Andrew Solomon Structural Design Option Advisor: M Kevin Parfitt Spring Run Assisted Living 10/31/2005

Technical Assignment 2

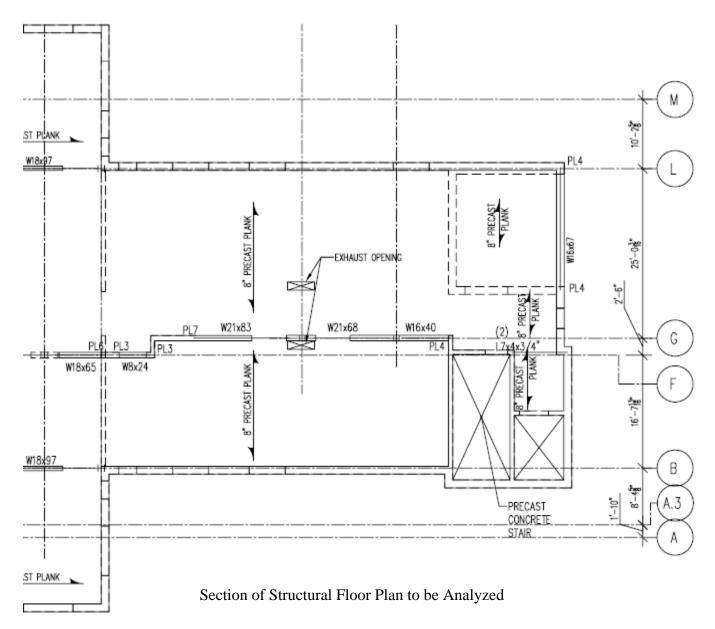
Executive Summary

Technical Assignment 2 is the pro-con structural study of alternate floor systems. The purpose of this report is to pick various other floor systems other then the one provided and compare the advantages and disadvantages of them. Many different factors are going to be taken into consideration. Some of these factors include; cost, weight, ease of construction, floor-to-floor height, fire ratings, material benefits, and structural benefits. The alternative floor systems are chosen based on typically used systems in low-rise multi dwelling units.

The 6 alternate floor systems analyzed are:

Existing – Hollow core precast planks.

- 1. Non-composite beam with composite metal deck and slab
- 2. Open web steel joists with composite metal deck and slab
- 3. Precast pre-stressed double tees (with interior bearing wall removed)
- 4. Precast pre-stressed double tees (with existing bay size)
- 5. One way concrete joist system (with interior bearing wall removed)
- 6. One way concrete joist system (with existing bay size)

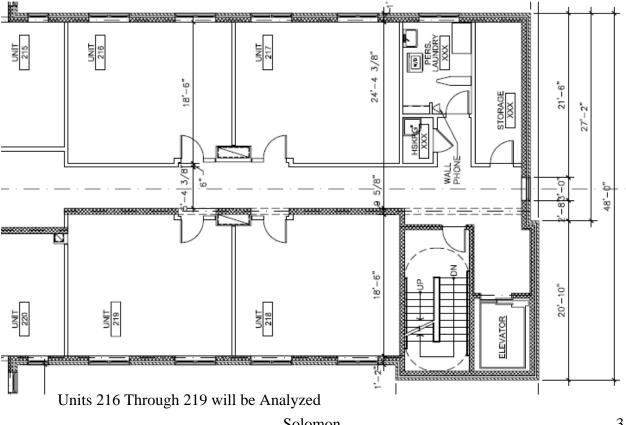

It was concluded that the existing floor system is the most efficient for the building design because of the follow:

- 1. Fire rating was not achieved by systems 1 and 2
- 2. All the alternate systems increase the building height.
- 3. System 5 had a much higher dead load for the slab.
- 4. System 2 may have large vibrations which will affect serviceability.

2 Existing Floor System

Technical Assignment 2 is the pro-con structural study of alternate floor systems. The purpose of this report is to pick various other floor systems other then the one provided and compare the advantages and disadvantages of them. Many different factors are going to be taken into consideration. Some of these factors include; cost, weight, ease of construction, floor-to-floor height, fire ratings, material benefits, and structural benefits. The alternative floor systems are chosen based on typically used systems in low-rise multi dwelling units.

The chosen alternate floor systems are going to be analyzed for a typical bay within the existing building. They will then be compared to the existing designed floor system and an analysis of whether further investigation into the use of those floor systems will be feasible.


The existing floor system is 8" Hollow Core Pre-Cast Concrete Planks. Where the plank is used as flooring, an additional 2" of topping will be added. Where the plank is used as the roof structure, no additional topping will be added. The concrete used in the pre-cast planks must reach a compressive strength of no less then 5000 psi after 28 days of curing. Where the planks meet a load bearing wall or a lintel, the plank is to be grouted solid as to make a connection to transfer lateral loads.

Live Loads (acquired from ASCE 7-02 Table 4.1)

Corridors – First floor100	PSF
Others40	PSF
Lobbies100	PSF
Mechanical Rooms150	PSF
Storage (Light)125	PSF
Dwelling Units40	PSF
Partitions20	PSF

Dead - Loads

Plank w/o Topping63	PSF
Plank w/ Topping	PSF
HVAC	PSF
Ceiling2	PSF
Framing10	PSF
Misc3	PSF

Solomon Spring Run Assisted Living

3 Alternative Floor Systems

There are numerous types of different floor systems which could have been selected and analyzed for this report. However, many of these systems would be impractical. Systems such as a two-way concrete slab can not be used in the current bearing wall plan and would require that bearing walls be placed thus that they provide a ratio of roughly 2 to 1 bays or less.

