

	191 Nation	al Business Park
Introduction	Background Informati	on 2691 Technology Drive
		Annapolis Junction, Maryland
Construction in Secure Environments	Building Size:	101,960 square feet
Elevated Floor System	Number of Stories:	4
SCIF	<u>Type of Building:</u>	Office and Light Testing Facility Secure Facilities Building Use Group: "B" (Business)
	Delivery Method:	Design-Bid-Build
Conclusions	Dates of Construction:	April 2004 – July 2005
Kara Prince Construction Management		AE Senior Thesis 2005 Penn State University

	191 Natio	nal Busii	1ess Pa	ion, MD
Introduction	Survey Participants.			
Construction	Question	Responses	Most Frequent Response	110
in Secure Environments	Years of Experience in the Industry	Range from 3 years to 27 years		108
	Years of Experience with Secure Environments	Range from less than 1 year to 5 years		110
Elevated Floor System	Projects	Federal Building, Office Building, Laboratory, Research and Development Center, Data Center, Hospital	Office Building	
	Owners	Federal, Government Contractor	Federal	110
SCIF	Project Delivery Methods	Design-Bid-Build, Design- Build, Construction Management	Design-Build	
Conclusions				
Kara Prince			AE Senior Th	nesis 2005
Construction Management			Penn State L	Iniversity

	191 National Business Park
Introduction	Potential Listing of Problem Areas
Construction	Breakdown of Construction Activities Most Affected by Secure Environments
Environments	■5 ⁻ / ₈ 393 ^{93%} ■3 ⁻ / ₈ ■15 ⁻ / ₈ □5 ⁻ / ₈ = 5 ⁻ / ₈
Elevated Floor System	■ 10% □ 12.50% □ 12.50%
SCIF	Mobilization Moterial Deliveries Communication Worker Availability Preconstruction/Planning Substructure/by generizeture Worker Training Inteler/Finishes Excendation Envederime Preconstruct
Conclusions	Swing Space Availability
Kara Prince	AE Senior Thesis 2005
Construction Management	Penn State University

Introduction Pe	Percent Reductions			
Introduction	Construction Activity	Range of Percent Responses	Average Percentage	
	Material Deliveries	10% to 50%	30%	
Construction	Mobilization	5% to10%	9%	
in Secure	Worker Training	0% to10%	5%	
Invironments	Communication	0% to 25%	13%	
	Worker Availability	0% to 33%	18%	
	Preconstruction/Planning	0% to 5%	4%	
levated Floor	Interior Finishes	0% to 400%*	57%	
System	Staff transitions/Turnover	0% to 30%	15%	
	Estimating	-		
	Excavation	-		
SCIE	Foundation	-		
00	Substructure/Superstructure	-		
	Safety Training	-		
	Subcontractor Pool Impacts	-		
Conclusions	Subcontractor Pool Impacts *This percentage i	- s restricted to one particular cas		

	191 National Business Park
Introduction	Strategies to manage security
Construction	Before going onsite, the team must have a complete understanding of all security requirements.
In Secure Environments	Coordination between workers and security agency is key to process quickly.
	Create a separate facility on site to handle all security.
Elevated Floor System	Convey detailed expectations and the impacts of security to workers.
	Dedicate one individual to handle security only.
SCIF	Develop a highly detailed schedule including all tasks and activities.
Conclusions	
Kara Prince	AE Senior Thesis 2005
Construction Managemen	t Penn State University

191 National Dusiness Fark
Overview of Breadth Analysis I
Existing Elevated Floor System:
6" Total Slab
20 Gauge Metal Decking
3" Lightweight Concrete
WWF - 6"x6" W 2.9 x W2.9
Chairs 1" from top of slab
AE Senior Thesis 2005

	191 National Business Park
Introduction	Vibration Analysis
	Preliminary Assessment (Hanagan):
Construction	Concrete Weight – Light weight Concrete
in Secure	Steel Frame Type – Rolled beams/girders
Environments	Construction Type – Composite
	Deck Type – Composite
Elevated Floor System	C1 = 0.449 (from chart based on deck thickness and total slab thickness)
	C2 = 0.120 (from chart)
	C1 + C2 = 0.449 + 0.120 = 0.569 > 0.5
SCIF	UNACCEPTABLE FOR VIBRATION!!!
Conclusions	However, original structure is structurally sound (based on calculations made from LRFD).
Kara Prince	AE Senior Thesis 2005
Construction Management	Penn State University

