#### <u>21120</u> DDYSSIDY avrilington, va



**Aaron Snyder** Structural Option Advisor: M. Kevin Parfitt, PE

#### Structural Technical Report I October 5, 2006 Structural Concepts / Structural Existing Conditions Report

#### **Executive Summary:**

The Odyssey is a 475,650 SF luxury residential complex located in Arlington, Virginia. It features 2- 3 story townhouses adjacent to 3 levels of underground parking and towers clad with glass curtain walls and brick. There are 16 stories of apartments with suites located on the top floors and retail space on the ground floors. In this first technical report the existing structural conditions of the Odyssey are introduced through detailed descriptions of the foundation, floor, column, and lateral systems. A preliminary analysis of design loads and lateral forces are spot checked on a typical column and shear wall for discrepancies in design criteria. The analyses provide better understanding into loading and code assumptions made through ASCE7-02 provisions.

The wind analysis was carried out under ASCE7-02 section 6 with general building assumptions including disregarded façade curvature and overall rectangular dimensions. The preliminary analysis resulted in an unbalanced leeward to windward wind ratio which may be a result of the preliminary assumptions. A further detailed analysis is required to obtain a specific controlling wind direction and resulting loading envelope. A seismic analysis was carried out under the equivalent lateral force procedure specified in section 9 of ASCE7-02. All seismic factors were chosen through design parameters based upon the building characteristics and location. As a result of the analysis the controlling seismic direction is E-W with a base shear of 2045k.

Design checks upon both gravity and lateral systems were carried out to verify the accuracy of loading assumptions made through code provisions. The 2-way post-tensioned flat slab system was determined acceptable to resist slab moments from typical floor live and dead loads on a typical residential level of the Odyssey. Through the preliminary analysis the slab stresses resulting from post-tensioning maintained values within the ultimate stresses. A column located on the 1<sup>st</sup> level was spot checked to ensure the design reinforcement was adequate to resist accumulated gravity loads over the remaining levels. The loading on the column corresponded closely to given design column load of 2180k and the 12 -#11 bar reinforcement was found adequate up to 2340k. An analysis of the lateral systems will be addressed in the Lateral Systems Analysis and Confirmation Design report. Analysis calculations and observations are found in Appendices A - E as well as descriptive figures of preliminary structural design components and a typical floor plan.

## Structural Systems:

#### Foundation

The primary foundation structures of the Odyssey are concrete footings of various rectangular sizes, depths, and reinforcement throughout the lower garage level footprint. Individual column footings are typical; however 54" deep mat footings distribute larger gravity loads and resist overturning from several integrated shear walls. The primary mat

foundation spans over numerous columns which support shear walls beginning on the 1<sup>st</sup> floor of the building. A second mat footing resists the lateral overturning through core shear walls located around the central elevator shafts depicted in a partial foundation plan shown to the right. Continuous strip footings typically sized at 2'-0" x 1'-4" and support a perimeter bearing wall surrounding the lower garage levels.



#### **Floor Systems**

The floor systems found throughout the Odyssey seemingly vary as much as the space usage in the building. Three distinct systems are noted in the following sections due to size, loading, and use of the supported space:

#### Sub-Level Garage:

The lower garage level (B3) is composed of 4" concrete slab (f'c=5ksi) on grade and reinforced with  $6x6 - w1.4 \times w1.4$  wire mesh on 6mil vapor barrier over 6" compacted gravel with a capacity of 5,500psf.

The remaining lower garage levels through the first floor are primarily 8.5" conventionally reinforced 2-way concrete flat slabs with bottom reinforcement of #4 bars @ 13" o.c. Additional top and bottom reinforcement is specified as needed throughout the floor with varying bar sizes at specified spacing. Drop panels are located at specified

columns and typically extend 4-1/2" below slab with several panels up to 6-1/4" to 8" below the slab. Also found on these floors are reinforced edge beams around larger spans for loading docks, mechanical spaces/shafts, and retail space located on both the upper garage and 1<sup>st</sup> floors. Typical bays sizes for the reinforced 2-way slab system are 25'x25' and 17'x25'.



## $\frac{\text{Tower:}}{2^{nd} - 15^{th}}$

The Odyssey tower is primarily an 8" 2-way post tensioned flat concrete slab (f'c=5ksi) with continuous bottom reinforcement of #4 bars @ 24" o.c in each direction. Negative moment reinforcement of the slab at column junctions is typically #4 bars expanding  $.33l_n$  in both span directions. Added reinforcement at slab openings in the long direction of specified bays is also typically #4 bars. Post tensioning tendons are 7 wire strands spanning columns and mid spans on a typical frame. Floor bays vary in size but 25'x 22' and 25'x



28' are typical with a variation on the 14<sup>th</sup> floor that has post tensioned beams integrated into the 2-way slab to support the rooftop swimming pool. (See Appendix A for a typical floor plan of the  $2^{nd} - 15^{th}$  levels of the Odyssey)

#### 16<sup>th</sup> & Roof

The roof and upper floor system of the western portion of the Odyssey's tower is similar to that of the lower floors, however reinforced concrete edge beams and interior post tensioned beams were included to properly support excess loads from mechanical equipment. Sizes and reinforcement vary between beams and post tension loading varies depending on span and location in the system. The east tower on the  $16^{th}$  level support the pool terrace and is a 11" 2-way post tensioned flat slab(f'c=5ksi) with #5 bars @ 24" o.c. each way and specified areas with added bottom reinforcement typically #5 and #6 bars. Typical floor bay sizes vary with 25'x 22' and 25'x 28' most common throughout these levels.