3.1 Alternative Floor System [#]1 Non-Composite Steel Beam with Composite Concrete Slab and Metal Decking

- The first alternative floor system is a non-composite steel beam system with a composite concrete slab and metal deck floor system. Through wheeling deck products, a 1.5 SB Light Weight floor system was chosen. This floor system will have 20 gauge metal decking, 4" of total slab thickness, and welded wire fabric of 6 x 6 w1.4 x w1.4.
- RAM Structural System was used to size the new beams. There are two lengths of beams used; the first beam is 19' in length and the second is 25' in length. The spacing of the beams is 8'-10". The shorter spanned beam is going to be a W12x19 while the longer spanned beam is to be a W16x26. The RAM model can be seen below:

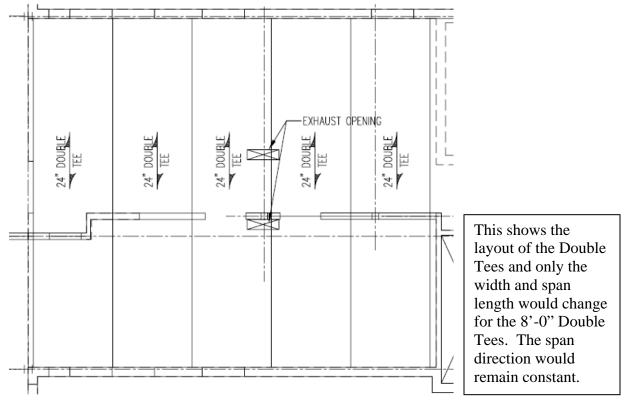
w16×31	W16×31	W16×31	W16×31	
w14×22	W14×22	W14×22	W14×22	Alternative Floor System #1 Non-composite Beam with Composite Concrete Slab and Metal Deck

Advantages and Disadvantages:

Using beams to support the new floor system will require that spray-on fireproofing be provided on any steel member to achieve the necessary 2 hr fire rating within the building. If beams are going to be used in the current wall design bearing plates must be inserted into the existing load bearing masonry walls. Although unlikely because of the use of the building, vibrations may play a role in the feasibility of this system. Using a beam system will be much lighter then using the existing system. The decking, which was originally provided as a structural component, will dub as a way to suspend the ACT ceiling. The dead load of the system is less than that of the original and thus the foundation can be reduced or left alone.

3.2 Alternative Floor System [#]2 Open Web Steel Joists with Composite Concrete Slab and Metal Decking

- Instead of large bulky beams spanning such short distances, the option of using open web steel joists is going to be analyzed. The same decking and concrete slab can be used as in alternative floor system 1. This is a wheeling deck, 1.5 SB light weight floor system. This will be of 20 gauge steel and have a total slab thickness of 4". Also, welded wire fabric of size, $6 \ge 6 = 1.4 \le 1.4$
- RAM Structural System was used to size the joists. The two lengths of the joists will be 19' and 25'. The sizes needed are 18K3 and 22K5 respectively. The RAM model can be seen below. Spacing will be provided at 4'-0" O.C.


	S S S S S S S S S S S S S S S S S S S	ZZKS	ZZKS	22K5	SKS	SZKS	SXS	SZKS	ی ۵	22KS	
Alternative Floor System #2 Open Web Steel Joists with Composite Concrete Slab and Metal Deck	18K3	18K3	18K3	18K3	18K3	18K3	18K3	18K3	18K3	18K3	

Advantages and Disadvantages:

Using joists to support the new floor system will require that spray-on fireproofing be provided on any steel member to achieve the necessary 2 hr fire rating within the building. Due to a joist floor system, the vibrations may play a key role in this alternatives feasibility. This new system will make dead loads much less and therefore the foundations may be reduced and lower cost. The ACT ceiling may be suspended from this new decking system.

3.3 Alternative Floor Systems [#]3 and [#]4 Pre-stressed Double Tee Topped 10'-0" x 24" (44' Span)

Although the existing design of the building is precast concrete, it is hollow core planks which are slightly heavier then the Double Tee Topped 10'-0" x 24' precast concrete. Using a Double Tee allows for extremely large clear spans along with higher allowable loading. PCI design handbook is used to select the Double Tee based on superimposed service loads. The actual Double Tee selected is the Spancrete 10DT24 – C148H series.

Pre-stressed Double Tee Topped 8'-0" x 20" (25' Span and 19' Span)

This is the same type as floor system #3 except that the span of the Tee's is going to be decreased as to lessen the depth. The actual Double tee selected for this option is the Spancrete 8DT20 – C48h series.

Advantages and Disadvantages:

Precast members have many benefits including higher quality control and short onsite erection time. This particular type of floor system will require some additional type of fire protection because the slab thickness is not as great as it needs to be. This system is also less (but still rather similar) than that of the existing and therefore the foundations should be left alone. A way to join this floor system with the shear walls will need to be acquired as to pick up the shear from wind and seismic loading. Floor system 2 will allow for the interior load-bearing wall to be removed and converted to a lightweight partition. This will decrease the load on the foundations.

