			864	
	0	864			EF-49	15/1				15/1	EF-62	30			696	
_		696			EF-64	15/1				20/1	WSHP	32	-		1753	
		1753		1 mm	WSHP	20/1		+		20/1	WSHP	34			1753	
		1753			WSHP	20/1	1	-	•	20/1	WSHP	36			1753	
_	2 9	1753	8 3	37	WSHP	20/1	•			20/1	WSHP	38			1753	-
	1	1753			WSHP	20/1	-	٠	-	20/1	WSHP	40			1753	
				41	SPARE	20/1	+	+	+	20/1	WSHP	42			1753	÷
- 25	2	0000	1 - K	FEE	DER SIZE: SEE ONE LIN	E DIAGRAM	ľ.			Same	an management				100.000	
0		27301 OTALS						ma			is appropriate:		0	0		
	oub I			MOL	FROM PANEL 2PQ/A INTING: SURFACE ATION: ELEC: EQUIP. 258 TNOTES:		20101010101010			200 % M FEED-TH SHUNT 1 OUTDO	on ground bus Eutral HTU Lugs TRIP Main CB DR [Inclosuri] SS STEEL COVER			pudi	OTALS	
					(1) = SHUNT TRIP CB (2) = GROUND FAULT C	8							0	PANEL	TOTALS 57244	hand
1111		LOADING	111035		(3) = DEMAND FACTOR	FROM NEO	270	AR	RTIC	LE 220	2 10 10 10 10 10 10 10 10 10 10 10 10 10	100	LTG	REC	MOTOR	HEAT
LTG	REC	MOTOR.	and the local division of			-				L.	CONNECTED KVA TOT	ALS	0.00	0.00	and the second division of the second divisio	.0.
0	0	19425	. 9	_	PHASE A	_					DEMAND FACTOR		1.25	(3)	1,00	1.
0		80.000	0	_	PHASE B	-					ADJUSTED KVA TOTAL		0.00	0.00	67.24	0
0	0	17337		-	PHASE C	-					TOTAL CONNECTED K		57.24			
	A	В	G		No. of Concession, Name						TOTAL ADJUSTED KVA		57.24			
	19425	20482	17337		TOTALS						THREE PHASE VOLTA	96	206			
			Project N roject Nu		LANCASTER C.H.						TOTAL PANEL					

Redesigned to include WSHP


						PA	N	EL	30	A/A						
					VOLTAGE: 2089/120V/3 BUB RATING: 225 A MAIN: 150 A MCB	PH.4W					10k AIC RATIN 46/20 1:43 A	04				
	LOAD (VO	LT AMPS)		CN KO		CB PHASE CB		CB	LOAD SERVED	C N KO		LOAD (VOLT AMPS)				
LTG	REC	MOTOR	HEAT	τ.	0.00110	AMP/P	~	0	¢	AMP/P	1	T	LTG	REC	MOTOR	HEAT
		696			FCU8 SPARE SPACE	15/1 20/1	• •		* + +	16/1 15/1 15/1	EF-28 EF-29 EF-30	240			528 864 696	
		864			EF-32 SPACE SPARE	15/1			+	15/1 20/1 20/1	SPARE WSHP WSHP	8 10 12		ΪΞÌ	1753 1753	
		1753 1753 1753		15	WSHP WSHP WSHP	20/1 20/1 20/1			•	20/1 20/1 20/1	WSHP WSHP WSHP	14 16 18			1753 1753 1763	
		1753 1753 1753		19 21	WSHP WSHP WSHP	20/1 20/1 20/1	* •	* * *	+ + + +	20/1 20/1 20/1	WSHP WSHP WSHP	20 22 24			1753 1753 1753	
		1763 1753 1753		26 27	WSHP WSHP WSHP	20/1 20/1 20/1	-		+ + +	20/1 20/1 20/1	WSHP WSHP WSHP	28 28 30			1753 1753	
		1763 1753		31 33	WSHP WSHP WSHP	20/1 20/1 20/1	+		+++++++++++++++++++++++++++++++++++++++	20/1 20/1 20/1	WShp WSHP WSHP	32 34 36			1753 1753	1.4
		1753		37 39	WSHP WSHP SPACE	20/1 20/1	•		* + •	20/1	WSHP SPACE SPACE	38 40 42			1753	
		26102	0		DER SIZE: SEE ONE LINE	DIAGRAM		me	TŘ N		is appropriate: ON GROUND BUS		0	0	28383 OTAL 5	
		ar i Mala		MOL	PANEL 3PQ/A INTING: SURFACE ATION: ELEC. EQUIP. 360 TNOTES:					200 % N FEED-TH SHUNT 1 OUTDOO						
	-	-		1	(1) = BHUNT TRIP CB (2) = GROUND FAULT C	Contraction of the second							LTG	PANEL 0 REC	S4485	HEAT
LTG		MOTOR	HEAT	-	(3) = DEMAND FACTOR	PROM NEL	, 19	Ah	CI IG	CE 220	CONNECTED KVA TOT	ALS	0.00	0.00	MUTUR 54.49	0.0
1	0	19618	0		PHASE A						DEMAND FACTOR		1.25	(3)	1.00	1.0
(0 0	18394	0		PHASE B						ADJUSTED KVA TOTAL		0.00	0.00	54.49	0.0
(A	16473 B	¢ 0		PHASE C	-					TOTAL CONNECTED K TOTAL ADJUSTED KVA		54.49 54.49			
	19618	18394		4ame:	TOTALS LANCASTER C.H. 20254.00	1					THREE PHASE VOLTAGE TOTAL PANEL ADJUSTED AMPERAGE		208			

Redesigned to include WSHP



Structural Analysis

Scope

The scope of the structural analysis is independent from both the Mechanical and Electrical analysis. It includes a typical bay of composite beam construction located on the second floor of Community Hospital of Lancaster. The hospital is built utilizing the strength of the composite beam structure which is essentially a beam and poured concrete bonded together using shear studs.

This structural redesign is quite simple yet effective. The typical bay on the left is the original design with two equally spaced beams in conjunction with the floor slab above. The number in parenthesis after the beam shape and strength is the number of shear studs on each beam of the system. In the original design the beams were spaced at 8'-8" O.C. and were sized at W16x26 composite beam with 29 shear studs per beam.

The goal is to determine how much a composite beam depth would be shortened if an additional beam were placed into the bay. A shorter beam sometimes means more room for mechanical designers to place their systems, and would prevent having to change floor to ceiling height or adjust plenum depth. Therefore one beam was added to the bay. The three beams were equally spaced at 6.5' O.C.

The live loads and dead loads were found on the cover page to the structural drawings. Concrete

slab information was also located here. Loads:

> Live Loads 60 psf Dead Loads 90 psf

Uniform factored load

Wu =	1.2 (90) (6.5') + 1.6 (80) (6.5')	= 1534 lb/ft	
Mu = Wu I2 / 8	1.534 kip/ft (26')2 /8	= 1.534 kip/ft = 129.62 kip/ft	
Assume a = 1"	Y2 = 5 ¼" - ½" = 4.75"		
Δ allow = L/360	26 * 12 / 360 = 0.87 inches		
Δ =	5(Wu) (L) ⁴ (384 El))*1728	– I = 211	
W10x15	ΦMp = 60, ΦMn = 127, Qn = 140		
a _{req} =	ΣQn 140 .85*4*((26/4) * 12)	- = .53 < 1.0	
Δ =	5*1.75685*26⁴ 384 (29000) I	= .87	
		I = 695	
W14x30		I = 704	

Use W14x30

PENNSTATE

Using the LRFD Manual of Steel Construction Table 5 -14 Composite W Shapes Design strength in flexure ΦbMn, kip-ft and Table 5 -14 Lower Bound Elastic Moments of Inertia IIb for plastic composite sections, I was able to determine that 3, 26 foot W14x30 shape beams spaced 6.5' O.C. apart can withstand the loads of the 5 ¼" LW structural concrete slab. The beams are two inches shallower than those of the existing design. Deflection was too large on the W10x15 beam and thus the W14x30 was chosen.

Structural Analysis Conclusion

The structural design, while seemingly simple, actually required some research to complete. It is a useful knowledge to have, especially when you need to explore other means of gaining those precious inches in your mechanical plenums. The span for this analysis was rather short, only 26', however over a larger span or different loading conditions the results could vary. It is also useful to know when moving large mechanical equipment around such as RTUs or AHUs. Utilizing composite beam construction, the mechanical designer can double check to be sure the structure will hold the heavy mechanical equipment.

Summary & Conclusions

The implementation of Water Source Heat Pumps on a geothermal water loop greatly increases heating and cooling efficiency. With the addition of a total energy recovery wheel, the savings grow. These systems can cost more than a conventional system, however it is possible to recover the investment in an acceptable amount of time. Geothermal technology is making advances and is incorporated in more designs as time goes by. It might be beneficial to instruct future engineers about the realistic uses of this energy saving method, especially in times where energy is expensive.

The research involved in this thesis was extensive and very useful. Many agencies and organizations are more than happy to assist engineers who are in pursuit of more environmentally friendly design. The programs that are available are functional, however are rudimentary. Nevertheless, they were incredibly useful within the scope of my analysis. The results of my research have shown that use of ground loop exchangers is very efficient. Once a ground loop is installed, it is virtually maintenance free for up to 50 years or more. The major costs involved with ground coupled heat pumps are initial costs and pumping costs. Energy consumption is dropped considerably across the board.