	191 Nation	nal Busii	ness Parl
Introduction	Cost Impacts		
Construction in Secure	Light weight conc (Accordin	rete is an additional ig to RS Means 199	\$2.75/CY 9)
Environments	Cost of Original: Lightweight	Cost of Revised: Normal Weight	Difference In Cost
Elevated Floor System	\$7,657,000	\$5,702,000	\$1,955,000
SCIF	Normal weight	concrete costs signi	ificantly less!
Conclusions			
Kara Prince			AE Senior Thesis

	191 National Business Park
Introduction	Value Engineering
Orașteațiar	Light weight Concrete - versus - Normal weight Concrete
in Secure Environments	Light weight is <i>harder to place</i> during construction Light weight concrete <i>costs more</i>
Elevated Floor System	Light weight is harder to achieve the same level of quality
SCIF	Therefore Normal Weight Concrete is a better value engineering idea!!!
Conclusions	
Kara Prince	AE Senior Thesis 2005
Construction Managemen	t Penn State University

	191 National Business Park
Introduction	Security: Sound Attenuation
	Sensitive Compartmented Information Facilities (SCIF) require:
Construction in Secure Environments	Sound Transmission Class (STC) 45 or greater (Director of Central Intelligence Directive)
Elevated Floor System	DCID requires a minimum of 8" thick reinforced concrete construction of walls, floor, and ceiling.
0015	Northrop Grumman constructs SCIFs using permanent drywall construction.
SUIF	This is allowed because they have immediate response force within their facilities.
Conclusions	
	More about SCIFs in next section
Kara Prince	AE Senior Thesis 2005
Construction Managem	ent Penn State University

Introduction	truction Re	quirements (According	to DCID)	
		General Requirements	Types of Materials	
Construction in Secure Environments Elevated Floor	Doors	Only one primary entrance allowed. Exit door may be required. Doors must be closed at all times unless for emergencies. Must be plumo in frame and of sufficient strength. Austor plumointainton lock, and approved combination lock, and access control device. Hingo pris located exterior of the SCIF will be treated to prevent removal.	 Solid wood core door, min 1 ¼° thick 16 gauge metal cladding over wood or comp materials, min 1 %°. Metal cladding continuous and cover entire front and back, 1 %°. The cladding continuous and cover entire front and back, 1 %°. Johend metal rolling door, min 22 gauge 	
SCIF	Windows	Windows which allow visual surveiliance must be made opaque or covered with items such as blinds to prevent surveiliance. Windows at ground level will be covered with materials to prevent entry. Perimeter windows at ground level shall be covered by an Intrusion Detection System.		
Conclusions		Detection System.		

	191 National Business Park
Introduction	Electrical Requirements
Construction in Secure Environments	Panel boards must be located inside room.
Elevated Floor System	 Dielectric is required for all conduits running through SCIF space. Dielectric is any medium that does not allow the passage of electric force through.
SCIF	For SCIFs that require less than 100 kVa, a UPS and transformer is required to change the voltage. (Manager of Electrical Engineering at Northrop Grumman)
Conclusions	,
Kara Prince	AE Senior Thesis 2005
Construction Manageme	nt Penn State University

	191 National	Business Park	
Introduction	Value Engineering		
	Renovation of Original System	Initially Installing Secure System	
Construction in Secure Environments	Step: 4-bissing duct and VAV boxes must be removed New duct manufactured and installed – including reducers, sound ining, and man bars =900 CFM VAV box installed =545 CFM VAV box manufactured and installed =755 CFM VAV box manufactured and installed	Steps: • Duct manufactured and installed – including reducers, sound lining, and man bars • 000 CFM VAV box manufactured and installed • 545 CFM VAV box manufactured and installed • 755 CFM VAV box manufactured and installed	
Elevated Floor System	Costs	Costs:	
Conclusions	Total Cost: \$7500	Total Cost: \$7360	
	Cost Difference: \$140		
Kara Prince		AE Senior Thesis 2005	
Construction Management	t	Penn State University	

	191 National Business Park
Introduction	Value Engineering
Construction in Secure Environments	However, costs did not take into consideration the additional planning costs needed to renovate the existing system versus initially installing a secure HVAC duct.
Elevated Floor System	Therefore,
SCIF	initially installing a secure system is a better value engineering idea.
Conclusions	
Kara Prince	AE Senior Thesis 2005
Construction Monogeneous	Dana State Llaiversity