#### Townhouses

Townhouses which span the length of the site on the east are built integrally with the lower garage levels but do not share the same floor system. The system is 8.5" one-way concrete slab conventionally reinforced with #4 bar @ 13" o.c. and built-in



reinforced edge beams typically 24"x18" and 26"x16" with #6 and #11 reinforcement. Two floor bay sizes are split between the townhouses with 23'x 30' and 19'x 30' spanning the edge beams. The townhouse roof system is also split over the row with the typical one-way concrete slab or cantilevered 12" metal C-joists @ 24" o.c. with metal soffit.

#### **Columns:**

Structural columns of the Odyssey are primarily a simple concrete structure with varied sizes, shapes, and reinforcement dependent on level and location throughout the building. The columns found in the tower of the Odyssey, levels 1-16, support the floor systems and are typically sized at 18"x 26" with #11 bar reinforcement. Round columns are found at the corners of the tower with primarily architectural design influences to not detract from symmetric corner windows with conventional rectangular columns integrated into apartment walls.

The columns located in the lower garage through  $1^{st}$  levels, and partially on  $2^{nd}$  and  $3^{rd}$  levels, serve a dual purpose in the structural design of the Odyssey. Rotated columns are oriented differently at floor slabs, typically rotating 90° from underside to the top side of the floor slab. These columns support the floor systems and are an architectural design to better fit apartment spaces.

Sloping columns are oriented differently from face to face of the slab on the same level. The purpose of these sloping columns is to effectively transmit lateral loads from shear walls and the building edge into the foundation. A further look into the integrated functioning of sloping column and foundation in regard to lateral distribution and moment may provide better analysis of the structures behavior. Both types of columns vary in size with a range in sizes from 18"x 26" to 26" x 42" with #11 bar reinforcement. Column concrete strengths vary by level to resist accumulated gravity loads:

| min concrete site | inguis vary by level | i to resist accumula | aleu gravity ioaus. |
|-------------------|----------------------|----------------------|---------------------|
| Levels B3-B1      | : f'c = 6000psi      | Levels 1-4           | : f'c = 8000psi     |
| Levels 5          | : f'c = 6000psi      | Levels 6-16          | : f'c = 5000psi     |

#### Lateral System:

The lateral resisting systems of the Odyssey are groupings of shear walls placed throughout the floor plan integrated with slab frames. Locations on the exterior wings provide single lateral direction bracing while those at the core provide resistance in both primary directions. The shear walls are depicted below in simplified plans with a generalized description of each wall. *(See Appendix-A for a typical floor plan and shear wall distribution)* 

Shear wall A:

Resists both lateral load directions: North-South & East-West. Location: Surrounds 2 central-north elevator shafts Range: B3 - 4<sup>th</sup> level Size: North-South walls - 1'-2" x 10' Integrated into columns - 14"x 28" Column Reinforcement - 6 #9 bars East-West wall - 10"x17'-10" Wall Reinforcement: #5 & #6 bars @ 12"



#### Shear wall B:

Resists both lateral load directions: North-South & East-West. Location: Surrounds 2 central-south elevator shafts Range: B3 - 4<sup>th</sup> level Size: North-South walls - 1'-2" x 10' Integrated into columns - 14"x 28" Column Reinforcement - 6 #9 bars East-West wall - 10"x17'-0" Wall Reinforcement: #5 & #6 bars @ 12"



Shear wall C, C1: Resists lateral load directions: North-South Location: Surrounding West stair tower. Range: 1st - 16<sup>th</sup> level C1 terminates at 10<sup>th</sup> level Size: North-South walls - 10"x 13'-10.5" Ends attached to columns – 18"x 26" and 24"x 24" Column Reinforcement – (varies) #11 bars Wall Reinforcement: #5 & #6 bars @ 12"

Shear wall E:

Resists lateral load directions: North West-South East Location: Column line X4 - North side of East tower Range: 1st - 14<sup>th</sup> level Size: North-South walls - 10"x 29'-5" Ends attached to columns – 18"x 26" Column Reinforcement – (varies) #11 bars Wall Reinforcement: #5 & #6 bars @ 12"

Codes and Requirements: The Odyssey is designed under: The 1996 BOCA National Building Code The 1996 Virginia Uniform Statewide Building Code with 2000 Amendments Concrete construction in accordance with: American Concrete Institute 318 - "Reinforced Concrete Design" American Concrete Institute 301 – "Specification for Structural Concrete" Building Officials and Code Administrators (BOCA) - Latest Edition Steel construction in accordance with: Building Officials and Code Administrators (BOCA) American Institute of Steel Construction Manual – Allowable stress design (ASD) Masonry construction in accordance with: Building Officials and Code Administrators (BOCA) "Building Code Requirements for Masonry Structures and Specifications for Masonry Structures" - ACI-530 / ACI-530.1 Material strength and details in accordance with: ASTM Standards – Properties of Building Materials