The simulations prove that something as simple as an energy recovery wheel can have drastic implications on heating and cooling loads. It is important that energy saving technology is implemented as much as possible. This hospital analysis is a text book example of unnecessarily wasted energy. I believe that technology like this can be pushed further and made even more efficient so that excluding it from a design will not be an option.

Acknowledgements

I would first like to thank God for the incredible life He has been so generous to give me. Out of His love, I have the greatest family in the world and have been blessed with many great friends.

I would also like to thank:

- Dr. Moses Ling Friend and consul to all AE students
- Dr. Stanley Mumma Primary Faculty Consultant for Thesis

The *lovely* **Sharron Williams** - always there for the student who can't schedule a class, everyone knows she is really who's in charge of the AE Department

Ari Tinkoff, John Schneider & Eric Serrano of GRG Consulting Engineers - without their help, I would probably be doing thesis again.

Sam Snyder and Joe Firrantello - for always answering my dumb questions

Brent Ellman and Lincoln Harberger - Structural consultants

Lastly, I would like to thank all of the many great people who made my times here at PSU so great, that I put off graduation as long as I could, just so I could stay.

A special acknowledgment to the Mick, Olly & Gavin at the Brickies in Leeds, UK. Olly, thanks for letting me sleep in the pub all those times, I owe you.

Disclaimer:

I do not claim ownership of all the pictures included in this thesis. All logos, renderings and photos are property of their respective owners and are only borrowed for enrichment of this Thesis.

References

AIA Guidelines for Design and Construction of Hospital and Health Care Facilities. 7.31 and 7.32 Mechanical and Electrical Standards for a General Hospital.

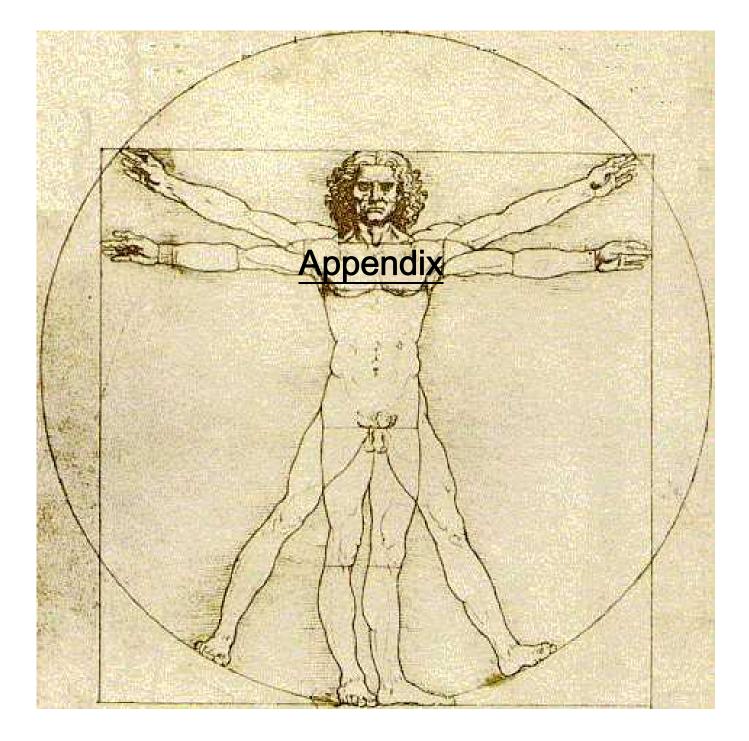
American Society for Hospital Engineering of the American Hospital Association. Mechanical Systems, Volume 8.

ASHRAE Handbook. HVAC Applications 1995. Chapter 7, Health Care Facilites

ASHRAE Handbook, Fundamentals. 2001. American Society of Heating, Refridgeration, and Air-Conditioning Engineers, Inc.

National Electric Code. 2003

RS Means Mechanical Cost Data. 2003


Online Sources

Carrier Corporation - <u>http://www.carrier.com</u> Energy Efficiency and Renewable Energy Network - <u>http://www.eere.energy.gov/geothermal/</u> Geothermal Heat Pump Consortium - <u>http://www.geoexchange.org/</u> Ground Source Heat Pump Design - <u>http://www.geokiss.com</u> IEA Heat Pump Centre - <u>http://www.heatpumpcentre.org/</u> McQuay International - <u>http://www.mcquay.com</u> Pennsylvania Public Utilities Commission Online - <u>http://puc.paonline.com/</u> The Trane Company - <u>http://www.trane.com/TraneHomePage.asp</u> Water Furnace Incorporated - <u>http://www.waterfurnace.com</u>

ROBERT J. EGAN Mechanical

Table 1. Annual Costs

	CHOL Existing Conditions
Component	(\$)
Air System Fans	601
Cooling	12,940
Heating	8,973
Pumps	9,632
Cooling Tower Fans	0
HVAC Sub-Total	32,145
Lights	13,468
Electric Equipment	3,117
Misc. Electric	0
Misc. Fuel Use	0
Non-HVAC Sub-Total	16,585
Grand Total	48,730

Table 2. Annual Cost per Unit Floor Area

CHOL Existing Conditions
(\$/ft ²)
0.031
0.668
0.463
0.497
0.000
1.659
0.695
0.161
0.000
0.000
0.856
2.515
19380.0
19380.0

Note: Values in this table are calculated using the Gross Floor Area.

Table 3. Component Cost as a Percentage of Total Cost					
	CHOL Existing Conditions				
Component	(%)				
Air System Fans	1.2				
Cooling	26.6				
Heating	18.4				
Pumps	19.8				
Cooling Tower Fans	0.0				
HVAC Sub-Total	66.0				
Lights	27.6				
Electric Equipment	6.4				
Misc. Electric	0.0				
Misc. Fuel Use	0.0				
Non-HVAC Sub-Total	34.0				
Grand Total	100.0				

Table 1. Annual Costs

	CHOL WSHP TER
Component	(\$)
Air System Fans	1,534
Cooling	6,457
Heating	349
Pumps	4,082
Cooling Tower Fans	0
HVAC Sub-Total	12,422
Lights	13,854
Electric Equipment	3,207
Misc. Electric	0
Misc. Fuel Use	0
Non-HVAC Sub-Total	17,061
Grand Total	29,483

Table 2. Annual Cost per Unit Floor Area

	CHOL WSHP TER
Component	(\$/ft²)
Air System Fans	0.079
Cooling	0.333
Heating	0.018
Pumps	0.211
Cooling Tower Fans	0.000
HVAC Sub-Total	0.641
Lights	0.715
Electric Equipment	0.166
Misc. Electric	0.000
Misc. Fuel Use	0.000
Non-HVAC Sub-Total	0.880
Grand Total	1.521
Gross Floor Area (ft ²)	19380.0
Conditioned Floor Area (ft ²)	19380.0

Note: Values in this table are calculated using the Gross Floor Area.

Table 3. Component Cost as a Percentage of Total Cost					
	CHOL WSHP TER				
Component	(%)				
Air System Fans	5.2				
Cooling	21.9				
Heating	1.2				
Pumps	13.8				
Cooling Tower Fans	0.0				
HVAC Sub-Total	42.1				
Lights	47.0				
Electric Equipment	10.9				
Misc. Electric	0.0				
Misc. Fuel Use	0.0				
Non-HVAC Sub-Total	57.9				
Grand Total	100.0				

Table 1. Annual Costs

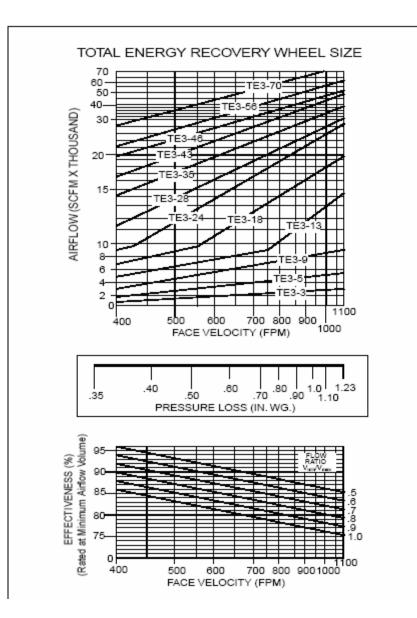

	CHOL WSHP TER
Component	(\$)
Air System Fans	1,542
Cooling	6,483
Heating	351
Pumps	0
Cooling Tower Fans	0
HVAC Sub-Total	8,375
Lights	13,931
Electric Equipment	3,225
Misc. Electric	0
Misc. Fuel Use	0
Non-HVAC Sub-Total	17,156
Grand Total	25,532

Table 2. Annual Cost per Unit Floor Area

	CHOL WSHP TER
Component	(\$/ft²)
Air System Fans	0.080
Cooling	0.335
Heating	0.018
Pumps	0.000
Cooling Tower Fans	0.000
HVAC Sub-Total	0.432
Lights	0.719
Electric Equipment	0.166
Misc. Electric	0.000
Misc. Fuel Use	0.000
Non-HVAC Sub-Total	0.885
Grand Total	1.318
Gross Floor Area (ft ²)	19380.0
Conditioned Floor Area (ft ²)	19380.0

Note: Values in this table are calculated using the Gross Floor Area.