3.4 Alternative Floor System [#]5 and [#]6 **One Way Concrete Joists** (44' Span) (25' Span and 19' Span)

Using concrete joists systems along with a 4.5" slab, a 2 hour fire rating can be achieved. Using the loads mentioned earlier in this report and load factors of 1.4 for dead loads and 1.7 for live loads and CRSI Design Handbook 2002 edition, a One Way Concrete Joist system was chosen for both the 44' Span and the combination of a 25' span and a 19' span.

(44' Span)

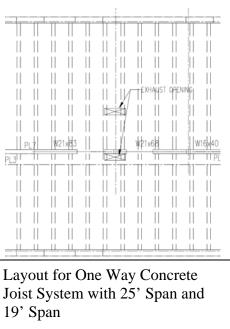
Using the CRSI Design Handbook 2002 edition the following one way concrete joist system was chosen. ┼┌ Т П

|| || || || 40" Forms + 8" Ribs @ 48" c.c. 18" Deep Ribs + 4.5" Top Slab = 22.5" Total Depth Total weight = 403 psf EXHAUST CHENING T Top Bars......#6 bars @ 11" o.c. Bottom Bars1 # 8 bar || || Ш Stirrups#3 Stirrups @ 10" c.c. up to 146" away from the face of the support Layout for One Way Concrete Joist System with 25' Span and 19' Span Solomon

Spring Run Assisted Living

(25' Span and 19' Span)

Using the CRSI Design Handbook 2002 edition the following one way concrete joist system was chosen.


30" Forms + 6" Ribs @ 36" c.c. 10" Deep Ribs + 3.0" Top Slab = 13" Total Depth Total weight = 80psf *Form work is the same for both spans

19' Span

Top Bars.....#4 bars @ 12" o.c. Bottom Bars1 # 5 bar

25' Span

Top Bars.....#5 bars @ 12" o.c. Bottom Bars1 # 6 bar

Advantages and Disadvantages:

The weight of the 44' span is so great, the foundations will most likely need to be recalculated. This could also affect the walls which the floor system is being supported by. The 19' span and 25' span have a lower weight then that of the existing system but not by much so the foundations should be able to be left alone. Floor to floor height will surely increase with either of these new systems and both will also delay onsite construction time.

4 Conclusion

Alte	ernative System	Depth (in)	Building Height Increase	Wt./Area (psf)	Impact on Fire Rating	Amount of Possible Vibrations	Impact on Foundation	Investigate Further
Existing	Hollow Core Precast Plank	8	N/A	88	N/A	Very Little	N/A	N/A
1	Non-Composite Beam w/ Composite Deck and Slab	20	Yes 3'	~25	Steel Needs to be Fireproofed	Little	Decrease of Foundation Possible	Yes
2	Open Web Steel Joists w/ Composite Deck and Slab	26	Yes 4.5'	~25	Steel Needs to be Fireproofed	Large Amount	Decrease of Foundation Possible	No
3	Double Tee 44' Span		Yes 4'	~80	None	Very Little	Increase Foundation Because of Removal of Wall	No
4	Double Tee 25' Span and 19' Span	20	Yes 3'	~75	None	Very Little	None	No
5	One-way Concrete Joist System 44' Span	22.5	Yes 3.625'	~403	None	Very Little	Increase Foundation for Larger Load and Removal of Wall	No
6	One-way Concrete Joist System 25' Span and 19' Span	13	Yes 1.25'	~80	None	Very Little	None	Yes

After analysis of several other possible systems for Spring Run Assisted Living have lead to the conclusion that the existing system is the most efficient. The existing system meets the modular for the masonry walls, meets fire code and transfers little vibrations. The only other system which is comparable to the existing is really the one way concrete joist system but it does not fall into the CMU modular. The other benefit that the hollow core pre-cast plank has over the one way concrete joist system is that it does not require long erection time. The precast can be prepared offsite and brought to site ready for erection. Waiting for concrete to cure on site will not only delay future work, but also the day of a pour for concrete must be coordinated with the weather. This does not happen with the hollowcore precast concrete planks.

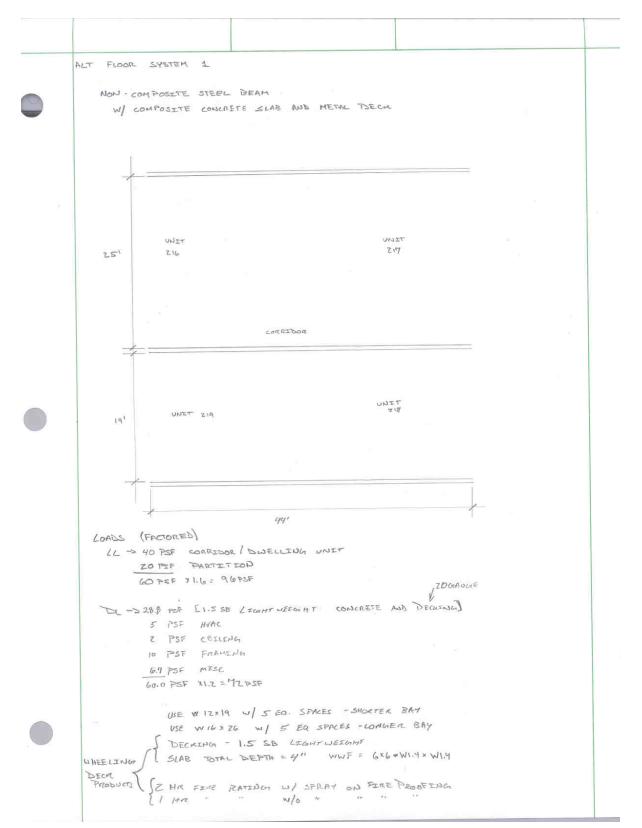
APPENDIX A DECKING AND SLAB SELECTION (ALT SYSTEMS 1 AND 2)