#### Gravity and Lateral Loads:

The gravity and lateral loads for structural analysis were determined in accordance with ASCE7-02. General assumptions for several dead loads were made with interpretation of details and structural component averages. Load factors and adjustments are used when appropriate according to provisions of ASCE7-02 for the analysis of structural components and systems. A list of relevant gravity loads follow:

| Gravity: (psf) | )                             |                                    |
|----------------|-------------------------------|------------------------------------|
| Floor l        | Live:                         |                                    |
|                | Residential Units & Corridors | 40                                 |
|                | Public Areas                  | 100                                |
|                | Mech. Room                    | 150                                |
|                | Pool Terrace                  | 100                                |
|                | Parking Garage                | 50                                 |
|                | Stairs and Exits              | 100                                |
| Roof Live:     |                               |                                    |
|                | Min. Roof Live Load           | 30                                 |
| Roof S         | Snow:                         |                                    |
|                | Roof Snow Load                | 21                                 |
| Floor l        | Dead:                         |                                    |
|                | Concrete Slab                 | 100 –150 (varied thickness 8"-12") |
|                | Partitions                    | 8                                  |
|                | Flooring                      | 4                                  |
|                | Ceiling                       | 5                                  |
|                | Mechanical                    | 10                                 |
|                | Beams/Columns                 | (* varies)                         |

#### Lateral:

A summary of lateral loads calculated in accordance with ASCE7-02 design provisions are presented in the following sections. Refer to Appendices B & C for further detailed procedure and analysis of calculations including generalized assumptions.

#### Wind:

ASCE7-02 Section 6

Wind loads were determined for the Odyssey under the analytical procedure of Section 6, ASCE7-02. General assumptions for the preliminary analysis include simplifying the Odyssey's irregular shape into a general rectangular dimension for accordance of shape limitations set forth by the analytical procedure. Analysis factors were determined through ASCE7-02 references and are detailed in the analysis located in Appendix-B. The factors are dependent on building location, characteristics, and predetermined factors outlined on the structural prints. Building rigidity of both wind loading directions were found to be rigid through generalized and detailed analysis of the fundamental period. (*The fundamental period calculation is found in Seismic Analysis section: Appendix C*)

The windward pressures found through the analytical procedure are low by a comparison ratio to the leeward pressure. Discrepancies in procedure or calculation errors were unable to be found upon review of the analysis. Further investigation into wind loading will be dealt with in a later technical report regarding lateral design. The wind loading was determined not to control the lateral design of the Odyssey.

|       | Wind  | lward | Leev  | ward  | Total M | IWFRS |  |
|-------|-------|-------|-------|-------|---------|-------|--|
| Z(ft) | N-S   | E-W   | N-S   | E-W   | N-S     | E-W   |  |
| 0-15  | 5.18  | 5.18  | -6.50 | -6.47 | 11.68   | 11.65 |  |
| 20    | 5.63  | 5.63  | -6.50 | -6.47 | 12.13   | 12.11 |  |
| 25    | 6.00  | 6.00  | -6.50 | -6.47 | 12.50   | 12.47 |  |
| 30    | 6.36  | 6.36  | -6.50 | -6.47 | 12.86   | 12.84 |  |
| 40    | 6.91  | 6.91  | -6.50 | -6.47 | 13.40   | 13.38 |  |
| 50    | 7.36  | 7.36  | -6.50 | -6.47 | 13.86   | 13.84 |  |
| 60    | 7.72  | 7.72  | -6.50 | -6.47 | 14.22   | 14.20 |  |
| 70    | 8.09  | 8.09  | -6.50 | -6.47 | 14.59   | 14.56 |  |
| 80    | 8.45  | 8.45  | -6.50 | -6.47 | 14.95   | 14.93 |  |
| 90    | 8.72  | 8.72  | -6.50 | -6.47 | 15.22   | 15.20 |  |
| 100   | 9.00  | 9.00  | -6.50 | -6.47 | 15.49   | 15.47 |  |
| 120   | 9.45  | 9.45  | -6.50 | -6.47 | 15.95   | 15.93 |  |
| 140   | 9.91  | 9.91  | -6.50 | -6.47 | 16.40   | 16.38 |  |
| 160   | 10.27 | 10.27 | -6.50 | -6.47 | 16.77   | 16.74 |  |
| 180   | 10.63 | 10.63 | -6.50 | -6.47 | 17.13   | 17.11 |  |
|       |       |       |       |       |         |       |  |
| 167   | 10.40 | 10.40 | -6.50 | -6.47 | 16.89   | 16.87 |  |
|       |       |       |       |       |         |       |  |

#### Wind Pressure Envelope

#### N-S Distribution (Controlling direction)



#### Seismic:

#### ASCE7-02 Section 9

Seismic loads were determined through the equivalent lateral force procedure outlined in Section 9 of ASCE7-02. All relevant factors and accelerations were found in figures and tables of section 9, which are outlined in the seismic analysis section located in Appendix C. Building and floor weights are based on assumptions of design dead loads according to load provisions of ASCE7-02.