Table 3. Component Cost as a Percentage of Total Cost					
	CHOL WSHP TER				
Component	(%)				
Air System Fans	6.0				
Cooling	25.4				
Heating	1.4				
Pumps	0.0				
Cooling Tower Fans	0.0				
HVAC Sub-Total	32.8				
Lights	54.6				
Electric Equipment	12.6				
Misc. Electric	0.0				
Misc. Fuel Use	0.0				
Non-HVAC Sub-Total	67.2				
Grand Total	100.0				

Design Lengths *** Heat Pump Series: Trane (Standard Efficiency) ***

Required BORE length with minimal groundwater movement = 150360 ft (752 ft/bore) (Design based on COOLING mode - net annual heat rejection to ground)

Required BORE lengths with high rates of groundwater movement (or year 1) Cooling: L= 76410 ft (382 ft/bore), Heating: L= 21850 ft (109 ft/bore)

Unit Inlet (cooling) = 85.0 degrees F Unit Outlet (cooling) = 95.4 degrees F Unit Inlet (heating) = 50.0 degrees F Unit Outlet (heating) = 44.1 degrees F Normal ground temp = 52.0 degrees F

Cooling Load/Demand = 5631 MBtuh / 491 kW Heating Load/Demand = 1014 MBtuh / 78 kW Cooling EER (Ht Pump/Sys) = 11.5 / 10.9 Heating COP (Ht Pump/Sys) = 3.8 / 2.8 Loop Pump Head/Flow Rate = 60 ft / 1408 gpm Loop Pump Power/Demand = 30.5 hp / 26.7 kW

Total Heat Pump Capacity = 5647.4 Mbtuh (cooling) Total Heat Pump Capacity = 5741.6 Mbtuh (heating)

U-tube Diameter = 1.25 inch Separation dist. = 20.0 ft Grid = 20 wide by 10 deep Grout Conductivity = 1.50 Btu/hr-ft- degrees F Bore Diameter = 5.00 inches

Bore Resistance = 0.102 hr-ft-F/Btu Ground Resistance (Cooling) = 0.343 hr-ft-F/Btu Ground Resistance (Heating) = 0.334 hr-ft-F/Btu

Long Term Ground Temperature Rise = 3.7 degrees F (Center of Loop Field)

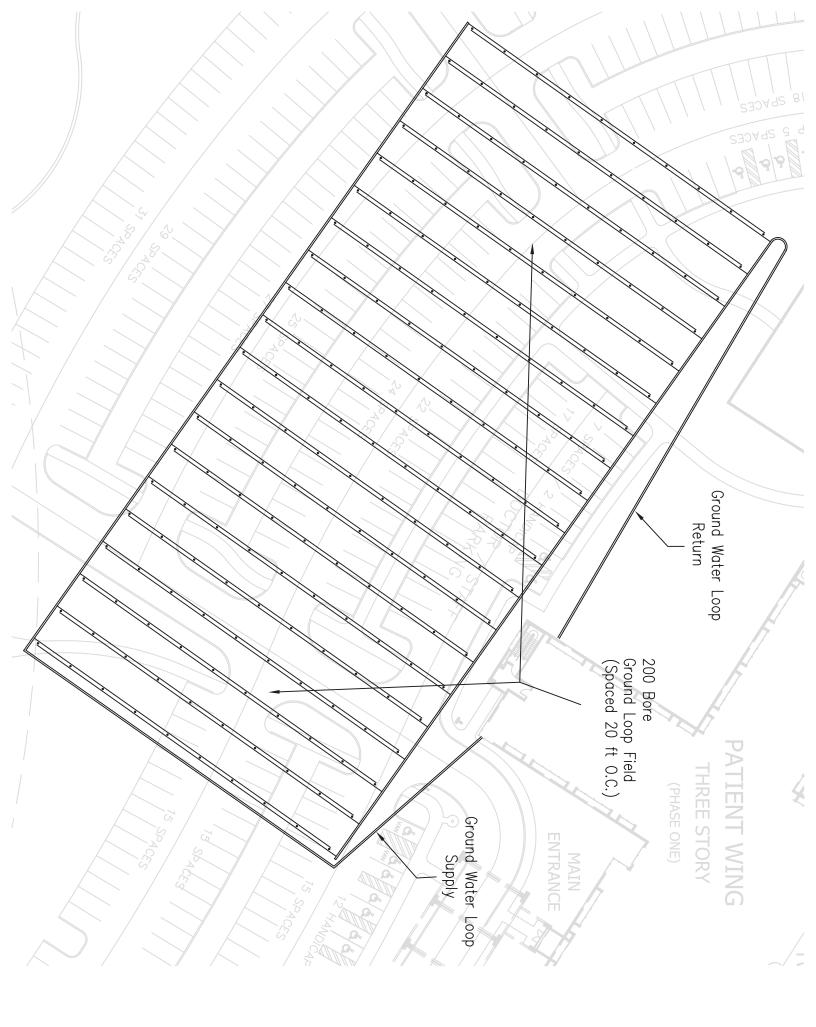
Thermal Conductivity = 1.40 Btu/hr-ft-degrees F Thermal Diffusivity = 0.93 ft²/day

Ground Temperature = 52.0 degrees F

Hybrid Design Lengths *** Heat Pump Series: Trane (High Efficiency) ***

Required BORE length for heating, L = 21870 ft (109 ft/bore)

Tower Size for Downsized Ground Loop Flow = 1455 gpm, Condenser Capacity = 7539 MBtuh, Range = 10.4 degrees F


Tower Size for Balanced Ground Heat Load Flow = 1474 gpm, Condenser Capacity = 7641 MBtuh, Range = 10.4 degrees F Required operating hours @ 10 degrees F Range = 7920 hrs/yr @ 20 degrees F Range = 3960 hrs/yr @ 30 degrees F Range = 2640 hrs/yr

Unit Inlet (cooling) = 85.0 degrees F Unit Outlet (cooling) = 95.4 degrees F Unit Inlet (heating) = 50.0 degrees F Unit Outlet (heating) = 44.1 degrees F Normal ground temp = 52.0 degrees F

Cooling Load/Demand = 5631 MBtuh / 488 kW Heating Load/Demand = 1014 MBtuh / 78 kW

Cooling EER (Ht Pump/Sys) = 11.5/10.3 Heating COP (Ht Pump/Sys) = 3.8 / 2.8

Pump/Cooling Tower Demand = 26.7/31.9 kW System Liquid Flow Rate = 1408 gpm

General Data

Table G1: General data about the units

Model G	EH	006	009	012	015	
Unit Size	Length (in)	40	40	40	40	
	Height (in)	15	15	15	15	
	Width (in)	20	20	20	20	
Compressor Type		Rotary	Rotary	Rotary	Rotary	
Approximate Weight	with Pallet (lb)	188	188	188	188	
Approximate Weight	without Pallet (lb)	158	158	158	158	
Filter Size	Actual (in)	14 5/8 x 20 1/4				
Water in/out size (FPT)	inches	1/2	1/2	1/2	1/2	
Condensate size (NPTI) inches		3/4	3/4	3/4	3/4	
Blower Wheel Size Direct Drive (in		9 x 4	9 x 4	9 x 4	9 x 4	

Table G2: General data about the units (continued)

Model G	Model GEH		024	030	036
Unit Size	Length (in)	46	46	46	50
	Height (in)	17	17	17	19
	Width (in)	23	23	23	25
Compressor Type		Rotary	Reciprocating	Reciprocating	Reciprocating
Approximate Weight	with Pallet (lb)	278	278	278	318
Approximate Weight	without Pallet (lb)	248	248	248	288
Filter Size	Actual (in)	16 3/8 x 23 5/8	16 3/8 x 23 5/8	16 3/8 x 23 5/8	18 5/8 x 25 3/8
Water in/out size (FPT)	inches	3/4	3/4	3/4	3/4
Condensate size (NPTI)	inches	3/4	3/4	3/4	3/4
Blower Wheel Size	Direct Drive (in)	9 x 6	10 x 6	10 x 6	12 x 8

Table G3: General data about the units (continued)

Model G	Model GEH		048	060
Unit Size	Length (in)	50	58	58
	Height (in)	19	21	21
	Width (in)	25	33	33
Compressor Type		Reciprocating	Reciprocating	Scroll
Approximate Weight	with Pallet (lb)	318	428	428
Approximate Weight	without Pallet (lb)	288	398	398
Filter Size	Actual (in)	18 5/8 x 25 3/8	20 5/8 x 29 3/4	20 5/8 x 29 3/4
Water in/out size (FPT)	inches	1	1	1
Condensate size (NPTI)	inches	3/4	3/4	3/4
Blower Wheel Size	Direct Drive (in)	12 x 8	12 x 11	12 x 11

General Data

Table G4: General data about the units

Model GI	EV	006	009	012	015	018
Unit Size	Length (in)	21 1/2	21 1/2	21 1/2	21 1/2	21 1/2
	Height (in)	31 1/4	31 1/4	31 1/4	31 1/4	39 1/4
	Width (in)	19 1/2	19 1/2	19 1/2	19 1/2	21 1/2
Compressor Type		Rotary	Rotary	Rotary	Rotary	Reciprocating
Approximate Weight	with Pallet (lb)	178	178	178	178	268
Approximate Weight	without Pallet (Ib)	158	158	158	158	248
Filter Size	Actual (in)	15 7/8 x 19 7/8	17 7/8 x 24 7/8			
Water in/out size (FPT)	inches	1/2	1/2	1/2	1/2	3/4
Condensate size (NPTI)	inches	3/4	3/4	3/4	3/4	3/4
Blower Wheel Size	Direct Drive (in)	9 x 4	9 x 4	9 x 4	9 x 4	10 x 6

Table G5: General data about the units (continued)