1.5 SB Lightweight

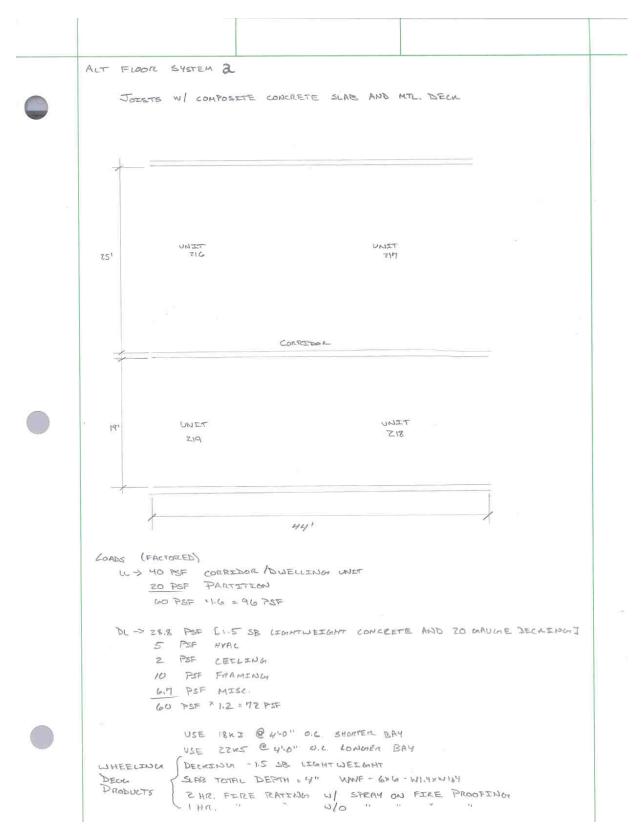
115 pcf Lightweight Concrete

Total Slab Depth D		Maximum Unshored Clear Spans				erties	Superimposed Live Loads - pst: No Studs											
WL Conc.	Gage	Single	Double	Triple	lavg	Sc					Sp	on - I	Feet as	nd Inc	hee			
Area Conc.		Epan	Span	Span	in/th	mini	6'-0*	6'-6"	7'-0"	7'-6"	8'-0"	8'-6"	9'-0*	9'-6"	10'-0"	10.61	11'-0"	11.41
1.0	22	613	8.5	5'-6"	2.918	0.848	394	333	254	244	212	185	183	144	127	110	96	84
41	20	7+4*	9.5'	B-11*	3.163	1.002	400	397	339	283	254	223	190	161	138	120	104	-91
28.8 pst	18	7.9'	10'-1"	107-57	1.580	1.274	400	400	348	297	259	226	199	176	157	135	118	103
20.6 m/	16	B+t*	11541	11'-0*	0.965	1.543	400	400	345	297	259	226	199	176	157	195	118	103
	22	6.0"	8-01	8-5"	4.159	1.044	400	400	1651	302	282	229	202	178	158	361	126	113
4-1/2*	20	8-11*	9.3	· #-5*	4.503	1,235	400	400	400	362	315	276	245	216	192	170	148	130
33.6 pst	18	7:4"	9.7	9-11*	5.082	1.573	400	400	400	365	321	291	248	220	196	175	157	141
24.8 inF	16	H-7"	10'-0"	11'-2"	5.621	1.911	400	400	400	369	321	201	248	820	198	175	1.57	141
	22	5-10*	7-10	7.11*	4.892	1.144	400	400	385	332	268	252	222	196	174	156	139	125
4-3/4*	20	0-9°	9-17	8-2"	5.290	1.355	400	400	400	388	146	304	268	237	212	189	170	152
38.0 pet	18	7.24	9.5"	9.9*	5.967	1.727	403	400	400	400	353	310	273	242	216	193	173	156
27.0 in ²	16	fr-4*	10-7	10-11*	8.506	2.102	400	400	400	400	363	310	279	242	216	193	173	156
	22	5-8*	7.81	7.9	5.704	1.246	400	400	400	362	315	275	242	014	191	170	1.52	-137
55	20	6-71	8140	11-0*	6.167	1,477	400	400	400	400	378	332	280	260	231	207	1.86	168
36.4 pst	18	7-0"	9-37	B-6*	6.945	1.885	400	400	400	400	386	339	299	285	236	211	190	171
34.1 m ²	16	18-21	107-81	10"-8"	7.675	2 296	400	400	400	400	386	339	299	265	236	211	190	171
	-22	5.4"	7.2"	.7'-4*	# 655	1.550	400	400	400	400	396	346	305	270	240	215	193	173
5-3/4*	-20	612*	11-4*	110,	8.337	1.861	400	400	400	400	400	400	360	328	292	262	235	212
45.6 pel	18	6'-7"	0-0*	940*	10.483	2.370	400	400	400	400	400	400	378	136	300	268	241	818
36.7 m	16	7'-8"	31-87	10-1*	11.572	2.699	400	400	-400	400	400	400	378	336	300	268	241	218