The base shear was 2045 kips in both loading directions with an overturning moment of 215347 ft-k. The base shear to building weight ratio is approximately 4%. The analysis results can be considered acceptable for a low seismic region.

#### Vertical Distribution of Seismic

(E-W)

|          |                |                |                                            |                 | Load           | Shear          | Moment         |
|----------|----------------|----------------|--------------------------------------------|-----------------|----------------|----------------|----------------|
| E-W      | W <sub>x</sub> | h <sub>x</sub> | w <sub>x</sub> h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | F <sub>x</sub> | V <sub>x</sub> | M <sub>×</sub> |
| Level, x | (kips)         | (ft)           |                                            |                 | (kips)         | (kips)         | (ft-kips)      |
| Roof     | 1507           | 163            | 732,728                                    | 0.068           | 139            |                | 22,730         |
| 16       | 2460           | 147.1          | 1,055,881                                  | 0.098           | 201            | 139            | 29,559         |
| 15       | 3253           | 136.1          | 1,270,351                                  | 0.118           | 242            | 340            | 32,904         |
| 14       | 2978           | 125.3          | 1,051,948                                  | 0.098           | 200            | 582            | 25,085         |
| 13       | 3379           | 116            | 1,086,958                                  | 0.101           | 207            | 782            | 23,996         |
| 12       | 3379           | 106.63         | 981,264                                    | 0.091           | 187            | 989            | 19,913         |
| 11       | 3379           | 97.3           | 877,986                                    | 0.082           | 167            | 1,176          | 16,258         |
| 10       | 3379           | 88             | 777,134                                    | 0.072           | 148            | 1,343          | 13,015         |
| 9        | 3379           | 78.64          | 677,920                                    | 0.063           | 129            | 1,491          | 10,146         |
| 8        | 3379           | 69.31          | 581,518                                    | 0.054           | 111            | 1,620          | 7,670          |
| 7        | 3379           | 60             | 488,065                                    | 0.045           | 93             | 1,731          | 5,573          |
| 6        | 3379           | 50.65          | 397,302                                    | 0.037           | 76             | 1,824          | 3,830          |
| 5        | 3379           | 41.32          | 310,263                                    | 0.029           | 59             | 1,899          | 2,440          |
| 4        | 3379           | 32             | 227,459                                    | 0.021           | 43             | 1,958          | 1,385          |
| 3        | 3379           | 22.66          | 149,573                                    | 0.014           | 28             | 2,001          | 645            |
| 2        | 3379           | 13.33          | 78,520                                     | 0.007           | 15             | 2,030          | 199            |
| 1        |                |                |                                            |                 |                | 2,045          |                |
|          | $\Sigma =$     |                | $\Sigma =$                                 | $\Sigma =$      | $\Sigma =$     |                | $\Sigma =$     |
|          | 50748          |                | 10744870                                   | 1.000           | 2045           |                | 215347         |
|          |                |                |                                            |                 |                |                |                |

#### **E-W Distribution**

|  | roof     |   |          |   | 139 K     |
|--|----------|---|----------|---|-----------|
|  | level 16 | ) |          | , | 201 K     |
|  |          |   | level 15 | / | <br>242 к |
|  |          |   | level 14 | , | <br>200 к |
|  |          |   | level 13 | / | <br>207 к |
|  |          |   | level 12 | / | 187 K     |
|  |          |   | level 11 | / | 167 K     |
|  |          |   | level 10 | / | 148 K     |
|  |          |   | level 9  | / | 129 k     |
|  |          |   | level 8  | / | 111 K     |
|  |          |   | level 7  | / | 93 K      |
|  |          |   | level 6  | / | 76 K      |
|  |          |   | level 5  | / | 59 K      |
|  |          |   | level 4  | / | 43 K      |
|  |          |   | level 3  | / | 28 K      |
|  |          |   | level 2  |   | 15 K      |
|  |          |   | level 1  |   | 2045 H    |

#### **Preliminary Analysis / Spot Check Summary:**

#### Gravity

#### Post-Tensioned 2-way Concrete Slab:

A preliminary structural analysis of a 8" 2-way post-tensioned concrete flat slab was carried out under generalized assumptions to better understand the design effects of post-tensioning reinforcement. A typical floor bay was determined to be 25'x 22' excluding the edge panel balcony sections. Slab moments were resolved for residential and corridor live loads with standard dead loads for typical residential levels. Slab moments and calculations can be referenced in Appendix D. Standard top and bottom slab reinforcement of #4 bars was analyzed for resisting the slab moments and was inadequate in mid span and support strips. As a result, post tensioning is required through the slab to maintain an 8" depth with minimal #4 bar reinforcement. The designed 7 wire strand reinforcing tendons are tensioned to 509k in the long frame direction over columns, and 1300k in the short direction through the mid span. The post tensioning analysis was carried out by calculating the slab stresses at both service and initial loading stages and then compared to the ultimate slab stresses. The post tensioning design was adequate to resist the slab moments with resulting stress calculations maintained within initial and service stresses. (Details of calculations and findings of the post tensioned slab analysis are found in Appendix E)