Model G	EV	024	030	036	040	042
Unit Size	Length (in)	21 1/2	21 1/2	26 1/2	21 1/2	26 1/2
	Height (in)	39 1/4	39 1/4	41 7/8	39 1/4	41 7/8
	Width (in)	21 1/2	21 1/2	24 1/2	21 1/2	24 1/2
Compressor Type		Reciprocating	Reciprocating	Reciprocating	Reciprocating	Reciprocating
Approximate Weight	with Pallet (lb)	268	268	308	268	308
Approximate Weight	without Pallet (Ib)	248	248	288	248	288
Filter Size	Actual (in)	17 7/8 x 24 7/8	17 7/8 x 24 7/8	19 7/8 x 24 7/8	17 7/8 x 24 7/8	19 7/8 x 24 7/8
Water in/out size (FPT)	inches	3/4	3/4	3/4	3/4	3/4
Condensate size (NPTI)	inches	3/4	3/4	3/4	3/4	3/4
Blower Wheel Size	Direct Drive (in)	10 x 6	10 x 6	10 x 6	10 x 6	12 x 8

Table G6: General data about the units (continued)

Model G	EV	048	060	072	090	120
Unit Size	Length (in)	30 1/2	30 1/2	42	42	42
	Height (in)	46 7/8	46 7/8	62 5/8	62 5/8	62 5/8
	Width (in)	26 1/2	26 1/2	36 1/4	36 1/4	36 1/4
Compressor Type		Reciprocating	Scroll	Recip (2)	Recip (2)	Scroll (2)
Approximate Weight	with Pallet (lb)	396	396	617	648	861
Approximate Weight	without Pallet (Ib)	348	348	577	608	821
Filter Size	Actual (in)	27 7/8 x 29 7/8	27 7/8 x 29 7/8	20 x 20 (4)	20 x 20 (4)	20 x 20 (4)
Water in/out size	inches	1 FPT	1 FPT	1 1/4 FPT	1 1/4 FPT	1 1/2 FPT
Condensate size (NPTI)	inches	3/4	3/4	3/4	3/4	3/4
Blower Wheel Size and qua	ntity	12 x 11 (DD)	12 x 11 (DD)	12.62 x 12.62	12.62 x 12.62	12.62 x 12.62

Table G7: General data about the units (continued)

Model GE	Model GEV			240	300
Unit Size	Length (in)	81 5/8	81 5/8	81 5/8	81 5/8
	Height (in)	68	68	68	68
	Width (in)	36 1/4	36 1/4	36 1/4	36 1/4
Compressor Type		Scroll (2)	Scroll (2)	Scroll (2)	Scroll (2)
Approximate Weight	with Pallet (lb)	1215	1225	1615	1665
Approximate Weight	without Pallet (lb)	1170	1180	1580	1640
Filter Size	Actual (in)	19 5/8 x 24 5/8 (6)	19 5/8 x 24 5/8 (6)	19 5/8 x 24 5/8 (6)	19 5/8 x 24 5/8 (6)
Water in/out size (sweat)	inches	1 1/2 FPT	1 1/2 FPT	2 FPT	2 FPT
Condensate size (NPTI)	inches	3/4	3/4	3/4	3/4
Blower Wheel Size and quantity (re	15 x 15	15 x 15	(2) 12 x 12	(2) 15 x 11 / (2) 12 x 12	
static)					

General Data Air-to-Refrigerant Coils

Table G8: GEH/GEV 006, 009

Working Pressure	425
Tubes High	14
Tubes Deep	2
No. of Circuits	1
Finned vol. (h,w,d)	14 x 16 x 1.734
Coil Surface Area (Ft ²)	1.56
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G9: GEH/GEV 012

Working Pressure	425
Tubes High	14
Tubes Deep	3
No. of Circuits	2
Finned vol. (h,w,d)	14 x 16 x 2.598
Coil Surface Area (Ft ²)	1.56
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G10: GEH/GEV 015

Working Pressure	425
Tubes High	14
Tubes Deep	3
No. of Circuits	1
Finned vol. (h,w,d)	14 x 16 x 2.598
Coil Surface Area (Ft ²)	1.56
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G11: GEH 018, 024, 030

Working Pressure	425
Tubes High	16
Tubes Deep	4
No. of Circuits	4
Finned vol. (h,w,d)	16 x 19 x 3.464
Coil Surface Area (Ft ²)	2.11
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G12: GEV 018, 024, 030, 040

Working Pressure	425
Tubes High	21
Tubes Deep	4
No. of Circuits	4
Finned vol. (h,w,d)	21 x 16 x 3.464
Coil Surface Area (Ft ²)	2.33
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G13: GEH/GEV 036, 042

	000, 012
Working Pressure	425
Tubes High	18
Tubes Deep	4
No. of Circuits	6
Finned vol. (h,w,d)	18 x 21 x 3.464
Coil Surface Area (Ft ²)	2.63
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G14: GEH 048, 060

Working Pressure	425
Tubes High	20
Tubes Deep	4
No. of Circuits	8
Finned vol. (h,w,d)	20 x 29 x 3.464
Coil Surface Area (Ft ²)	4.03
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G15: GEV 048, 060

Working Pressure	425
Tubes High	24
Tubes Deep	4
No. of Circuits	8
Finned vol. (h,w,d)	24 x 25 x 3.464
Coil Surface Area (Ft ²)	4.17
Fins Per Inch	12
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G16: GEV 072 (dual compr. circuit)

Working Pressure	425
Tubes High	24
Tubes Deep	4
No. of Circuits	6 refrig flow paths (2X)
Finned vol. (h,w,d)	24 x 34 x 3.464
Coil Surface Area (Ft ²)	5.67
Fins Per Inch	14
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G17: GEV 090 (dual compr. circuit)						
Working Pressure	425					
Tubes High	28					
Tubes Deep	4					
No. of Circuits	7 refrig flow paths (2X)					
Finned vol. (h,w,d)	28 x 34 x 3.464					
Coil Surface Area (Ft ²)	6.61					
Fins Per Inch	14					
Tube Material	Copper					
Tube OD (in)	3/8					
Wall Thickness	0.014					
Return Bends	Copper					

Table G18: GEV 120 (dual compr. circuit) Working Pressure 425 Tubes High 36 4 Tubes Deep No. of Circuits 9 refrig flow paths (2X) 36 x 34 x 3.464 Finned vol. (h,w,d) Coil Surface Area (Ft²) 8.50 Fins Per Inch 14 Tube Material Copper Tube OD (in) 3/8 Wall Thickness 0.014 Return Bends Copper

Performance Data ARI-ISO (WLHP/GLHP)

Table G19: GEV 150 (dual compr. circuit)

Working Pressure	425
Tubes High	28
Tubes Deep	2
No. of Circuits	7 refrig flow paths (2X)
Finned vol. (h,w,d)	28 x 73 x 1.734
Coil Surface Area (Ft ²)	14.19
Fins Per Inch	14
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G20: GEV 180 (dual compr. circuit)

Working Pressure	425
Tubes High	32
Tubes Deep	3
No. of Circuits	9 refrig flow paths (2X)
Finned vol. (h,w,d)	32 x 73 x 2.598
Coil Surface Area (Ft ²)	16.22
Fins Per Inch	14
Tube Material	Copper
Tube OD (in)	3/8
Wall Thickness	0.014
Return Bends	Copper

Table G21: GEV 240, 300 (dual compr. circuit)

(dual completencal)							
Working Pressure	425						
Tubes High	36						
Tubes Deep	4						
No. of Circuits	18 refrig flow paths (2X)						
Finned vol. (h,w,d)	36x 73 x 3.464						
Coil Surface Area (Ft ²)	18.25						
Fins Per Inch	14						
Tube Material	Copper						
Tube OD (in)	3/8						
Wall Thickness	0.014						
Return Bends	Copper						

Table P1: ARI-ISO WLHP and GLHP Performance

Unit Size	Rated Water	Rated Air	Cooling	EER	Heating	COP	Cooling	EER	Heating	COP
	Flow	Flow	Capacity	WLHP	Capacity	WLHP	Capacity	GLHP	Capacity	GLHP
	(GPM)	(SCFM)	WLHP		WLHP		GLHP		GLHP	
	. ,	· · ·	(BTUH)		(BTUH)		(BTUH)		(BTUH)	
006	1.5	190	7060	13.0	8160	4.3	6980	14.4	4690	3.1
009	2.1	285	8760	12.85	10900	4.6	8710	14.5	6100	3.1
012	2.8	380	12500	13.15	13200	4.35	12400	14.2	8700	3.2
015	3.5	460	14100	14.0	17200	4.8	14200	16.0	10200	3.45
018	4.2	570	19100	13.5	21600	4.45	18900	14.9	13000	3.15
024	5.5	760	25800	12.6	30400	4.35	26000	13.8	17800	3.25
030	6.9	900	28500	12.5	33100	4.25	28700	13.5	19800	3.1
036	8.3	1140	36000	13.7	41800	4.7	35200	14.5	22200	3.25
GEV 040	9.2	1200	38500	12.75	44200	4.2	38500	13.6	26100	3.1
042	9.7	1330	40200	12.05	47500	4.2	41700	13.4	27400	3.1
048	11.0	1520	49000	12.75	55300	4.25	49000	13.65	32000	3.1
060	14.5	1900	59300	12.8	72300	4.4	58500	13.75	43300	3.1
GEV 072	18.0	2400	72900	13.7	85100	4.8	72600	14.8	51600	3.5
GEV 090	22.5	3000	90300	13.0	104300	4.5	89800	14.0	63200	3.2
GEV 120	30.0	4000	120200	12.7	142800	4.4	118000	13.5	86400	3.2
GEV 150	37.5	5000	144000	15.5	171400	5.5	148100	17.3	105400	3.9
GEV 180	45.0	6000	173600	13.0	209800	4.8	178900	14.5	128700	3.5
GEV 240	60.0	8000	250300	13.1	276800	4.3	257200	14.5	186600	3.4
GEV 300	75.0	10000	282900	12.1	339400	4.2	291700	13.2	220900	3.3

Rated in accordance with ISO Standard 13256-1: 1998 (Water Loop Heat Pumps and Ground Loop Heat Pumps).