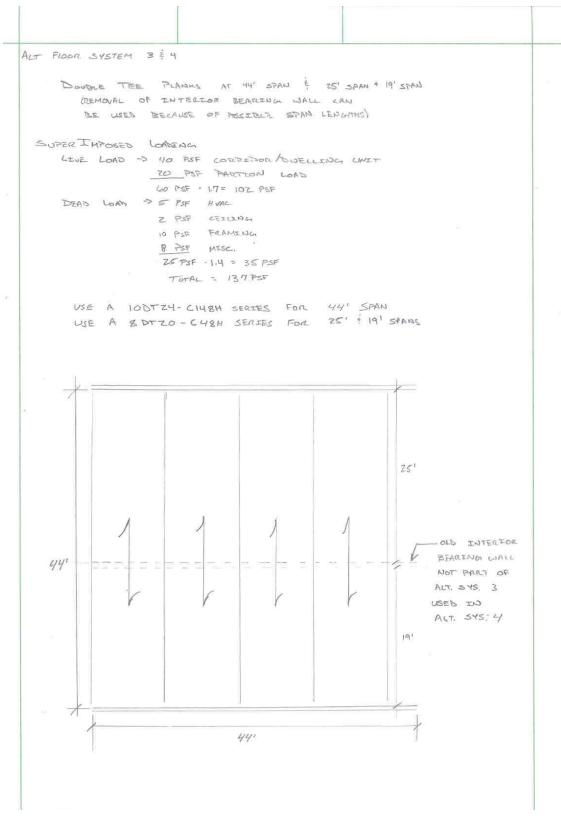
								1	Superi	mpos	ed Liv	e Loa	ds - pe	st: Stu	ds @	1-0* 0	C.	
		Single	Double	Triple	Stud F	actors					Sp	ian - F	Feet a	nd Inc	hes			
D, Wc, Ac	Gage	Span	Span	Span	2 0.0.	3' 0.0.	6.0"	6-6"	7.0"	7.6	8'-0"	8'-6"	90.	9'-6"	10'-0"	10'-6"	11'-0*	11'-6"
1.1	22	6'-3"	8.6"	8.6"	0.87	0.80	400	400	372	303.	-249	208	175	149	128	110	98	64
41	20	7%4*	9.9	⊕-11 [*]	0.83	0.78	400	40.0	400	328	270	225	1911	161	138	120	104	- 91
28.8 psf	18	7.9	10-11	101-51	0.81	0.76	400	400	400	371	306	255	215	183	157	135	118	103
20.8 inf	18	Q'-1*	tt'.3"	11'-8"	0.78	0.74	400	400	400	400	338	283	238	205	174	158	130	114
	22	6.0	8-0"	8-1"	0.88	0.81	400	400	400	400	356	296	250	212	182	157	337	120
4-1/2	20	67-111	9'-5"	4.5	0.84	0.79	400	400	400	400	365	321	270	230	187	170	348	130
33.6 psf	18	7'-4"	8.7	9-117	0.82	0.77	400	400	400	400	400	982	305	299	222	192	167	146
24.8 InP	16	8'-7"	10.95	15521	0.79	0.75	400	400	400	400	400	400	338	287	246	213	185.	162
	22	5'-10'	7.10	7-11*	0.88	U.82	400	400	400	400	400	349	294	250	214	165	161	141
4-34"	20	6'-0'	9-1*	9.2	0.85	05.0	400	400	-000	400	400	377	318	270	232	200	174	1.52
36.0 pd	18	7-2	9-51	9-9-	0.83	0.78	400	400	400	400	400	400	358	305	261	225	198	172
27.0 inf	18	8-4	10'-6"	10'-11"	0.80	0.76	400	400	400	400	400	400	396	337	269	249	217	190
	22	5'-8"	7'-8"	7-8	0.68	0.83	400	400	400	400	400	400	.343	291	250	216	188	154
51	20	41.7	8'-10"	₩-0 **	0.85	0.61	400	400	400	400	400	400	370	315	270	233	200	178
38.4 gal	18	7-0	9.7	9.6"	0.80	0.79	400	400	400	400	400	400	400	355	304	263	228	200
34.1 inf	18	8-2"	10'-4"	10'-8"	0.80	0.77	400	400	-800	400	-400	-400	400	392	336	290	252	221
	22	5545	7.9	7.4*	0.90	0.84	400	400	400	400	-400	400	400	380	339	305	274	248
5-34*	20	15-2"	84	8'-6"	0.87	0.82	400	400	400	400	400	400	400	400	400	353	307	269
45.6 put	18	$\oplus 7^+$	8.6.	9.0+	0.00	0.80	400	400	400	400	400	400	400	400	400	390	345	302
38.7 InF	10	7-8*	9.01	10'-1"	0.82	0.78	400	400	400	400	400	400	400	400	400	400	381	333


Refer to the Design Notes, Note 7 for information on live load limits for tre-rated construction. See Page CD-0.
 If stud specing exceeds 1'-0' n.c., reduce live load by applicable stud tector listed above for notesl stud specing a) if welded wire fabric is not used, the live loads should be reduced by 10%.

