Fordham Place

Bronx, NY

Aric Heffelfinger Structural Option Spring 2006

Building Introduction

- Owner
 Acadia Realty
- Construction Manager
 Acadia Realty
- Architect
 Greenburg Farrow
- Structural Engineer
 M.G. McLaren
- *Mechanical Engineer
 Greenburg Farrow

Building Introduction

- * Size
 - 15 Stories
 - 174,000 SF
- ***** Cost
 - \$34.8 Million
- * Retail

Ground – 2nd floor

* Community

3rd – 9th floor

Office

10th – 15th floor

Presentation Outline

- Building Introduction
- **Existing Structure**
- Proposal / Goals
- Structural Redesign
- * Breadth Work
- Conclusion / Recommendations

Existing Structure

Design Codes
Building Code of
New York City

- Floor System
 - Composite Concrete Slab & Steel beams
 - 6 1/4" Lightweight Slab (115 pcf)
 - A992 Grade 50 Steel
 - 3" Composite Galvanized Metal Deck

Existing Structure

* Columns

- Grade 50 W14 Shapes
- Splice every 3rd Floor
- 13.5 ft typical unbraced length

* Lateral System

- Eccentrically braced Chevron Frames
 - 12 x 12 x ½ HSS bracing members
 - A500 Grade B Steel
 - Fy = 46ksi
 - Fu = 58ksi

Existing Structure

* Foundations

- 150 ton Group piles (4-13)
- 45 50 ft Deep
- A992 Grade 50 Steel W shapes

* Enclosure

- Brick Façade up to 6th floor
- Glass Façade 6th 15th floors

Presentation Outline

- Building Introduction
- Existing Structure
- Proposal / Goals
- Structural Redesign
- * Breadth Work
- Conclusion / Recommendations

Proposal / Goals

- *Viable Structural Systems
- * Effects the new floor system had on other building systems
 - Lateral System
 - Columns
 - Foundations
- * Compare Constructability & Cost
- * Examine pros / cons of each systems
- * Determine which floor system is more efficient in NY area

- * Design Codes
 - ASCE 7 02
 - ACI 318 02

- Floor System
 - Two Way Slab with Drop Panels
 - Normal Weight Concrete
 - f'c = 4ksi
 - Designed using ADOSS

- * Design Process
 - Column size estimate
 - ACI to get minimum floor slab thickness, drop depth, and width
 - Determine column strips
 - Input into ADOSS
 - Make Adjustments as necessary
 - Determine reduced gravity loads and moments on columns
 - Input Into PCA Column

- * Design Process
 - Check column size assumption
 - Select slab and column Reinforcement
 - Determine critical lateral load
 - Design shear walls
 - Select shear wall Reinforcement
 - Consider special areas throughout building

- * Column size estimate
 - 24" x 24"
 - Clear span = 28' 2' = 26'

* Floor slab depth

■ $\ln/36 = 26/36 = 8.67''$ → use 9"

* Drop panel

- Projection = $\frac{1}{4} t_{\text{slab}} = 2.25'' \rightarrow \text{try } 3.5''$
- Width = $\frac{1}{6}$ span = $\frac{1}{6}$ (28') = 4'-8"

- * Column strip width
 - Width = least of 0.25 ℓ_1 or ℓ_2

- * Input into ADOSS
 - NW concrete (150 pcf)
 - f'c = 4ksi
 - Reinforcing steel fy = 60ksi
 - Minimum rebar spacing = 6in
 - Minimum rebar size = #4
 - Loads
 - Dead = 30psf
 - Live = 80psf
 - Geometric properties as determined in previous slides

- * Adjustments
 - Drop projection
 - Increase to 5.5"
 - High shear stresses at columns
 - Excessive reinforcement at columns

* Reduced Live loads

•
$$L = L_o [0.25 + (15/\sqrt{(K_{LL} A_T)})]$$

- $L_0 = 80 psf$
- A_T = Tributary Area
- K_{LL} = Live load element factor

- * Input into PCA Column
 - f'c = 4ksi
 - Biaxial Column
 - steel reinforcement fy = 60ksi
 - 24" x 24" with increment of 2"
 - Equal reinforcement
 - Cover = 0.75" to ties
 - Min / Max bar size = 8 / 11
 - Column Heights = varies
 - Moments from ADOSS
 - Reduced axial loads

- * Check Column Size Assumption
 - Actual Size = 26" x 26"
 - Conservative compared to 24" x 24"

- * Selection of Slab Reinforcement
 - Column Strip
 - Positive Reinforcement
 - As $\approx 0.3 \text{ in}^2/\text{ft}$ $\Omega = 0.028$
 - #5's @ 12"
 - Negative Reinforcement
 - As $\approx 0.55 \text{ in}^2/\text{ft}$ $\therefore Q = 0.0032$
 - 50% long, 50% short
 - ■#6's @ 12"