Models with capacities greater than 135,000 BTUH are not included in the ARI water-to-air and brine-to-air heat pump certification program.

Performance Data 012-Cooling

Table P8: GEH/GEV 012 Cooling Performance

Performance data is tabulated for cooling at 80.6 F DB/66.2 F WB entering air at ARI/ISO 13256-1 rated CFM.

For conditions other than what is tabulated, multipliers must be used to correct performance. See the *fan correction factors Table* for CFM other than rated and the *cooling correction factors* for variations in entering air temperature. WLHP data shown in **bold** type is performance data at ARI/ISO 13256-1. The **bold** type for GLHP is a rating point only. For ARI 13256-1 GLHP conditions, apply 15% methanol by volume per the antifreeze correction factors found on page 107.

RATED GPM:	2.8	MINIMUM CFM:	304
RATED CFM:	380	MAXIMUM CFM:	456

EWT	GPM	Total	Sen	SHR	Power	Reject	LWT	Ft.	CFM	ISO Cap	ISO Pwr	ISO
		Mbtuh	Mbtuh		kW	Mbtuh		Hd.		Mbtuh	kW	EER
	1.8	14.3	10.4	0.73	0.88	17.3	64.2	4.7		14.6	0.79	18.5
	2.2	14.4	10.4	0.72	0.85	17.3	60.7	6.5		14.7	0.76	19.3
45	2.5	14.4	10.5	0.73	0.84	17.3	58.8	8.0		14.7	0.76	19.3
	2.8	14.5	10.5	0.72	0.83	17.3	57.4	9.6	380	14.8	0.75	19.7
45	2.9	14.5	10.5	0.72	0.82	17.3	56.9	10.1	500	14.8	0.74	20.0
	3.1	14.5	10.5	0.72	0.82	17.3	56.2	11.2		14.8	0.75	19.7
	3.4	14.5	10.5	0.72	0.80	17.2	55.1	13.0		14.8	0.73	20.3
	1.8	13.9	10.0	0.72	0.80	16.6	73.4	4.4		14.2	0.71	20.0
	2.2	13.9	10.0	0.72	0.77	16.5	70.0	.0 6.1	14.2	0.68	20.9	
	2.5	14.0	10.0	0.71	0.77	16.6	68.3	7.4		14.3	0.69	20.7
55	2.8	14.1	10.1	0.72	0.75	16.7	66.9	8.9	380	14.4	0.67	21.5
00	2.9	14.1	10.1	0.72	0.75	16.7	66.5	9.4	000	14.4	0.67	21.5
	3.1	14.1	10.1	0.72	0.75	16.7	65.8	10.5		14.4	0.68	21.2
	3.4	14.1	10.0	0.71	0.72	16.6	64.8	12.2		14.4	0.65	22.2
	1.8	13.1	9.6	0.73	0.91	16.2	86.0	4.1		13.4	0.82	16.3
	2.2	13.2	9.6	0.73	0.88	16.2	82.7	5.6		13.5	0.79	17.1
	2.5	13.2	9.6	0.73	0.88	16.2	81.0	6.9		13.5	0.80	16.9
68	2.8	13.3	9.7	0.73	0.86	16.2	79.6	8.3	380	13.6	0.78	17.4
	2.9	13.3	9.7	0.73	0.86	16.2	79.2	8.8	300	13.6	0.78	17.4
	3.1	13.3	9.6	0.72	0.86	16.2	78.5	9.8		13.6	0.78	17.4
	3.4	13.3	9.6	0.72	0.83	16.1	77.5	11.3		13.6	0.76	17.9
	1.8	12.5	9.3	0.74	1.00	15.9	94.7	3.9		12.8	0.91	14.1
	2.2	12.6	9.3	0.74	0.97	15.9	91.5	5.3		12.9	0.88	14.7
GLHP	2.5	12.7	9.4	0.74	0.96	16.0	89.8	6.6		13.0	0.88	14.8
77	2.8	12.7	9.4	0.74	0.95	15.9	88.4	7.9	380	13.0	0.87	15.0
	2.9	12.8	9.4	0.73	0.95	16.0	88.1	8.4	300	13.1	0.87	15.1
	3.1	12.8	9.4	0.73	0.94	16.0	87.4	9.4		13.1	0.86	15.3
	3.4	12.8	9.4	0.73	0.92	15.9	86.4	10.9		13.1	0.85	15.3 15.4
	1.8	12.0	9.1	0.76	1.08	15.7	103.5	3.7	-	12.3	0.99	12.4
F	2.2	12.1	9.1	0.75	1.05	15.7	100.3	5.1		12.4	0.96	12.9
WLHP	2.5	12.1	9.1	0.75	1.05	15.7	98.6	6.3		12.4	0.97	12.8
	2.8	12.2	9.2	0.75	1.03	15.7	97.3	7.6		12.5	0.95	13.2
86	2.9	12.2	9.2	0.75	1.03	15.7	96.9	8.1	380	12.5	0.95	13.2
	3.1	12.2	9.2	0.75	1.03	15.7	96.2	9.0		12.5	0.95	13.2
	3.4	12.2	9.1	0.75	1.00	15.6	95.2	10.5		12.5	0.93	13.4
	1.8	11.3	8.8	0.78	1.19	15.4	112.2	3.5		11.6	1.10	10.5
	2.2	11.4	8.8	0.77	1.16	15.4	109.1	4.9		11.7	1.07	10.9
	2.5	11.5	8.9	0.77	1.15	15.4	107.4	6.1		11.8	1.06	11.1
05	2.8	11.5	8.9	0.77	1.14	15.4	106.1	7.4	380	11.8	1.06	11.1
95	2.9	11.5	8.9	0.77	1.13	15.4	105.7	7.8	380	11.8	1.05	11.2
	3.1	11.6	8.9	0.77	1.13	15.5	105.1	8.8		11.9	1.05	11.3
	3.4	11.6	8.9	0.77	1.11	15.4	104.1	10.2		11.9	1.04	11.4
	1.8	10.5	8.5	0.81	1.35	15.1	121.9	3.4		10.8	1.26	8.6
	2.2	10.6	8.5	0.80	1.31	15.1	118.8	4.8		10.9	1.22	8.9
	2.5	10.6	8.6	0.81	1.31	15.1	117.2	5.9		10.9	1.22	8.9
105	2.8	10.7	8.6	0.80	1.30	15.1	115.9	7.1	380	11.0	1.22	9.0
105	2.9	10.7	8.6	0.80	1.29	15.1	115.5	7.6	380	11.0	1.21	9.1
	3.1	10.7	8.6	0.80	1.29	15.1	114.8	8.5		11.0	1.21	9.1
	3.4	10.8	8.6	0.80	1.27	15.1	114.0	9.9		11.1	1.20	9.3
	1.8	9.6	8.1	0.84	1.49	14.7	131.5	3.3		9.9	1.40	7.1
	2.2	9.7	8.1	0.84	1.46	14.7	128.5	4.6		10.0	1.37	7.3
	2.5	9.8	8.2	0.84	1.45	14.7	126.9	5.7	1	10.0	1.36	7.4
445	2.8	9.9	8.2	0.83	1.44	14.8	125.7	6.9	000	10.1	1.36	7.5
115	2.9	9.9	8.2	0.83	1.44	14.8	125.3	7.4	380	10.2	1.36	7.5
	3.1	9.9	8.2	0.83	1.44	14.8	124.6	8.3		10.2	1.36	7.5
	3.4	9.9	8.2	0.83	1.41	14.7	123.7	9.7	1	10.2	1.34	7.6
	1.8	9.3	7.9	0.85	1.50	14.4	136.2	3.2		9.6	1.41	6.8
	2.2	9.4	7.9	0.83	1.47	14.4	133.2	4.5		9.7	1.41	7.0
	2.5	9.4	7.9	0.83	1.46	14.4	131.7	5.6		9.8	1.37	7.2
	2.5	9.5	8.0	0.83	1.40	14.5	130.4	6.8		9.8	1.37	7.2
120	2.0	9.5	8.0	0.84	1.45	14.4	130.4	7.3	380	9.8	1.37	7.2
	3.1	9.5	7.9	0.84	1.45	14.4	129.5	8.2		9.0	1.37	7.3
	3.4	9.6	7.9	0.82	1.44	14.5	129.5	9.6		9.9	1.35	7.3
	3.4	9.0	1.9	0.02	1.42	14.4	120.0	9.0		9.9	1.55	1.5

Performance Data 012-Heating

Table P9: GEH/GEV 012 Heating Performance

Performance data is tabulated for heating at 68 F DB entering air at ARI/ISO 13256-1 rated CFM.

For conditions other than what is tabulated, multipliers must be used to correct performance. See the *fan correction factors Table* for CFM other than rated and the *heating correction factors* for variations in entering air temperature. WLHP data shown in **bold** type is performance data at ARI/ISO 13256-1. The **bold** type for GLHP is a rating point only. For ARI 13256-1 GLHP conditions, apply 15% methanol by volume per the antifreeze correction factors found on page 107.