APPENDIX B WWF SELECTION (ALT SYSTEMS 1 AND 2)

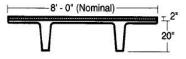

Concrete Volume and Welded Wire Fabric

DECK	TOTAL	CONCRETE	VOLUME	RECOMMENDED			
DEPTH	SLAB DEPTH	C.U. YD/ 100 SQ. FT	C.U. FT/ SQ. FT.	WELDED WIRE FABRI			
	45	0.93	0.252	6x8-W14xW14			
	4-1/2	1.08	0.293	6x5-W14xW14			
	4-344*	1.16	0.314	6x6-W14xW14			
1-172*	17	7.24	0.335	6x6-W2,txW2,1			
	5-1/2"	1,39	0.378	6 x 6 - W2.1 x W2.1			
	5-3/6"	1.47	0.397	6 x 6 - W2.1 x W2.1			
	6"	1.55	0.418	6.x fi + W2.1 x W2.1			
	4-1/2*	1.08	0.292	6 x 6 - W1.4 x W1.4			
	52	1.23	0.333	6 x 8 - W1.4 x W1.4			
	5-3/4*	1.31	0.354	6 x 8 + W1.4 x W1.4			
2	5-1/2"	1.30	0.375	6 x 6 - W2.1 x W2.1			
	67	1.54	0.417	6 x 6 · W2 1 x W2 1			
	·0·1/4*	1.62	0,438	6 x 6 - W2.1 x W2.1			
	0-1/2*	1.70	0.458	6 x 6 - W2.1 x W2.1			
	5-1/2	1.23	0.333	6x6-W1.4xW1.4			
	17	1.39	0.375	6×6×W1.4×W1.4			
	6.104*	1.47	0.396	6x6-W14xW14			
3*	6-1/2"	1.54	0.417	6 x 6 - W2.1 x W2.1			
	7+	1.70	0.458	6 x 6 - W2.1 x W2.1			
	7-1(47)	5.77	0.479	8×6-W21×W21			
	7-1/2*	1.85	0.500	6×6-W2.1×W2.1			


APPENDIX C HAND CALCS. (ALT SYSTEM 1)

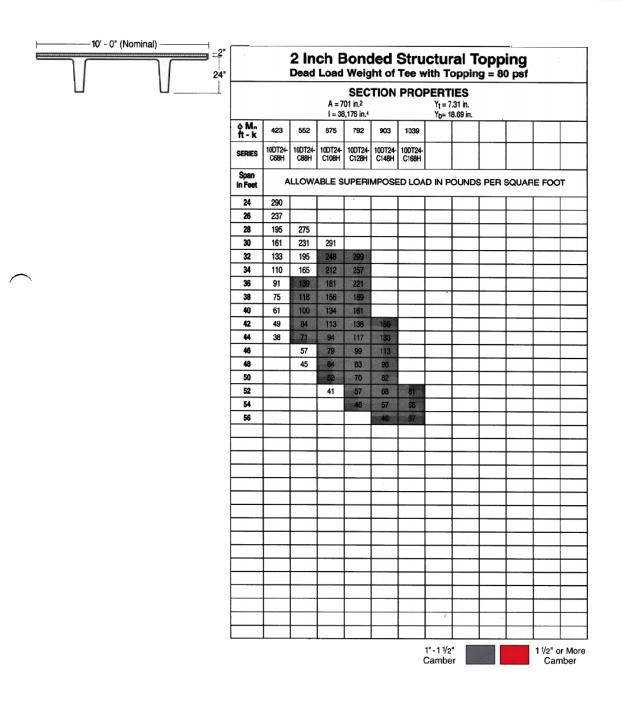
APPENDIX D HAND CALCS. (ALT SYSTEM 2)

APPENDIX E HAND CALCS. (ALT SYSTEMS 3 AND 4)



1.4 Double tee load tables 8'-0" x 20" Double tee topped

Issued 10/94


				SEC 17 in.2 ,697 in.4	TION P		5.87 in. 16.13 in.				
¢Mn ft-k	237	345	447	542					1		T
SERIES	8DT20- C48H	80T20- C68H	8DT20- C88H	8DT20- C108H							t
Span in Feet	A	LLOW	ABLE S	UPERII	MPOSED		POUND	S PER	SQUAF	RE FOO	т
20	297					-	1	T	T	1	Г
22	235		-				-	-	-		-
24	187						1				+
26	150	248								-	
28	120	205	283								T
30	97	170	238								
32	77	142	202				÷				
34	61	118	169								
36	48	99	141				122		_		
38	36	80	117								
40	-	63	97	121	÷		-	-	-		
42		49	80								
44		37	65	85			-				
46			52				-			-	-
48			40				-	-	<u> </u>		+
50 52							-	-		-	+
32				30			+			-	+
				_			-			<u> </u>	+
		_					+	-			+
_								+		<u> </u>	+
						_	-	1	-		+
	3							-		-	+-
							-	-			+
								1	-		-
						_	1	1	<u> </u>		+
									•		\top
			14								1
						+		2		1	1

1.4 Double tee load tables 10'-0" x 24" Double tee topped

Issued 10/94

APPENDIX H HAND CALCS (ALT SYSTEMS 5 AND 6)

```
ALT FLOOR SYSTEM Si. 6
     ONE WAY CONCRETE JOISTS
   LOADING
      LL - 40 PSF DESELLING UNIT / CORREDOR
         20 PSF PARTEONS
          60 PSF . 1.7 = 102 PSF
      DL - 5TH HVAC
         2 PSF CEILING
         10 PSF FRAMENON
          8 PSF MISC
          2575F . 1.4 = 35 PSF
     TOTAL WU= 137 PSF
5
 FOR 44' SPAN, END SPAN
      Pg. 8-62
    USE 40" FORMS + 8" PEBS @ 48" O.C.
        18" DEEP REB + 4.5" TOP SLAB = 22.5" TOTAL DEATH
        Tor BARS # 6 @ 11.0 " O.C.
        BOTTOM BARS 1 # 8
        STER # 3 @ 10" C.C. UP TO 146" FROM FACE OF
                            SUPPORT
15 FOR 19' SPAN & 25' SPAN
       Pg. 8-21
      USE 30" FORMS + 6" REBS @ 36" O.C.
       10" DEEP REB + 3.0" TOP SLAB = 13" TOTAL DEPTH
      19' SPAN TOP BARS #4 @ 12" C.C.
               BOTTOM BARS 1 #5
    25' SPAN TOP BARS #5 E 12' C.C.
               BOTTOM BARS 1 #5
```