- * Selection of Slab Reinforcement
 - Middle Strip
 - Positive Reinforcement
 - As $\approx 0.2 \text{ in}^2/\text{ft}$ $\therefore \varrho = \varrho_{\text{min}} = 0.0018$
 - 50% long, 50% short
 - **44**'s @ 12"
 - Negative Reinforcement
 - As $\approx 0.3 \text{ in}^2/\text{ft}$ $\therefore Q = 0.0028$
 - #5's @ 12"

- * Selection of Column Reinforcement
 - Longitudinal
 - Maximum = 20 #11
 - $As = 29.7 \text{ in}^2$ Q = 0.044
 - Minimum = 12 #8
 - As = 9.48 in^2 \therefore $Q = 0.014 > Q_{\text{min}} = 0.01$

Transverse

- Spacing = least of the following:
 - $16 \times d_{longitudinal}$ bar = 16(1'') = 16''
 - $48 \times d_{tie}$ bar = 48(.375'') = 18''
 - 0.5 x column dimension = $0.5(26) = 13'' \rightarrow use 12''$
- #3's @ 12" with #8 longitudinal bars
- #4's @ 12" with #11 longitudinal bars

- * Determine Critical Lateral Loads
 - Seismic now controlled over wind
 - $\blacksquare 1.2D + 1.0E + L + 0.2S$

- * Design Shear Walls
 - Treated as a huge cantilevered beam
 - 12" thick based on drift limits
 - Shear Design
 - Reinforcement
 - #5's @ 12" for first third of building height
 - #5's @ 24" for second third
 - No reinforcement required for last third

- * Design Shear Walls
 - Flexural Design
 - Reinforcement
 - $A_s = 53.7 in^2$
 - Flanged shear walls
 - 1ft flanges on each end to help fit steel
 - 36 #11's
 - $A_s = 56.2in^2$

- * Design Shear walls
 - Drift Limit
 - Most severely loaded shear wall
 - $\Delta_{\text{Limit}} = h/400 = 6.07 \text{in}$
 - $\Delta_{\text{Actual}} = \text{Pb}^2((3L b) / (6EI) = 5.32in$
 - Where P = Force on wall
 - b = Distance from base to force
 - L = Height of wall
 - E = Modulus of elasticity of concrete
 - I = Moment of Inertia of cross section
 - Used method of superposition

- Special Cases
 - Floor Opening
 - Atrium space below
 - Mezzanine floor below
 - Large unbraced length
 - 26" x 12" beams to support columns
 - minimum reinforcement in beams
 - f'c = 8ksi
 - **20 #11's**

- * Special Cases
 - Slab
 - Large clear span = 30′-0″
 - $\ell_{\rm n}/36 = 30/36 = 10^{\prime\prime} > 9^{\prime\prime}$
 - Only two locations per floor
 - Continuous drops
 - Middle strip positive reinforcement depth
 - Designed normally but with 14.5" slab

Presentation Outline

- Building Introduction
- Existing Structure
- Proposal / Goals
- Structural Redesign
- **&** Breadth Work
- Conclusion / Recommendations

CM Breadth

- * Cost of Superstructure
 - Composite steel
 - \$1.74 Million
 - All Concrete
 - \$2.42 Million
 - 140% Composite steel
 - Difference
 - **\$2.42 \$1.74 = \$680,000**

CM Breadth

- * Durations
 - Composite steel
 - 40.2 calendar weeks
 - All Concrete
 - 78.3 calendar weeks
 - Primarily formwork
 - 195% Composite steel
 - Difference
 - -78.3 40.2 = 38.1 weeks

Presentation Outline

- Building Introduction
- Existing Structure
- Proposal Goals
- Structural Redesign
- Breadth Work
- Conclusion / Recommendations

Conclusions / Recommendations

Comparison of each system

	Composite steel	All Concrete
Cost	5	4
Duration	5	2
Vibration Issues	5	5
Constructibility	4	З
Floor depth	2	5
Area of country	4	1
Lateral Drift	. 5	5
OVERALL	4.29	3.57

Composite Steel is a better floor system

Acknowledgements

- * Special Thanks To:
 - Penn State AE Faculty
 - M.G. McLaren
 - Acadia Realty
 - AE Class of 2006
 - Family

- * Edge Beam
 - 26" x 12"
 - Tu = 133 k-ft
 - Torsion Threshold
 - Tu = 4.93 k-ft
 - Reduced Torsion
 - $Tu = 4 \times 4.93 = 19.7 \text{ k-ft}$
 - ΦTn ≥ Tu
 - $Tn = 2(A_o)(A_t)(f_{yv})\cos(\theta)/s$
 - Use #4 bars, $A_t = 0.2$
 - s = 12.3in

- * Edge Beam
 - Extra Longitudinal Reinforcement
 - Al = $(At)(pn)(fvy)cot^2(\theta)/(s)(fyl) = 1.01m^2$
 - Use 4 #5's