					RATED GPM: RATED CFM:		MINIMUM CFM: MAXIMUM CFM:		304 456	
EWT	GPM	Htg Cap	Absorb	Power	LWT	Ft.	CFM	ISO Cap	ISO Pwr	ISO
		Mbtuh	Mbtuh	kW		Hd.		Mbtuh	kW	COP
	1.8	8.0	5.2	0.83	19.2	5.6		7.7	0.74	3.0
	2.2	8.2	5.4	0.83	20.1	7.7		7.9	0.74	3.1
	2.5	8.3	5.4	0.84	20.7	9.4		8.0	0.76	3.1
25	2.8	8.4	5.5	0.84	21.1	11.2	380	8.1	0.76	3.1
	2.9	8.4	5.5	0.84	21.2	11.8	500	8.1	0.77	3.1
	3.1	8.5	5.6	0.84	21.4	13.1		8.2	0.77	3.1
	3.4	8.5	5.6	0.84	21.7	15.0		8.2	0.77	3.1
	1.8	9.2	6.3	0.85	25.0	5.3		8.9	0.76	3.4
	2.2	9.3	6.4	0.86	26.2	7.3		9.0	0.78	3.4
GLHP	2.5	9.4	6.5	0.86	26.8	8.9		9.1	0.78	3.4
32	2.8	9.5	6.6	0.86	27.3	10.6	380	9.2	0.78	3.4
	2.9	9.6	6.7	0.86	27.4	11.2		9.3	0.79	3.4
	3.1	9.6	6.7	0.86	27.7	12.4		9.3	0.79	3.4
	3.4	9.7	6.7	0.87	28.0	14.3		9.4	0.81	3.4
	1.8	11.0	7.9	0.90	36.2	4.7		10.7	0.81	3.9
	2.2	11.2	8.1	0.91	37.6	6.5		10.9	0.82	3.9
	2.5	11.3	8.2	0.92	38.4	8.0		11.0	0.84	3.8
45	2.8	11.4	8.3	0.92	39.1	9.6	380	11.1	0.84	3.9
	2.9	11.4	8.3	0.92	39.3	10.1		11.1	0.84	3.9
	3.1	11.4	8.3	0.92	39.6	11.2		11.1	0.85	3.8
	3.4	11.5	8.4	0.92	40.1	13.0		11.2	0.85	3.9
-	1.8	12.1	8.9	0.93	45.1	4.4		11.8	0.84	4.1
	2.2	12.3	9.1	0.93	46.7	6.1		12.0	0.84	4.2
	2.5	12.4	9.2	0.94	47.6	7.4		12.1	0.85	4.2
55	2.8	12.4	9.2	0.94	48.4	8.9	380	12.1	0.86	4.1
	2.9	12.5	9.3	0.94	48.6	9.4		12.2	0.86	4.2
	3.1	12.5	9.3 9.4	0.94	49.0 49.5	10.5 12.2		12.2 12.3	0.86	=
	3.4	12.6	9.4	0.94		4.1		12.3	0.87	4.1 4.4
	<u>1.8</u> 2.2	13.2 13.4	10.0	0.95	56.9 58.8	5.6		13.100	0.86	4.4
	2.5	13.4	10.1	0.96	59.8	6.9		13.200	0.87	4.4
WLHP	2.3	13.5	10.2	0.90	60.7	8.3		13.200	0.88	4.4
68	2.9	13.6	10.2	0.96	60.9	8.8	380	13.300	0.88	4.4
	3.1	13.6	10.3	0.96	61.3	9.8		13.300	0.88	4.4
	3.4	13.0	10.3	0.90	61.9	11.3		13.400	0.88	4.4
	1.8	13.7	10.4	0.97	63.4	3.9		13.4	0.88	4.5
	2.2	13.9	10.4	0.97	65.3	5.4		13.6	0.88	4.5
	2.5	14.0	10.7	0.98	66.4	6.6		13.7	0.89	4.5
75	2.8	14.1	10.8	0.98	67.3	8.0	200	13.8	0.90	4.5
75	2.9	14.1	10.8	0.98	67.5	8.5	380	13.8	0.90	4.5
	3.1	14.2	10.9	0.98	68.0	9.5		13.9	0.90	4.5
	3.4	14.3	10.9	0.99	68.6	11.0		14.0	0.92	4.5
	1.8	14.6	11.2	0.99	73.5	3.7		14.3	0.90	4.7
	2.2	14.8	11.4	1.00	75.6	5.1		14.5	0.91	4.7
	2.5	14.9	11.5	1.01	76.8	6.3		14.6	0.92	4.6
86	2.8	14.9	11.5	1.01	77.8	7.6	380	14.6	0.93	4.6
00	2.9	15.0	11.6	1.01	78.0	8.1	000	14.7	0.93	4.6
	3.1	15.0	11.6	1.00	78.5	9.0		14.7	0.92	4.7
	3.4	15.1	11.7	1.01	79.1	10.5		14.8	0.94	4.6

Table P10: 012 Fan Correction Factors

Entering	Cooling	Sensible	Cooling	Heating	Heating	
CFM	Capacity	Capacity	Input	Capacity	Input	
			Watts		Watts	
304	0.974	0.892	0.965	0.972	1.032	
323	0.980	0.919	0.973	0.979	1.024	
342	0.987	0.945	0.981	0.986	1.016	
361	0.993	0.972	0.990	0.993	1.008	
380	1.000	1.000	1.000	1.000	1.000	
418	1.012	1.051	1.020	1.013	0.984	
437	1.019	1.078	1.030	1.020	0.976	
456	1.025	1.105	1.042	1.027	0.968	

Performance Data Electrical

E1-Electrical performance

Model No.	Volts	Total FLA	Comp RLA	Comp LRA	No. of Com-	Cmp MCC	Blower Motor	Blower Motor	Fan Motor	Minimum Circuit	Maximum Overcur-	Electric Heat	Electric Heat	
			(ea)	(ea)	pres.		FLA	HP	Num	Ampacity	rent Protective Device	kW	Amps	
006	115/60/1	6.8	5.70	36.2	1	9.1	1.20	1/12	1	8.3	15	0	0	
	208/60/1	3.4	2.80	17.7	1	4.6	0.60	1/12	1	4.1	15	0	0	
	208/60/1	4.48	2.8	17.7	1	4.6	0.60	1/12	1	5.6	15	0.82	3.9	
	230/60/1 230/60/1	3.4 4.88	2.80 2.8	<u>17.7</u> 17.7	1	4.6 4.6	0.60	1/12 1/12	1	4.1 6.1	<u>15</u> 15	0 1.00	0 4.3	
	220-240/50/1	3.6	3.10	18.8	1	5.2	0.52	1/12	1	4.4	15	0	4.3	
	220-240/50/1	7.3	3.1	18.8	1	5.2	0.52	1/12	1	9.2	15	1.64	6.8	
	265/60/1	3.0	2.45	15.0	1	3.9	0.52	1/12	1	3.6	15	0	0	
	265/60/1	5.5	2.5	15.0	1	3.9	0.52	1/12	1	6.9	15	1.33	5.0	
009	115/60/1	8.3	7.20	45.6	1	10.9	1.20	1/12	1	10.2	15	0	0	
	208/60/1	4.0	3.40	22.2	1	6.4	0.60	1/12	1	4.9	15	0	0	
	208/60/1	6.48	3.4	22.2	1	6.4	0.60	1/12	1	8.1	15	1.23	5.9	
	230/60/1 230/60/1	4.0 7.08	3.40 3.4	22.2 22.2	1	6.4 6.4	0.60	1/12 1/12	1	4.9 8.9	15 15	0 1.50	0 6.5	
	220-240/50/1	5.0	4.30	22.2	1	6.6	0.00	1/12	1	6.1	15	0	0.5	
	220-240/50/1	9.72	4.3	22.2	1	6.6	0.72	1/8	1	12.2	15	2.17	9.0	
	265/60/1	3.6	3.10	18.8	1	5.2	0.52	1/12	1	4.4	15	0	0.0	
	265/60/1	8.0	3.1	18.8	1	5.2	0.52	1/12	1	10.0	15	2.00	7.5	
012	115/60/1	12.2	10.60	56.7	1	16.0	1.57	1/8	1	14.8	25	0	0	
	208/60/1	5.7	5.00	27.9	1	8.3	0.70	1/8	1	7.0	15	0	0	
	208/60/1	8.5	5.0	27.9	1	8.3	0.70	1/8	1	10.6	15	1.63	7.8	
	230/60/1 230/60/1	<u>5.7</u> 9.4	5.00 5.0	27.9 27.9	1	8.3 8.3	0.70	1/8 1/8	1	7.0 11.8	<u>15</u> 15	0 2.00	0 8.7	
	220-240/50/1	<u>9.4</u> 5.5	4.80	27.9	1	8.5	0.70	1/8	1	6.7	15	2.00	0.7	
	220-240/50/1	12.02	4.8	27.0	1	8.5	0.72	1/8	1	15.0	15	2.70	11.3	
	265/60/1	5.0	4.30	22.2	1	6.6	0.72	1/8	1	6.1	15	0	0	
	265/60/1	10.72	4.3	22.2	1	6.6	0.72	1/8	1	13.4	15	2.65	10.0	
015	208/60/1	6.1	5.40	29.0	1	9.2	0.70	1/8	1	7.5	15	0	0	
	208/60/1	10.3	5.4	29.0	1	9.2	0.70	1/8	1	12.9	15	2.00	9.6	
	230/60/1	6.1	5.40	29.0	1	9.2	0.70	1/8	1	7.5	15	0	0	
	230/60/1	11.6	5.4	29.0	1	9.2	0.70	1/8	1	14.5	15	2.50	10.9	
	220-240/50/1 220-240/50/1	7.8 15.23	6.30 6.3	32.0 32.0	1	10.0 10.0	1.53 1.53	1/3 1/3	1	9.4 19.0	15 20	0 3.28	0 13.7	
	265/60/1	5.5	4.80	27.0	1	8.5	0.72	1/8	1	6.7	15	0	0	
	265/60/1	13.22	4.8	27.0	1	8.5	0.72	1/8	1	16.5	20	3.30	12.5	
018	208/60/1	9.4	7.60	45.0	1	13.0	2.10	1/3	1	11.6	15	0	0	
	208/60/1	13.6	7.6	45.0	1	13.0	2.10	1/3	1	17.4	20	2.46	11.8	
	230/60/1	9.4	7.60	45.0	1	13.0	2.10	1/3	1	11.6	15	0	0	
	230/60/1	14.8	7.6	45.0	1	13.0	2.10	1/3	1	18.9	20	3.00	13.0	
	220-240/50/1	11.4	9.90	55.0	1	13.8	1.53	1/3	1	13.9	20	0	0	
	220-240/50/1 265/60/1	<u>19.63</u> 7.8	9.9 6.30	55.0 32.0	1	13.8 10.0	1.53 1.53	1/3 1/3	1	24.5 9.4	<u>25</u> 15	4.35 0	18.1 0	
	265/60/1	16.63	6.3	32.0	1	10.0	1.53	1/3	1	20.8	25	4.00	15.1	
	380-415/50/3	4.9	3.90	25.0	1	5.4	0.95	1/3	1	5.8	15	0	0	
	380-415/50/3	11.45	3.9	25.0	1	5.4	0.95	1/3	1	14.3	15	4.35	10.5	
024	208/60/1	12.7	10.90	56.0	1	15.3	2.10	1/3	1	15.7	25	0	0	
	208/60/1	17.5	10.9	56.0	1	15.3	2.10	1/3	1	22.3	25	3.26	15.7	
	230/60/1	12.7	10.90	56.0	1	15.3	2.10	1/3	1	15.7	25	0	0	
	230/60/1	19.2	10.9	56.0	1	15.3	2.10	1/3	1	24.0	25	4.00	17.4	
	220-240/50/1 220-240/50/1	<u>12.4</u> 24.03	10.90 10.9	58.0 58.0	1	15.3 15.3	1.53	1/3 1/3	1	15.2 30.0	25 35	0 5.40	0 22.5	
	265/60/1	11.4	9.90	55.0	1	13.8	1.53 1.53	1/3	1	13.9	20	0	0	
	265/60/1	21.53	9.9	55.0	1	13.8	1.53	1/3	1	26.9	30	5.30	20.0	
	208/60/3	9.3	7.50	51.0	1	10.5	2.10	1/3	1	11.5	15	0.00	0	
	208/60/3	10.8	7.5	51.0	1	10.5	2.10	1/3	1	13.9	15	3.26	9.0	
	230/60/3	9.3	7.50	51.0	1	10.5	2.10	1/3	1	11.5	15	0	0	
	230/60/3	11.8	7.5	51.0	1	10.5	2.10	1/3	1	15.1	15	4.00	10.0	
	380-415/50/3	5.0	4.00	28.0	1	5.6	0.95	1/3	1	6.0	15	0	0	
	380-415/50/3	8.45	4.0	28.0	1	5.6	0.95	1/3	1	10.6	15	5.40	7.5	
	460/60/3	4.9	3.90	25.0	1	5.4	0.95	1/3	1	5.8	15	0	0	
	460/60/3	7.65	3.9	25.0	1	5.4	0.95	1/3	1	9.6	15	5.30	6.7	

