Andrew Solomon Structural Design Option Advisor: M Kevin Parfitt Spring Run Assisted Living 10/21/2005

Structural Technical Report 3

Lateral System Analysis and Confirmation Design

Executive Summary

- This technical report is a detailed analysis of the lateral force resisting systems of Spring Run Assisted Living, which is the newest building in Willow Valley Retirement Community. By analyzing the buildings lateral systems, a critical load was identified. Also, wall rigidities, locations of shear walls, and location of bearing walls were also computed. Finally the building was analyzed for story and building drift along with the overturning moment capacity.
- This 4 story building is constructed using all load bearing masonry walls and several columns. Some of these masonry walls are identified as shear resisting walls. All walls are made of 8" CMU and are reinforced.
- After an analysis of wind and seismic loading, it was concluded that since the seismic load is over twice that of the wind, seismic will control. After identifying the controlling load, a spot check of a shear wall was possible to conclude that Spring Run Assisted Living was adequately designed to resist the lateral loads in question. It was also possible to conclude that the building drift is under the allowed limit set forth in ASCE 7-02 recommended limit.
- Finally, an overturning moment analysis proved that the building can clearly resist an over turning moment of that which the building will experience. The moment resisting ability was nearly a factor 20 over that of the worst case scenario.

Introduction

Spring Run Assisted Living is a 4 story masonry and pre-cast hollow core plank floor building located just south of the heart of Lancaster, PA. This technical assignment is a detailed analysis of the lateral support for this building.

Lateral System

Brief Overview of Building:

- Load bearing masonry shear walls
- Steel columns and beams are used strategically used to support plank flooring from gravity loads.
- Foundation: Wall footings under load-bearing masonry walls and spread footings under columns
- Floor/Roof System: 8" hollow core pre-cast planks (2" topping on floors and notopping used on roof)

Detailed Breakdown of Walls:

- > All walls are of 8" CMU with 1500 psi f'm.
- > All shear walls are required to have 2 # 5 bars placed in the last 2 cells of the shear wall.
- > First floor: #5 bars are used at 16" o.c. with full grouting.
- Second floor: #5 bars used at 24" o.c. with full grouting.
- > Third and Fourth floors: #5 bars used at 48" o.c. with grouting at 24" o.c.

Foundation System:

- Spread footings vary from 3' x 3' through 9' x 9' dependant on their placement throughout the building.
- Wall footings range from 3' wide through 4' wide dependant on the location of the walls, i.e. exterior and interior walls.
- The Slab-on-Grade system is a 4" concrete slab with 6x6 w2.9 x w2.9 WWF reinforcing.

Floor System:

- ➢ 8" Pre-cast hollow core planks
- Spans are typically 19' or 27' dependant upon location.
- > Spans are typically perpendicular to longitudinal wall of section.
- Plank flooring and steel members do not contribute to the lateral force resistance system.

Lateral Forces

The lateral loading on the building will be controlled by either the wind loads or the seismic loads. Following is the summary of the analysis of lateral loads on the building.

<u>Wind Loading:</u> After analysis it was determined that Spring Run Assisted Living meets all the necessary requirements set forth in ASCE 7-02 to be analyzed for wind loading the category of components and cladding.

	Wind Loa	lding
В	asic Wind Speed	90 MPH
E	xposure Category	С
In	nportance Factor (I _w)	1.15
λ		1.58
В	uilding Categroy	Simple Diaphragm
		Low-Rise
		Enclodes
		Rigid Structure
In	ternal Pressure Coeff.	±0.18 PSF
С	omponents and Claddir	ng
Γ	Walls	±28 PSF
	Wall Corners	±35 PSF
	Roof Zone 1	+11/-26 PSF
	Roof Zone 2	+11/-43 PSF
	Roof Zone 3	+11/-65 PSF

<u>Seismic Loading:</u> Spring Run Assisted Living was analyzed with the parameters set for through ASCE 7-02 for a 4-story masonry unit located in Lancaster, PA.