APPENDIX I ONE-WAY CONCRETE JOIST SYSTEM SELECTION (ALT SYSTEM 5)

WIDE MODU ONE-WAY JO MULTIPLE SP	ISTS	18	" Deep	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
TOP BARS NO	# 4	# 5	# 5	# 6	#6	-	# 4	#4	#5	# 6	# 8	T		
AT	11.5	10.5	9.5	11.0	9.5	End Span	8.5	5.0	7.0	8.0	7.0	1		
BOTTOM BARS NO	2# 4	1# 5	2# 6	1# 8	1# 8	Defl.	2# 4	1# 5	2# 6	1# 8	1#8	S		
BARS NO	1# 5	2# 6	1# 6	1# 8	1# 9	Coeff	1#.5	2# 6	1# 6	1# 8	1# 9	D		
STEEL (PSF)	.72	1.18	1.33	1.66	1.87	(2)	.64	.64	.64	.64	.64	10		
CLEAR SPAN		1	ENI	SPAN	10000					OR SPA		1		
32'-0" (3)	142	610	736	979	1177	4,000	463	1144		1680		T a		
STIR	#3-38	#3-111	#3-122	#3-138	#3-134	111100	#3- 66	#3-117				2		
33'-0"	100	540	658	887	1073	4.523	402	1042				2		
STIR	3-33	#3-111	#3-123	#3-140	#3-142		#3- 64	#3-118				14		
34'-0"	61	476	587	802	978	5.097	346	949	1111	1424	1680	3		
STIR	#3-28	#3-111	#3-123	#3-141	#3-151	-	#3-62	#3-119			#3-149			
35'-0* STIR		417 #3-110	522	725	892	5.724	294	864	1016	1312		3.		
36'-0"		363	#3-123 463	#3-142	#3-154	6.167	S#3- 60			#3-124				
STIR		#3-110	#3-123	655 #3-143	812 #3-156	6.407	247 #3- 57	785	930	1209		3.		
37'-0"		314	408	590	738	7.149	204	#3-121 713	#3-130 850	#3-131 1114	#3-155	1		
STIR		#3-109	#3-123	#3-144	#3-157	1.1.43	#3- 54	#3-121	#3-131	#3-139		4.		
38'-0"		268	357	530	671	7.953	164	647	777	1027	1232	43		
STIR		#3-108	#3-123	#3-145	#3-159		#3- 51	#3-122	#3-132	#3-146	#3-159	4.4		
39'-0"		226	311	474	608	8.824	127	586	709	947	1141	5.4		
STIR		#3-106	#3-122	#3-146	#3-160		#3-47	#3-122	#3-133	#3-150	#3-162	1		
40'-0"		187	267	423	550	9.765	93	529	646	872	1057	6.0		
STIR 411-0"		#3-105 151	#3-121 227	#3-146 375	#3-161	10.770	#3- 43	#3-122	#3-134	#3-151	#3-144			
STIR		#3-103	#3-120	#3-146	496 #3-162	10.778	#2 20	476	-587	803	979	6.6		
42'-0"		117	190	331	447	11.869	#3- 39	#3-122 427	#3-134 533	#3-153	#3-151	40		
STIR		#3-101	#3-119	#3-147	#3-163	- 1.003	#3-35	#3-122	#3-135	738 #3-154	906 #3-158	7.3		
43'-0"		86	155	290	400	13.040	10 10	381	483	679	839	8.0		
STIR		#3- 98	#3-118	#3-147	#3-164	1 10 1 A 10 1 1 1 1 1		#3-121	#3-135	#3-155	#3-166	9.0		
44'-0"		57	123	252	357	14.296		339	436	623	776	8.7		
STIR		#3- 96	#3-116		#3-164			#3-121	#3-135	#3-156	#3-169			
	PR	OPERT	IES FO	OR DES	SIGN (CONC	RETE	67 CF	/SF)		Constant I			
EGATIVE MOMENT			1									-		
STEEL AREA (SQ. IN.)	.83	1,42	1.57	1.92	2.22	1 1	1.13	1.92	2.13	2.64	3.02			
ACTUAL STEEL %	.414	.704	.779	.958	1.109		559	.951	1.057	1.317	1.505			
EFF. DEPTH, IN.	20.75	20.69	20.69	20.63	20.63		20,75	20.75	20.69	20.63	20.63			
ICR/IGR	.119	.181	.196	.227	_253		.152	.230	.247	.287	.315			
OSITIVE MOMENT														
STEEL AREA (SQ. IN.)	.71	1.19	1.32	1.58	1,79		.71	1.19	1.32	1.58	1 70			
ACTUAL STEEL %	.342	.575	.638	.768	.871		.342	.575	.638		1.79			
FF. DEPTH, IN.	20.72	20.64	20.63		20.46		20.72	20.64	20.63	.768 20.50	.871 20.46			
HCR/IGR	125	.200	.220	.255	.284		.125	.200	.220	.255	.284			
SINGLE LEG STI	RRUP	AT 10	IN. CO	NSTA	NT SP	ACING	-DIST/	ANCE	(IN.)		1			
 For gross section Computation of ^ln/21 for interior 	n prope deflect	erties, se ion is no	e Table	8-3		Сn.				5 for end	spans			

(3) Single leg stirrup size space at X in. c.-c. Distance over which stirrups must extend from face of support at each end (in.).