#### Column:

The structural spot check was carried out with a typical 18"x26" column on the 1<sup>st</sup> level of the Odyssey. The column has a tributary area of 625 S.F. and is located at the intersection of column lines F & 7.5. Gravity loads of the remaining levels were calculated to the column including typical floor and roof loads. The axial load resolved on the column was 2162k, which is reasonable for design assumptions of building loads compared to the actual 2180k on the column. The CRSI Design Handbook was used to reference the adequate column reinforcement for a 18"x26" column with design strength of f'c = 8ksi. The given reinforcement of 12 - #11 bars is capable of carrying a design load of 2340k. The typical reinforcement design size in columns throughout the building is determined adequate by spot check requirements for loading assumptions and provisions of ASCE7-02.

#### Lateral

#### Shear Wall:

Due to the complexity of the lateral systems, the analysis and spot check of the shear walls will be addressed in the Lateral Systems Analysis and Confirmation Design report.

#### **Conclusions/Summary:**

The Odyssey is a multifaceted building including underground parking, retail stores, and 15 levels of residential apartments/condominiums. The existing gravity structural system is 2-way post tensioned flat slab for residential levels and 2-way flat slab with drop panels for the parking levels. The lateral systems are shear walls located at the building core and on the exterior wings integrated with slab frames composed of the concrete columns and 2-way flat slab floor system. Lateral loads were determined in accordance with provisions and design procedures of ASCE7-02 and it was found that seismic loads control the Odyssey's lateral design.

Design checks upon both gravity and lateral systems were carried out to verify the accuracy of loading assumptions made through code provisions. The 2-way post-tensioned flat slab system was determined acceptable to resist slab moments from typical floor live and dead loads on a typical residential level of the Odyssey. Through the preliminary analysis the slab stresses resulting from post-tensioning maintained values within the ultimate stresses. A column located on the 1<sup>st</sup> level was spot checked to ensure the design reinforcement was adequate to resist accumulated gravity loads over the remaining levels. The loading on the column corresponded closely to given design column load of 2180k and the 12 -#11 bar reinforcement was found adequate up to 2340k. An analysis of the lateral systems will be addressed in the Lateral Systems Analysis and Confirmation Design report. Analysis calculations and observations are found in Appendices A - E as well as descriptive figures of preliminary structural design components and a typical floor plan.

# Appendix

•

| Appendix – A | <br>Floor Plan         |
|--------------|------------------------|
| Appendix – B | <br>Wind Analysis      |
| Appendix – C | <br>Seismic Analysis   |
| Appendix – D | <br>Snow Load          |
| Appendix – E | <br>Gravity Load Check |