Seismic Design Category	A	F	x = C _{vx}	V					k =	1.00					
S _s =	0.279 g	C	c _{vx} = w _x	h_x^k/s	Sum (w	(h ^k)	(from	i to n)							
S ₁ =	0.075 g		x = 1	w _x =	4837	kips	h _x =	11	ft	$W_x h_x^k =$	53207	C _{vx} =	0.12742	F _x =	90.4 kips
S _{MS} =	0.223 g	Γ	x = 2	W _x =	4837	kips	h _x =	23	ft	w _x h _x ^k =	111251	C _{vx} =	0.26643	F _x =	189.1 kips
S _{M1} =	0.06 g		x = 3	w _x =	4837	kips	h _x =	33	ft	$w_x h_x^k =$	159621	C _{vx} =	0.38227	F _x = 2	271.3 kips
S _{DS} =	0.1487 g		x = 4	w _x =	2174	kips	h _x =	43	ft	$W_x h_x^k =$	93482	C _{vx} =	0.22388	F _x =	158.9 kips
S _{D1} =	0.04 g	[[Sun	n (w _i h ^k) =	417561		V = Sum	(F _i) =	710 kips
I _E =	1.25														
No. Stories = N =	4														
C _u =	1.7														
R =	3.5														
h _n =	43 ft														
C _T =	0.02														
X=	0.75														
$T_a = C_T (h_n)^x =$	0.3358 sec														
T _{max} = C _u T _a =	0.571 sec												_		
T =	0.3358 sec				Struct	ure W	eight		W = S	Sum (w _i) =	16685	kips			
$C_s = S_{DS} / (R / I_E) =$	0.0531					Base S	Shear		V =	Cs W =	710	kips			
$C_{s max} = S_{D1} / (R / I_E) / T =$	0.0425												-		
C _{s min} = 0.044 S _{DS} I _E =	0.0082								Per t	able 1617	.4.2				
$C_{s \min} = 0.5 S_1 / (R / I_E) =$	N/A						S _{D1}	>=0.4	0.3	0.2	0.15	<=0.1]		
C _s =	0.0425	ſ					Cu	1.2	1.3	1.4	1.5	1.7			

<u>Controlling Loading</u>: After thorough analyze of Spring Run Assisted Living and the load combinations set for in ASCE 7-02, it has been concluded that this building will experience will experience a higher later force due to seismic loading. Because the seismic loading is more then twice that of the wind loading, wind loading will never control.

Distribution of Lateral Loads

Load induced due to seismic activity will be transferred to the load bearing masonry shear walls through the floor system. The load will then follow a direct path through the shear walls directly to the wall footings. The footings bear on compacted fill rated with a minimum bearing capacity of 5^{ksi}.

Lateral Load Path

Shear Wall Load Resistance

Using the properties of the walls to find their rigidity and the shear which the walls experience, an analysis of the walls was performed. In **Appendix A** is a table of the rigidity of the shear walls along with the amount of shear and moment each wall is attributed.

- > Rigidity of the walls was found using the equation of $R=1/\Delta$
- $\succ \Delta = (h^3/3l) + (3h/A)$
- <u>Spot Check of Wall:</u> Wall 13y on the shear wall plan was analyzed. This wall is 22' long and is located on the east wing of Spring Run Assisted Living. This wall spans the north/south direction and is located on the 3rd floor. This wall is adequate for seismic loading given that it is also designed as a bearing wall. Without gravity loads, this wall will fail seismic loading. Detailed calculations of this analysis can be found in **Appendix B**.

Drift (Story and Building)

During a lateral drift analysis using the equation of $\Delta = V/\Sigma R$, it was concluded that the total building drift is less then the allowable l/400. Story building drift was also calculated and it was also found to be less then the l/400 allowable drift. Further details of this analysis can be found in **Appendix C**.

Overturning Moment

Using a value of T = 1 and the weight of the building used for seismic analysis, the overturning moment was checked. The overturning moment for Spring Run Assisted Living was found to be adequately resisted. Further calculations can be found in **Appendix D**.

Conclusion

After a thorough breakdown of the buildings shear walls and distribution of seismic loading, Spring Run Assisted Living was adequately designed for seismic loads in the Lancaster, PA area.