APPENDIX J ONE-WAY CONCRETE JOIST SYSTEM SELECTION (ALT SYSTEM 6)

STAN ONE-WAY MULTIPL		S (1)	FACT				Rib @ : PERIMP) (PSF	100	= 4,0 = 60,0	and the second second
					10" De	ep Rib +	3.0* Top S	Slab = 1	3.0" Tota	I Depth			
TOP	Size	# 4	# 4	# 4	# 5	# 5	-	#4	# 4	# 4	#4	#5	1.0
BARS	@	12	12	9.5	12	10	End Span	12	11.5	8.5	7	8.5	Int. Span
BOTTOM	#	# 4	# 4	#5	#5	#6	Defl.	# 3	#4	# 4	#5	# 5	Defl.
BARS	#	#4	# 5	#5	#6	#6	Coeff.	#4	#4	# 5	#5	#6	Coeff
Steel (psf)		.58	.69	.86	1.05	1.25	(3)	.63	.74	.95	1.18	1.46	(3)
CLEAR S	PAN			EN	D SPAI	N				INTER	OR SPA	AN	
17.0		180	251	309*	317*	328*	1.006	215	301	358*	365*	374*	.619
		0	0	322	404	478*		0	0	404	508	570*	1000
18'-0	•	151	214	278	288*	297*	1.264	182	259	328*	334*	342*	.778
101.0	2	0	0	0	351	425	1.500	0	0	351	444	525* 314*	Der
19'-0		127	184	241	263*	271*	1.569	155	224 0	301* 306	307* 390	481*	.96(
20'-0	e	106	157	209	241*	248*	1.926	131	194	268	284*	289*	1.18
20.0		0	0	0	268	328		0	0	0	343	429	
21'-0		88	135	182	221*	228*	2.342	111	168	235	263*	267*	1.44
		0	0	0	235	590		0	0	0	303	381	
22'-0		73	115	158	204* 207	210* 256	2.820	94 0	145	207	244* 269	248* 340	1.73
23'-0	6. S	0 59	0 98	0	182	194*	3.369	78	126	182	209	231*	2.073
20.0		0	0	0	0	227	0.000	0	0	0	239	303	
24'-0	u.	48	83	119	160	180*	3.995	65	108	160	212*	215*	2.45
		0	0	0	0	202		0	0	0	0	272	
25'-0	91:		70	103	141	167*	4.703	53	93	141	189	201*	2.89
001.0	1		0 58	0	0	179 156*	5.502	0 43	0 80	0 123	0 168	244 188*	3.38
26'-0			0	0	0	159	0.502	40	0	0	0	219	3,301
27'-0	ý l		48	76	108	141	6.398	68	108	150	176*	210	3.93
			0	0	0	0	and the second	0	0	0	197		110100
28'-0	5×			65	95	125	7.400		57	95	133	166*	4.55
				0	0	0	0.040		0 47	0	0	177	E.0.4
29'-0				54 0	82 0	111	8.516		47	0	0	156* 159	5.24
30'-0				45	71	98	9.752		U	71	105	143	6.00
00.0				0	0	0	GIIGE			0	0	0	0.00
(2) First I (3) Comp (n/21	for inte sive of b	or stan of defl prior sp pridging ear cap	dard sq ection is ans). joists a acity.	uare joi s not re and tape	st ends quired a ered en	ds. +Ca	i load is f prizonal li spacity at	ne (thic elastic	kness deflect	$\geq \ell_n / 1$	8.5 for _n /360.	end spa	ans,
		PRC	PERT	ES FC	DR DES	SIGN (CONCF	RETE .4	41 CF/	(SF) (4			
NEGATIVE M										1		100	
STEEL AREA			.60	.76	.93	1.12		.60	.63	.85	1.03	1.31	
STEEL % (UN		.73	.73	.92	1.14	1.37		.73	.76	1.03	1.25	1.61	
	PERED)	.43	.43	.54	.66	.80		.43	.44	.60	.73	.94	
EFF. DEPTI	100000	11.8	11.8	11.8	11.7	11.7		11.8	11.8	11.8	11.8	11.7	
- ICR/I		.179	.179	.214	.246	.280		.179	.185	.232	.268	.314	-
POSITIVE M		10	100	00	75	00			10	.51	.62	.75	
STEEL AREA		.40	.51	.62	.75	.88		.31	.40	.51	.62	.15	
STEEL	99. og 1	.09	.12	.15	.18	.21 11.6		.07	11.8	11.7	11.7	11.6	
EFF. DEPTI +ICR/II	Contraction of the	11.8	.200	.239	.280	.323		.128	.162	.200	.239	.280	
		.102	1 200	1.208	1.200	.323		-120	1.1.56	Sec.	202	1122-	