						PA	NE	ΞL	20	2/A						
				VOLTAGE: 208Y/120V,3PH,4W 10k AIC RATING BUS RATING: 225 A. 4/5/2004 MAIN: 150 A. MCB 1:48 AM												
LOAD (VOLT AMPS)			CN KO	LOAD SERVED	СВ	PI	PHASE CB		СВ	LOAD SERVED	C N K O					
TG	REC	MOTOR	HEAT	т	LOND GERVED	AMP/P	А	В	С	AMP/P		т	LTG	REC	MOTOR	HEAT
		1392		1	FCU	15/1	*	-	-	15/1	FCU	2			1392	
		1392		3	FCU	15/1	-	*	-	15/1	FCU	4			1392	
		1392		5	FCU	15/1	-	-	*	15/1	FCU	6			1392	
		1392		7	FCU	15/1	*	-	-	15/1	FCU	8			1392	
		696		9	FCU	15/1	-	*	-	15/1	FCU	10			1392	
		1392			FCU	15/1	-	-	*	15/1	FCU	12			1392	
		1392		13	FCU	15/1	*	-	-	15/1	FCU	14			1392	
		1392		15	FCU	15/1	-	*	-	20/1	SPARE	16				
				17	SPARE	15/1	-	-	*	20/1	SPARE	18				
		696		19	EF-15	15/1	*	-	-	15/1	FCU-8	20			696	
		696			EF-16	15/1	-	*	- *	15/1	EF-9	22			528	
		000			SPARE	15/1	-	-			SPACE	24			004	
		696 864		25 27	EF-40 EF-48	15/1	î	-	-	15/1	EF-50 EF-51	26 28			864 864	
		864 864			EF-48 EF-49	15/1 15/1	-		*	15/1 15/1	EF-51 EF-52	28 30			864 696	
		696		29 31	EF-49 EF-54	15/1	- *	-		20/1	SPARE	30			696	
		090			SPARE	20/1		*	_	20/1	SPARE	34				
					SPARE	20/1	-	_	*	20/1	SPARE	34				
					SPARE	20/1	*	-	-	20/1	SPACE	38				
					SPARE	20/1	-	*	_		SPACE	40				
					SPARE	20/1	-	-	*		SPACE	42				
					DER SIZE: SEE ONE LINE			l								
0	0	14952	0					ma	rk w	ith an X a	s appropriate:		0	0	13392	C
		OTALS		FED	FROM:						ON GROUND BUS	-		OTALS		
					PANEL 2PQ/A					200 % NI	UTRAL					
				моц	INTING:					FEED-TH	RU LUGS					
					SURFACE					SHUNT 1	RIP MAIN CB					
				LOC	ATION:					OUTDOC	R ENCLOSURE					
					ELEC. EQUIP. 258					STAINLE	SS STEEL COVER					
				FOO	TNOTES:											
					(1) = SHUNT TRIP CB									==	TOTALS	
					(2) = GROUND FAULT CI								0	0		C
	-	LOADING			(3) = DEMAND FACTOR	FROM NEC	; 70,	, AR	RTIC	LE 220			LTG	REC	MOTOR	HEAT
TG	REC	MOTOR	HEAT			-					CONNECTED KVA TOT	ALS	0.00	0.00	28.34	0.00
0	-		0		PHASE A	4					DEMAND FACTOR	_	1.25	(3)	1.00	1.00
0			0		PHASE B	4					ADJUSTED KVA TOTAL		0.00	0.00	28.34	0.00
0		-	0		PHASE C	4					TOTAL CONNECTED K		28.34			
	A	-	C 7100								TOTAL ADJUSTED KVA		28.34			
	12000	9216			TOTALS	4					THREE PHASE VOLTAG	9E	208			
		-			LANCASTER C.H. 20254.00						TOTAL PANEL ADJUSTED AMPERAGE	_				
		۲	TOJECT NU	inpel:	20234.00						ADJUSTED AWPERAGE		79			

1						D		=1	20	\/ A						
				PANEL 3Q/A VOLTAGE: 208Y/120V,3PH,4W BUS RATING: 225 A. MAIN: 150 A. MCB							10k AIC RATIN 4/5/200 1:48 AI					
LOAD (VOLT AMPS)				CN		СВ	P	HAS	ε	СВ		CN	LOAD (VOLT AMPS)			
LTG	REC	MOTOR	HEAT	КО Т	LOAD SERVED	AMP/P	A	В	С	AMP/P	LOAD SERVED	ко т	LTG	REC	MOTOR	HEAT
		696			FCU-9	15/1	*	-	-	15/1	EF-28	2			528	
				-	SPARE SPACE	20/1	-	*	- *	15/1	EF-29 EF-30	4 6			864 696	
		864		-	EF-32	15/1	-	-	_	15/1 15/1	SPARE	ь 8			696	
		004			SPACE	15/1	-	*	_	15/1	FCU	10			1392	
				-	SPARE	15/1	-	-	*	15/1	FCU	12			1392	
		1392		13	FCU	15/1	*	-	-	15/1	FCU	14			1392	
		1392			FCU	15/1	-	*	-	15/1	FCU	16			1392	
		1392			FCU	15/1	-	-	*	15/1	FCU	18			1392	
		1392 1392		-	FCU FCU	15/1 15/1	*	- *	-	15/1 15/1	FCU FCU	20 22			1392 1392	
		696			FCU	15/1	-	_	*	15/1	FCU	22			1392	
		000			SPARE	20/1	*	-	-	15/1	FCU	26			696	
					SPARE	20/1	-	*	-	20/1	SPARE	28				
				29	SPARE	20/1	-	-	*	20/1	SPARE	30				
				-	SPACE		*	1	1		SPACE	32				
					SPACE		-	*	-		SPACE	34				
					SPACE		-	-	*		SPACE SPACE	36 38	-			
				-	SPACE SPACE			*	-		SPACE	30 40				
					SPACE		_	-	*		SPACE	42				
					DER SIZE: SEE ONE LINE	DIAGRAN	1									
0	0	9216	0					ma	rk w	rith an X a	s appropriate:		0	0	13920	0
	SUB T	OTALS		FED	FROM:	ISOLATION GROUND BUS								SUB T	OTALS	
					PANEL 3PQ/A 200 % NEUTRAL											
				MOUNTING: FEED-THRU LUGS												
				SURFACE SHUNT TRIP MAIN CB LOCATION: OUTDOOR ENCLOSURE												
				ELEC. EQUIP. 360 STAINLESS STEEL COVER												
				FOOTNOTES:												
					(1) = SHUNT TRIP CB							PANEL	TOTALS			
					(2) = GROUND FAULT CB								0		23136	
	PHASE L				(3) = DEMAND FACTOR F	ROM NEC	C 70	, AR	TIC	LE 220	1		LTG	REC	MOTOR	HEAT
LTG	REC	MOTOR	HEAT			1					CONNECTED KVA TOTA	ALS	0.00	0.00	-	0.00
0	0	8352 7824	0		PHASE A PHASE B	-					DEMAND FACTOR ADJUSTED KVA TOTALS	\$	1.25	(3)	1.00 23.14	1.00
0	0	6960	0		PHASE C	1					TOTAL CONNECTED KV		23.14	0.00	23.14	0.00
-	-		с С			1					TOTAL ADJUSTED KVA		23.14			
	8352	7824	6960		TOTALS						THREE PHASE VOLTAG	Ε	208			
					LANCASTER C.H.	•					TOTAL PANEL					
		Pi	roject Nur	nber:	20254.00						ADJUSTED AMPERAGE		64			