	First Floor (North - South)										
Wall	L (in)	H (in)	A (in ²)	I (in [*])	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	11	1.47E+01	1.62E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	11	1.47E+01	1.62E+02
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-
6	1080	132	8640	1.53E+06	0.5	4.58E-02	5.46E-01	1.83E+00	11	1.60E+01	1.76E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	11	1.08E+01	1.18E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	11	1.08E+01	1.18E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	11	1.49E+01	1.64E+02
10	228	132	1824	1.53E+06	0.5	2.17E-01	7.17E-01	1.39E+00	11	2.83E+00	3.11E+01
11	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	11	3.85E+00	4.23E+01
12	576	132	4608	1.53E+06	0.5	8.59E-02	5.86E-01	1.71E+00	11	1.18E+01	1.29E+02
13	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	11	3.56E+00	3.91E+01
14	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	11	3.85E+00	4.23E+01
First Floor (East - West)											
						First Flo	oor (East - V	Vest)			
						First Flo	oor (East - V	Vest)			
Wall	L (in)	H (in)	A (in²)	l (in ⁴)	Δ_{flexure}	First Fle ∆ _{shear}	oor (East - V Δ _{total}	Vest) R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
Wall	L (in) 996	H (in) 132	A (in²) 7968	l (in*) 1.53E+06	Δ _{flexure} 0.5	First Flo A _{shear} 4.97E-02	oor (East - V ∆ _{total} 5.50E-01	Vest) R 1.82E+00	H _{story} (ft) 11	Wall Shear (k) 9.56E+00	Wall Moment (ft-k) 1.05E+02
Wall 1 2	L (in) 996 996	H (in) 132 132	A (in²) 7968 7968	I (in ⁺) 1.53E+06 1.53E+06	∆ _{flexure} 0.5 0.5	First Flo <u>A_{shear}</u> 4.97E-02 4.97E-02	Dor (East - V Δ _{total} 5.50E-01 5.50E-01	R 1.82E+00 1.82E+00	H _{story} (ft) 11 11	Wall Shear (k) 9.56E+00 8.58E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01
Wall 1 2 3	L (in) 996 996 960	H (in) 132 132 132	A (in ²) 7968 7968 7680	I (in*) 1.53E+06 1.53E+06 1.53E+06	∆ _{flexure} 0.5 0.5 0.5	First Flo <u>∆_{shear}</u> <u>4.97E-02</u> <u>5.16E-02</u>	Dor (East - V Δ _{total} 5.50E-01 5.50E-01 5.52E-01	R 1.82E+00 1.82E+00 1.81E+00	H _{story} (ft) 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01
Wall 1 2 3 4	L (in) 996 996 960 1956	H (in) 132 132 132 132	A (in ²) 7968 7968 7680 15648	I (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06	∆ _{flexure} 0.5 0.5 0.5 0.5	First Flo <u>A</u> _{shear} <u>4.97E-02</u> <u>4.97E-02</u> <u>5.16E-02</u> <u>2.53E-02</u>	Δ _{total} 5.50E-01 5.52E-01 5.52E-01 5.25E-01	R 1.82E+00 1.82E+00 1.82E+00 1.81E+00 1.90E+00	H _{story} (ft) 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01	Wall Moment (ff-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02
Wall 1 2 3 4 5	L (in) 996 996 960 1956 1956	H (in) 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648	I (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5	Δ _{shear} 4.97E-02 4.97E-02 5.16E-02 2.53E-02 2.53E-02	Δ _{total} 5.50E-01 5.50E-01 5.52E-01 5.25E-01 5.25E-01 5.25E-01	R 1.82E+00 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00	H _{story} (ft) 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02
Wall 1 2 3 4 5 6	L (in) 996 996 960 1956 1956 1092	H (in) 132 132 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648 8736	l (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5	First Fle Δ _{shear} 4.97E-02 4.97E-02 5.16E-02 2.53E-02 2.53E-02 4.53E-02	Δ _{total} 5.50E-01 5.50E-01 5.52E-01 5.25E-01 5.25E-01 5.45E-01	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.83E+00	H _{story} (ft) 11 11 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02
Wall 1 2 3 4 5 6 7	L (in) 996 996 1956 1956 1092 744	H (in) 132 132 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648 8736 5952	1 (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	First Flo <u>A</u> _{shear} 4.97E-02 5.16E-02 2.53E-02 2.53E-02 4.53E-02 6.65E-02	Atotal 5.50E-01 5.50E-01 5.52E-01 5.25E-01 5.25E-01 5.45E-01 5.67E-01	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.83E+00 1.77E+00	H _{story} (ft) 11 11 11 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.04E+02 1.04E+02 6.93E+01
Wall 1 2 3 4 5 6 7 8	L (in) 996 996 1956 1956 1092 744 744	H (in) 132 132 132 132 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648 8736 5952 5952	l (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	∆ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	First Fle <u>A</u> _{shear} <u>4.97E-02</u> <u>4.97E-02</u> <u>5.16E-02</u> <u>2.53E-02</u> <u>4.53E-02</u> <u>6.65E-02</u> <u>6.65E-02</u>	Door (East - V <u>A_{total}</u> 5.50E-01 5.50E-01 5.25E-01 5.25E-01 5.45E-01 5.67E-01 5.67E-01	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.83E+00 1.77E+00 1.77E+00	H _{story} (ft) 11 11 11 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 1.71E+01 9.45E+00 6.30E+00 6.86E+00	Wall Moment (ff-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02 6.93E+01 7.54E+01