## **References:**

CRSI Design Handbook 2002

ASCE7-02 Design Code



| PRELIMINARY ADDRESS OF SHERE LIELS (C)<br>BUTLOTIN DESCRIPTION:<br>LEARTON: ARETARY ALLS<br>E-W: SHERE WALLS<br>CALIFANELY: CATELORY II<br>* PRELIMINARY DESCRIPTIONS (C)<br>- Absume Conform CARDE THE ADJANTS -<br>- DISSERVED CLEARED THEADS<br>- DISSERVED CLEARED CLEARE THEADS<br>- DISSERVED CLEARED CLEARED CONSTRUCT SUFFER<br>- STRUCTURS I MANUAL MOUNT SCREE RESIDENCE SUFFER THERE G.Y<br>IMAGE CATEGORY I FROME B<br>- CONSTRUCTION SET SPECE.<br>- UCEDON AND SERVED AREAS (SURVE RULLSS)<br>- UCEDON AND SERVED AREAS (SURVE RULLSS)<br>- UCEDON AND SERVED CLEARED CONSTRUCTS<br>- OPARAD CHARTERY MANUAL CONSTRUCTS<br>- OPARAD CHARTERY MANUAL CONSTRUCTS<br>- OPARAD CHARTERY MANUAL CONSTRUCTS<br>- OPARAD CHARTERY MANUAL CONSTRUCTS<br>- OPARAD CHARTERY OF SURVES<br>- OPARAD CHARTERY STATES<br>- OPARAD CONSTRUCTS<br>- OPARAD CONSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I IDIE NOD WITTE CAULE NOONED FO                                                                                                                                                                                                                                                                                                                                                                       | SR                              | 224                                               | l                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|
| BELLETIC Descertion:<br>Lacation: AREA FRON, VA.<br>MWFRS: N.S: SHEARWALLS<br>E-W: SHEARWALLS<br>CALIBRIC CONFIGURE SHEARWALLS<br>CALIBRIC CONFIGURE DEPARTURES<br>- ABOUNDED CONFIGURE THE ANALYSIS<br>- DESCRIPCIO CONFIGURE THE ANALYSIS<br>- DESCRIPCIO CONFIGURE THE ANALYSIS<br>- DESCRIPCIO CONFIGURE THE ANALYSIS<br>- DESCRIPCION PROPERTIES:<br>BASE WIDD SPEED: V. 80 MPH<br>- BALETINS: MANUMOUS FORCE RESISTENCE SKIEW<br>MANO DEBERFONMENT FROME: KIE C.OS<br>- CONSTRUCTION SET SPECE,<br>ENDEDTRIC DESCRIPCION FROME<br>- CONSTRUCTION SET SPECE,<br>ENDEDTRIC CONSTRUCTION CONFIGURE BUILDED<br>- CONSTRUCTION SET SPECE,<br>ENDEDTRIC PRODUCT: FROME D<br>- CONSTRUCTION SET SPECE,<br>ENDEDTRIC CONSTRUCTION CONFIGURE CONSTRUCT K, K, K<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION SET SPECE,<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION SET SPECE,<br>- CONTRUCTION CONSTRUCTION CONST<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION K, K, K<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION K, K, K<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONSTRUCTION CONST<br>- CONTRUCTION CONSTRUCTION CONSTRUCTION CONST<br>- CONSTRUCTION CONSTRUCTION CONSTRUCTION CONST<br>- CONST<br>- CONSTRUCTION CONSTRUCTION CONST<br>- CONST<br>- CONSTRUCTION CONST<br>- CONST<br>- CONSTRUCTION CONST<br>- CONST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRELEMENARY ANALYSIS, OF SHEARWALL                                                                                                                                                                                                                                                                                                                                                                     | SC) 1                           |                                                   |                                                                                    |
| Lacentrow: Areneron, VA.<br>MWRRS: NS: SHERE WALLS<br>CRUPHING: CHECKER III.<br>PREMIME VERY CHECKER III.<br>PREMIME CONTRAL SURPER TOR ANALYSES<br>- Absume Constrant SURPE TOR ANALYSES<br>- DISCREMENT CARENCE INC.<br>BASIC WIDD SPEED: V. 80 MPH<br>- ENTLOTIC DESIGN FRONCE: KI = 0.85<br>BASIC WIDD SPEED: V. 80 MPH<br>- ENTLOTICS: MAN WHOD FORCE REFERENCE SYRTEM TABLE 6.4<br>IMAGE FORMATIC FRONCE: KI = 0.85<br>- CONSTRUCTION SET SPECE.<br>ENTRUCE CATEGORY: ERBER B<br>- CONSTRUCTION SET SPECE.<br>- OPENDAL SET SPECE.<br>- OPENDAL SET SPECE.<br>- OPENDAL SET SPECE.<br>- OPENDAL CONSTRUCTION CENTROL FOR LINNES<br>- OPENDAL CONSTRUCTION OF LINNES<br>- OPENDAL CONSTRUCTS<br>- OPENDAL FRACTOR: KLE = 1.0<br>- OPENDAL FRACTOR: KLE = 1.0<br>- OPENDAL FRACTOR: KLE = 1.0<br>- OPENDAL ENTROPENDAL CONSTRUCTS<br>- OPENDAL FRACTOR: KLE = 1.0<br>- OPENDAL FRACTOR: KLE = OPENDAL<br>- CONSTRUCTION OF LINNES<br>- OPENDAL FRACTOR: KLE = OPENDAL<br>- OPENDAL FRACTOR: KLE = OPENDAL<br>- OPENDAL FRACTOR: KLE = OPENDAL<br>- OPENDAL FRACTOR: CONSTRUCTION OF STATE<br>- OPENDAL FRACTOR: MILLING<br>- OPENDAL FRACTOR: MILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BUILDING DESCRIPTION!                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 1 /                                               |                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOCATION: AREDIGTON, VA.                                                                                                                                                                                                                                                                                                                                                                               |                                 | N /                                               |                                                                                    |