-						DA	NI	- 1	20	\/A						
	PANEL 2Q/A VOLTAGE: 208Y/120V.3PH.4W 10k AIC RATING											~				
					BUS RATING: 225 A.				4/5/200							
				MAIN: 150 A. MCB							4/3/200 1:43 Al					
						CB	Р	HAS	SΕ	CB						
LOAD (VOLT AMPS)				C N K O	LOAD SERVED				-		LOAD SERVED K C			LOAD (VC	OLT AMPS)	
LTG	REC	MOTOR	HEAT	т		AMP/P	А	В	С	AMP/P		Т	LTG	REC	MOTOR	HEAT
		1753			WSHP	20/1	*	-	-	20/1	WSHP	2			1753	
		1753		3	WSHP	20/1	-	*	-	20/1	WSHP	4			1753	
		1753		-	WSHP	20/1	-	-	*	20/1	WSHP	6			1753	
		1753			WSHP	20/1	*	-	-	20/1	WSHP	8			1753	
		1753		-	WSHP	20/1	-	*	-	20/1	WSHP	10			1753	
		1753			WSHP	20/1	-	-	*	20/1	WSHP	12			1753	
		1753		-	WSHP	20/1	*	-	-	20/1	WSHP	14			1753	
		1753 1753			WSHP WSHP	20/1 20/1	-	î	- *	20/1 20/1	WSHP WSHP	16 18			1753 1753	
		696			EF-15	20/1	-	-		20/1	FCU-8	20			696	
		696		-	EF-16	15/1	_	*	-	15/1	EF-9	20			528	
		030			SPARE	15/1		-	*		SPACE	24			520	
		696		25	EF-40	15/1	*	-	-	15/1	EF-50	26			864	
		864		-	EF-48	15/1	-	*	-	15/1	EF-51	28			864	
		864			EF-49	15/1	-	-	*	15/1	EF-52	30			696	
		696		31	EF-54	15/1	*	-	-	20/1	WSHP	32			1753	
		1753		33	WSHP	20/1	-	*	-	20/1	WSHP	34			1753	
		1753		35	WSHP	20/1	-	-	*	20/1	WSHP	36			1753	
		1753		37	WSHP	20/1	*	-	-	20/1	WSHP	38			1753	
		1753		39	WSHP	20/1	-	*	-	20/1	WSHP	40			1753	
					SPARE	20/1	-	-	*	20/1	WSHP	42			1753	
					DER SIZE: SEE ONE LINE	DIAGRAN										
0	0	27301	0					ma			s appropriate:		0	0		0
	SUB TO	JTALS		FED	FROM:						ON GROUND BUS			SOB I	OTALS	
					PANEL 2PQ/A INTING:					200 % N	EUTRAL IRU LUGS					
				NOU	SURFACE						RIP MAIN CB					
					ATION:		DR ENCLOSURE									
				ELEC. EQUIP. 258 STAINLESS STEEL COVER												
					(1) = SHUNT TRIP CB							PANEL	TOTALS			
					(2) = GROUND FAULT CB								0			0
	PHASE L	.OADING			(3) = DEMAND FACTOR F	ROM NEC	70	AR	TIC	LE 220			LTG	REC	MOTOR	HEAT
LTG	REC	MOTOR	HEAT			-					CONNECTED KVA TOTA	ALS .	0.00	0.00	57.24	0.00
0	0	19425	0		PHASE A						DEMAND FACTOR		1.25	(3)	1.00	1.00
0	0	20482	0		PHASE B	1					ADJUSTED KVA TOTALS	-	0.00	0.00	57.24	0.00
0	0	17337	0		PHASE C	1					TOTAL CONNECTED KV	'A	57.24			
	· · ·	-	C								TOTAL ADJUSTED KVA		57.24			
	19425	20482	17337	ļ	TOTALS	1					THREE PHASE VOLTAG	E	208			
					LANCASTER C.H.						TOTAL PANEL	4				
		Р	roject Nur	mber:	20254.00						ADJUSTED AMPERAGE		159			

						DA		-1	20	2/A						
					VOLTAGE: 208V/120V/20			<u> </u>	36	Я	10k AIC RATIN	G				
				VOLTAGE: 208Y/120V,3PH,4W BUS RATING: 225 A.							4/5/200					
				BUS RATING: 225 A. MAIN: 150 A. MCB							4/3/200 1:43 Al					
				СN		CB	Р	HAS	SΕ	CB						
L	LOAD (VOLT AMPS)			ко	LOAD SERVED	-			-	LOAD SERVED	ко		LOAD (VC	OLT AMPS)		
LTG	REC	MOTOR	HEAT	т		AMP/P	А	В	С	AMP/P		т	LTG	REC	MOTOR	HEAT
		696			FCU-9	15/1	*	-	-	15/1	EF-28	2			528	
				-	SPARE	20/1	-	*	-	15/1	EF-29	4			864	
					SPACE		-	-	*	15/1	EF-30	6			696	
		864			EF-32	15/1	*	-	-	15/1	SPARE	8				
				-	SPACE		-	*	-	20/1	WSHP	10			1753	
					SPARE	15/1	-	-	*	20/1	WSHP	12			1753	
		1753		-	WSHP	20/1	*	-	-	20/1	WSHP	14			1753	
		1753			WSHP	20/1 20/1	-	Ĩ	- *	20/1	WSHP	16			1753	
		1753 1753			WSHP WSHP	20/1	-	-		20/1 20/1	WSHP WSHP	18 20			1753 1753	
		1753		-	WSHP	20/1	_	*	-	20/1	WSHP	20			1753	
		1753			WSHP	20/1			*	20/1	WSHP	22			1753	
		1753		-	WSHP	20/1	*	-	-	20/1	WSHP	24			1753	
		1753		-	WSHP	20/1	-	*	-	20/1	WSHP	28			1753	
		1753			WSHP	20/1	-	-	*	20/1	WSHP	30			1753	
		1753		31	WSHP	20/1	*	-	-	20/1	WShp	32			1753	
		1753		33	WSHP	20/1	-	*	-	20/1	WSHP	34			1753	
		1753		35	WSHP	20/1	-	-	*	20/1	WSHP	36			1753	
		1753			WSHP	20/1	*	1	-	20/1	WSHP	38			1753	
		1753			WSHP	20/1	-	*	-		SPACE	40				
					SPACE		-	-	*		SPACE	42				
					DER SIZE: SEE ONE LINE	DIAGRAN	1									
0	0	26102	0					ma			s appropriate:		0	0		0
	SUB TO	JTALS		FED	FROM:						ON GROUND BUS		SOB I	OTALS		
				MOU	PANEL 3PQ/A INTING:					200 % N	EUTRAL IRU LUGS					
				NOU	SURFACE						RIP MAIN CB					
					ATION:		OR ENCLOSURE									
				ELEC. EQUIP. 360 STAINLESS STEEL COVER												
				FOO	TNOTES:											
					(1) = SHUNT TRIP CB								PANEL	TOTALS		
					(2) = GROUND FAULT CB								0			0
	PHASE LOADING				(3) = DEMAND FACTOR F	ROM NEC	C 70	, AR	TIC	LE 220			LTG	REC	MOTOR	HEAT
LTG	REC	MOTOR	HEAT			-					CONNECTED KVA TOTA	ALS	0.00	0.00	54.49	0.00
0	0	19618	0		PHASE A						DEMAND FACTOR		1.25	(3)	1.00	1.00
0	0	18394	0		PHASE B						ADJUSTED KVA TOTAL	-	0.00	0.00	54.49	0.00
0	0	16473	0		PHASE C						TOTAL CONNECTED KV	/Α	54.49			
		-	C		70741 0						TOTAL ADJUSTED KVA	-	54.49			
19618 18394 16473 TOTALS											THREE PHASE VOLTAG	iΕ	208			
Project Name: LANCASTER C.H. TOTAL PANEL Project Number: 20254.00 ADJUSTED AMPERAGE								4								
		Р	roject Nur	nber:	20254.00						ADJUSTED AMPERAGE		151			