Wall 1 2 3 4 5 6 7 8 9	L (in) 996 9960 1956 1956 1092 744 744 1008	H (in) 132 132 132 132 132 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648 8736 5952 5952 8064	l (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	First Fla <u>A</u> _{shear} <u>4.97E-02</u> <u>4.97E-02</u> <u>5.16E-02</u> <u>2.53E-02</u> <u>4.53E-02</u> <u>6.65E-02</u> <u>6.65E-02</u> <u>4.91E-02</u>	Dor (East - V <u>A_{total}</u> 5.50E-01 5.52E-01 5.25E-01 5.45E-01 5.67E-01 5.67E-01 5.49E-01	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.90E+00 1.77E+00 1.77E+00 1.77E+00 1.82E+00	H _{story} (ft) 11 11 11 11 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00 6.86E+00 9.43E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02 6.93E+01 7.54E+01 1.04E+02
Wall 1 2 3 4 5 6 7 8 9 9 10	L (in) 996 9960 1956 1956 1092 744 744 1008	H (in) 132 132 132 132 132 132 132 132 132 132	A (in ²) 7968 7968 7680 15648 15648 8736 5952 5952 8064	1 (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	First Fle Δ _{shear} 4.97E-02 4.97E-02 5.16E-02 2.53E-02 4.53E-02 6.65E-02 4.91E-02	Atotal 5.50E-01 5.50E-01 5.52E-01 5.25E-01 5.45E-01 5.67E-01 5.67E-01 5.67E-01 5.45E-01	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.90E+00 1.77E+00 1.77E+00 1.82E+00	H _{story} (ft) 11 11 11 11 11 11 11 11 11 11	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00 6.86E+00 9.43E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02 6.93E+01 7.54E+01 1.04E+02
Wall 1 2 3 4 5 6 7 8 9 10 11	L (in) 996 996 1956 1956 1092 744 744 1008 -	H (in) 132 132 132 132 132 132 132 132 132 132	A (in ²) 7968 7680 15648 15648 8736 5952 5952 8064 -	1 (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	First Fle Δ _{shear} 4.97E-02 5.16E-02 2.53E-02 4.53E-02 6.65E-02 6.65E-02 4.91E-02 -	Door (East - V <u>A_{total}</u> 5.50E-01 5.50E-01 5.52E-01 5.25E-01 5.25E-01 5.45E-01 5.45E-01 5.67E-01 5.67E-01 - -	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.90E+00 1.83E+00 1.77E+00 1.77E+00 1.77E+00 - -	H _{story} (ft) 11 11 11 11 11 11 11 11 11 1	Wall Shear (k) 9.56E+00 8.58E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00 9.43E+00 9.43E+00	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.04E+02 1.04E+02 6.93E+01 7.54E+01 1.04E+02
Wall 1 2 3 4 5 6 7 8 9 9 10 11 12	L (in) 996 9960 1956 1956 1092 744 744 1008 -	H (in) 132 132 132 132 132 132 132 132 132 - -	A (in ²) 7968 7680 15648 15648 8736 5952 5952 8064 - -	1 (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 - -	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - -	First Fle <u>A_shear</u> <u>4.97E-02</u> <u>5.16E-02</u> <u>2.53E-02</u> <u>4.53E-02</u> <u>6.65E-02</u> <u>6.65E-02</u> <u>4.91E-02</u> <u>-</u> <u>-</u>	Door (East - V <u>Atotal</u> 5.50E-01 5.50E-01 5.25E-01 5.25E-01 5.45E-01 5.67E-01 5.67E-01 5.67E-01 - -	R 1.82E+00 1.82E+00 1.81E+00 1.90E+00 1.90E+00 1.83E+00 1.77E+00 1.77E+00 1.77E+00 - - -	H _{story} (ft) 11 11 11 11 11 11 11 11 11 11 - - -	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00 0.86E+00 9.43E+00 -	Wall Moment (ft-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02 6.93E+01 7.54E+01 1.04E+02 -
Wall 1 2 3 4 5 6 7 8 9 10 11 12 13	L (in) 996 996 1956 1956 1092 744 744 1008 - - -	H (in) 132 132 132 132 132 132 132 132 132 - - -	A (in ²) 7968 7680 15648 8736 5952 5952 8064 - - -	1 (in*) 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 1.53E+06 	Δ _{flexure} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - -	First Fle <u>A</u> ,97E-02 <u>5</u> ,16E-02 <u>2</u> ,53E-02 <u>2</u> ,53E-02 <u>4</u> ,53E-02 <u>6</u> ,65E-02 <u>6</u> ,65E-02 <u>6</u> ,65E-02 <u>4</u> ,91E-02 <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>	Door (East - V <u>Atotal</u> 5.50E-01 5.52E-01 5.25E-01 5.25E-01 5.45E-01 5.67E-01 5.67E-01 - - - -	Vest) R 1.82E+00 1.82E+00 1.90E+00 1.90E+00 1.90E+00 1.77E+00 1.77E+00 1.72E+00 - - - - -	H _{story} (ft) 11 11 11 11 11 11 11 11 11 11 - - - -	Wall Shear (k) 9.56E+00 8.58E+00 8.39E+00 1.81E+01 1.71E+01 9.45E+00 6.30E+00 6.86E+00 9.43E+00 - - -	Wall Moment (ff-k) 1.05E+02 9.44E+01 9.22E+01 1.99E+02 1.89E+02 1.04E+02 6.93E+01 7.54E+01 1.04E+02 - -

Appendix A

	Second Floor (North - South)										
Wall	L (in)	H (in)	A (in ²)	I (in [*])	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	12	3.29E+01	3.95E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	12	3.29E+01	3.95E+02
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-
6	1080	132	8640	1.53E+06	0.5	4.58E-02	5.46E-01	1.83E+00	12	3.62E+01	4.35E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	12	2.29E+01	2.75E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	12	2.29E+01	2.75E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	12	3.34E+01	4.01E+02
10	228	132	1824	1.53E+06	0.5	2.17E-01	7.17E-01	1.39E+00	12	3.66E+00	4.40E+01
11	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	12	5.65E+00	6.78E+01
12	576	132	4608	1.53E+06	0.5	8.59E-02	5.86E-01	1.71E+00	12	2.69E+01	3.23E+02
13	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	12	5.10E+00	6.12E+01
14	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	12	5.65E+00	6.78E+01
						Second F	-loor (East -	West)			
Wall	L (in)	H (in)	A (in ²)	I (in ⁴)	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	12	2.00E+01	2.40E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	12	1.77E+01	2.12E+02
3	960	132	7680	1.53E+06	0.5	5.16E-02	5.52E-01	1.81E+00	12	1.72E+01	2.07E+02
4	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	12	3.97E+01	4.77E+02
5	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	12	3.73E+01	4.47E+02
6	1092	132	8736	1.53E+06	0.5	4.53E-02	5.45E-01	1.83E+00	12	1.97E+01	2.36E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	12	1.23E+01	1.48E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	12	1.36E+01	1.63E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	12	1.97E+01	2.36E+02
10	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-
14		-	_	-		_	-	_			_

	Third Floor (North - South)										
Wall	L (in)	H (in)	A (in ²)	I (in [™])	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	4.92E+01	4.92E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	4.92E+01	4.92E+02
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-
6	1080	132	8640	1.53E+06	0.5	4.58E-02	5.46E-01	1.83E+00	10	5.48E+01	5.48E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	3.23E+01	3.23E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	3.23E+01	3.23E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	10	5.00E+01	5.00E+02
10	228	132	1824	1.53E+06	0.5	2.17E-01	7.17E-01	1.39E+00	10	3.77E+00	3.77E+01
11	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	6.16E+00	6.16E+01
12	576	132	4608	1.53E+06	0.5	8.59E-02	5.86E-01	1.71E+00	10	3.90E+01	3.90E+02
13	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	5.48E+00	5.48E+01
14	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	6.16E+00	6.16E+01
						Third Fl	oor (East - V	Vest)			
Wall	L (in)	H (in)	A (in ²)	I (in⁴)	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	2.86E+01	2.86E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	2.48E+01	2.48E+02
3	960	132	7680	1.53E+06	0.5	5.16E-02	5.52E-01	1.81E+00	10	2.41E+01	2.41E+02
4	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	10	6.02E+01	6.02E+02
5	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	10	5.60E+01	5.60E+02
6	1092	132	8736	1.53E+06	0.5	4.53E-02	5.45E-01	1.83E+00	10	2.81E+01	2.81E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	1.63E+01	1.63E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	1.82E+01	1.82E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	10	2.81E+01	2.81E+02
10	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-

						Fourth Fl	oor (North -	South)			
Wall	L (in)	H (in)	A (in²)	I (in⁺)	∆ _{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	2.96E+01	2.96E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	2.96E+01	2.96E+02
3	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-
6	1080	132	8640	1.53E+06	0.5	4.58E-02	5.46E-01	1.83E+00	10	3.35E+01	3.35E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	1.73E+01	1.73E+02
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	1.83E+01	1.83E+02
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	10	3.02E+01	3.02E+02
10	228	132	1824	1.53E+06	0.5	2.17E-01	7.17E-01	1.39E+00	10	1.71E+00	1.71E+01
11	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	2.89E+00	2.89E+01
12	576	132	4608	1.53E+06	0.5	8.59E-02	5.86E-01	1.71E+00	10	2.22E+01	2.22E+02
13	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	2.55E+00	2.55E+01
14	264	132	2112	1.53E+06	0.5	1.88E-01	6.88E-01	1.45E+00	10	2.89E+00	2.89E+01
						Fourth F	loor (East -	West)			
Wall	L (in)	H (in)	A (in ²)	I (in⁴)	Δ_{flexure}	Δ_{shear}	Δ_{total}	R	H _{story} (ft)	Wall Shear (k)	Wall Moment (ft-k)
1	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	1.66E+01	1.66E+02
2	996	132	7968	1.53E+06	0.5	4.97E-02	5.50E-01	1.82E+00	10	1.42E+01	1.42E+02
3	960	132	7680	1.53E+06	0.5	5.16E-02	5.52E-01	1.81E+00	10	1.37E+01	1.37E+02
4	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	10	3.74E+01	3.74E+02
5	1956	132	15648	1.53E+06	0.5	2.53E-02	5.25E-01	1.90E+00	10	3.45E+01	3.45E+02
6	1092	132	8736	1.53E+06	0.5	4.53E-02	5.45E-01	1.83E+00	10	1.62E+01	1.62E+02
7	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	8.75E+00	8.75E+01
8	744	132	5952	1.53E+06	0.5	6.65E-02	5.67E-01	1.77E+00	10	9.91E+00	9.91E+01
9	1008	132	8064	1.53E+06	0.5	4.91E-02	5.49E-01	1.82E+00	10	1.62E+01	1.62E+02
10	-	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-	-	-	-	-

Appendix B

Appendix C

STORY / BUILDING DRIFT	
A = et	
A1 = 90.4 /[(18.3 + 16.4).12] = 0.214 "	
D. = 1/100= 0.33" ok	
' ALLOW	
A2 = 279.5/ [(16.3+16.4) 12]2= 0, 336"	
DI ALLOW = 4/400 = 12.23/400 = 0.69" OK	
b3 = 520.8/[((4.3+10.4).12]z= 0.441"	
Do ALLON = = 1/400 = 12.53/400 = 0.99" OK	
1 = 709:7/El18.3 +16-4)-12]4= 0.426 "	
Dy august = \$ /400 = 1.79 " ok	
and the second	
and the second	
and the second	

Appendix D

OVERTURNENCO $M_{x} = \mathcal{C} \sum_{i=x}^{n} F_{i}(h_{i}:-h_{i})$ $\mathcal{C} = I$ My= 158.9 .43 +271.3 .33 + 189.1 - 23 + 90.4 . 11 = 21,129.3 K $M_{R2} = W\left(\frac{48'.6''}{2}\right) = 16685^{N}\left(\frac{48.5'}{2}\right) = 464,611'k$ FROM SEISMIC W= 16685 " MR > MX THUS BUILDING WILL RESIST OVERTURNING.