| E-W: SHERCHALS<br>CAUPANCY: CATEGORY II<br>* RELEASE OF DESERVA JUNCTED SALVETEDS:<br>- ABOUND CONTROL SUPPORT TRANS<br>- DESCRIPTION DEDERCTIES:<br>BOTLOFUL DESERVA PROPERTIES:<br>BASSE WIDD SPEED: V-80 MPH<br>- BURLOFULS: MANU PROPERTIES:<br>BASSE WIDD SPEED: V-80 MPH<br>- BURLOFULS: MANU WOUD FLORE REPORTING SYSTEM TABLE 6.4<br>IMARGETANCE FACTOR: I I=1.0<br>- CONSTRUCTION SET SPECE,<br>ENROUGE CATEGORY: ERBORE B<br>- UZDAN AND SURVEYAN ARTANS (SUCKLE RUMINS)<br>- UZDAN AND SURVEYAN ARTANS<br>VELOCATIV PRESSURE EN UDWER CONFERNANCE (SIGNALE RUMINS)<br>- UZDAN AND SURVEYANTS<br>- ALL MURES TO OTHER SISTES<br>TRECE ART ON OTHER SISTES<br>TRECE ART ON OTHER SISTES<br>TRECE ART ON OTHER SISTES<br>TRECE ART ON OTHER SISTES<br>TRECE ARTOR : KELEIN 6.7.7.2<br>50.002 A ZI & B Z C I B Z CONF<br>- ASSUME FRAT: SUCK DUSTINGTORY > 6.5.7.1<br>- ASSUME FRAT: SUCK DUSTINGTORY > 6.5.8<br>- CONST<br>- ASSUME FRAT: SUCK DUSTINGTORY >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MW/FRS: N-S: SHEAR WALLS                                                                                                                                                                                                                                                                                                                                                                               |                                 | /                                                 |                                                                                    |
| California and Differences and interverse descriptions and the product of the pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E-W: SHFARWAUS                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                   |                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OCCUPANCY: CATEGORY I                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                   |                                                                                    |
| - ABSONNE CREATER SUPPER TREATERS<br>- DISSERVED CLEARED FRAME<br>BUTLOTUC DESTRU PROPERTIES:<br>BASSE WIDD SPEED: V. 80 MPH 6.5.4<br>WIDD DURKTFONNENT FRAME S:<br>BASSE WIDD SPEED: V. 80 MPH 6.5.4<br>WIDD DURKTFONNENT FRAME S:<br>BASSE WIDD SPEED: V. 80 MPH 6.5.4<br>WIDD DURKTFONNENT FRAME S:<br>- BUTLOTUCS: MAIN WOUD FRAME CREATERS SETTOR SETTOR FRAME<br>- CONTREMENT FRAME S:<br>- CONTREMENT FRAME S:<br>- CONTREMENT SPECE,<br>EUROPHIC CONSTRUCT SPECE<br>- CONTREMENT FRAME S:<br>- CONTREMENT SETS:<br>YEUKSTY PRESSURE FRAME S:<br>- A) ALL MURES TO BUTLOS CASE 2: TRESPEC<br>- B) ALL MURES TO OTHER SPECES<br>- A) ALL MURES TO OTHER SPECES<br>- A) ALL MURES TO OTHER SPECES<br>- B) ALL MURES TO OTHER SPECES<br>- CASE B<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * PRILIMENARY DEGICN MANYSTS A                                                                                                                                                                                                                                                                                                                                                                         | esumptions:                     |                                                   | /                                                                                  |
| CLEARS FRAGE.         CASET         BATLOTION DESIGN PROPERTIES:         CASET         CASET         CASET         CASET         CASET         BATLOTAGE OF SERVE SECON PROPERTIES:         CASET SECON         CASET SECON         CASET SECON PROPERTIES INTO SECTION TRACE 6.4         CASET SECON PROPERTIES INTO SECTION TRACE 6.4         CASET SECON PROPERTIES INTO SECON TRACE CONSTRUCTION TO CONCERNMENTS         CASET SECON PROPERTIES INTO CONCERNIS         CASET SECON PROPERTIES INTO CONCERNIS         CASET SECON TO CONCERNIS         CASET SECON TRACE CONSTRUCT SECON         TABLE 6-2         OF TABLE CONSTRUCT SECON TRACE CONSTRUCT SECON         TABLE 6-2         OF TABLE 6-2         TABLE 6-2         OF TABLE 6-2         TABLE 6-2         OF TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - ABBUME GENERAL SHAPE TE                                                                                                                                                                                                                                                                                                                                                                              | STR ANALYSES                    |                                                   | 1.                                                                                 |
| BARDANG DESIGN PROPERTIES:         CART           BARSE WEDD SPEED:         V: 80 MpH         6.5.4           WEND DEPERTONNET FACTOR:         Kat = 0.05         6.5.4.4           - BURDATONS:         MANU WEDD FORCE RESISTANCE SPETTER TABLE 6.4           IMPREMANE FACTOR:         I = 1.0         6.5.4.5           - CONSTRUCTION SET SPECE.         6.5.6.2           - CONSTRUCTION SET SPECE.         6.5.6.2           - UREDUAL AND SURREAN ARTING (SURRE RUMMES)         6.5.6.3           - UREDUAL CONSTRUCTOR KR.         6.5.6.3           - UREDUAL CONSTRUCTOR CELEDER CONSTRUCTOR         K2.4.           - ALL MUFRES TO BUSINE CONSTRUCTOR         K2.4.           - BALL MUFRES TO OTHER SYSTES         6.5.6.5           - ALL MUFRES TO OTHER SYSTES         CASE D.           - BERESTER CONSTRUTS         6.5.6.6           - ALL MUFRES TO OTHER SYSTES         6.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - LASKEWEED CORVED FACA                                                                                                                                                                                                                                                                                                                                                                                | OE                              |                                                   | /                                                                                  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BUT DING DESTAN PROPERTIES !                                                                                                                                                                                                                                                                                                                                                                           |                                 | ASE I                                             |                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                   |                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BASIC WIND SPEED: V= 80                                                                                                                                                                                                                                                                                                                                                                                | МРН                             | 6.                                                | 5.4                                                                                |
| - BIELDTUCS : Man Word FLORE REDSTRUC SHERE TABLE 6.4<br>IMADETALES FACTOR : I = 1.0<br>- CONTRELETED SET SPECE.<br>ENDOURE CATEOURY: ERDIE B<br>- UREND CONDITION CHEMICS (SUTTLE RUMMES) 6.5.6.7<br>- UREND CONDITION CHEMICAL (ENDORE CATS) 7.8<br>VELOCITY PRESENCE ENDOLE CORFERENCE K, K. 6.5.6.6<br>- a) ALL MURES TO OTHER STORE<br>TABLE 6-7<br>- b) ALL MURES TO OTHER STORE<br>TABLE 6-7<br>- CONSEL A Z1 & & A A C I & ZMEN 4<br>B 7.0 1200 UN DAY STORES<br>- ASSUME CONSTRUTS 6.5.6<br>- ASSUME FLAT: SCREE DESCRETTION 4.5.7.1<br>- ASSUME FLAT: SCREE DESCRET<br>- (1+1.7.1) SE<br>- 0.8<br>- (1+1.7.1) SE<br>- 0.8<br>- (1+1.7.1) SE<br>- 0.8<br>- (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-1) - (1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WIND DIRECT EDNALTING EDITING! KAI = 0                                                                                                                                                                                                                                                                                                                                                                 | .95                             | 6.5                                               | .4.4                                                                               |
| $\begin{split} & \text{IMPRETALLE FACTOR ! I = 1.0} & 6.5.5 \\ & \text{CONSTRUCTION SET SPRCE,} \\ & \text{ENDERE CATEGORY ! ERBER B & 6.5.6 \\ & \text{UZBAN AND SUPPOAR AREAS (SUPPE Runness)} & 6.5.6.7 \\ & \text{UPDEND CONSTRUCTION UNLINED (ENDERE CATE)} & 6.5.6.5 \\ & \text{UPDEND CONSTRUCTION UNLINED (ENDERE CATE)} & 6.5.6.5 \\ & \text{UPDEND CONSTRUCTS UNLINED (ENDERE CATE)} & 6.5.6.5 \\ & \text{UPDEND CONSTRUCTS UNLINED (ENDERE CATE)} & FABORE 6.5 \\ & \text{AI AU MURES TO OTHER SISTES} & \text{TRECE 6.5 } \\ & \text{TERCADE E RODUCE CONSTRUCTS } & 6.5.6 \\ & \text{ERDSURE ENDERE CONSTRUCTS } & 6.5.6 \\ & \text{URL MURES TO OTHER SISTES} & \text{TRECE 6.7 } \\ & \text{TERCADE E ARDOLDE CONSTRUCTS } & 6.5.6 \\ & \text{URL MURES TO OTHER SISTES} & \text{TRECE 6.7 } \\ & \text{TRECE 6.7 } & \text{TRECE 6.7 } \\ & \text{TRECE CONSTRUCTS } & 6.5.6 \\ & \text{URL MURES TO OTHER SISTES } & \text{TRECE 6.7 } \\ & \text{TRECE CONSTRUCTS } & 6.5.6 \\ & \text{URL MURES TO OTHER SISTES } & \text{TRECE 6.7 } \\ & \text{TRECE ARDOLDE CONSTRUCTS } & 6.5.6 \\ & \text{URL MURES TO OTHER SISTES } & 0.60 \\ & \text{TRECE CONSTRUCTS } & 6.5.7.1 \\ & \text{ODOCCAPTIC FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & KZL = 1.0 \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ & \text{ASSUME FACTOR : } & \text{ASSUME FACTOR : } \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - BUTLOTHES: MAN WEND FUELE                                                                                                                                                                                                                                                                                                                                                                            | REESSTONG SYSTE                 | on TABLE                                          | = 6-4                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                   |                                                                                    |
| $ - Generations Set SPECS, $ $ = Generations Set SPECS, $ $ = Generations Set Specs, $ $ = Generation Set Second Referes (Sience Releases) = G.5.6.2 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6.3 \\ = Operation Conditions interaction (Exposure Cores) = G.5.6 \\ = Operation (Exposure Constraints) = G.5.6 \\ = Operation (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Constraints) = G.5.7.1 \\ = Operation (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Constraints) = G.5.8 \\ = Operation (Exposure Fical (Exposure Fical (Exposure Fical (Exposure Constraints) = G.5.8.1 \\ = Operation (Exposure Constraints) = Oper$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IMPUERANCE FACTOR ! I=1.C                                                                                                                                                                                                                                                                                                                                                                              |                                 | 6.5                                               | .5                                                                                 |
| $ \begin{array}{c} \text{Exposure Catterous Y}: & \text{Errore B} & \text{G.S.G} \\ & \text{UZERNJ AND SEVERAN ARTAS (SUCKE RUMUSS)} & \text{G.S.G.S} \\ & \text{Uputur D} & \text{Constrains uncleared} & (Exposer Catts) & \text{G.S.G.S} \\ & \text{Uputur D} & \text{Constrains uncleared} & (Exposer Catts) & \text{G.S.G.S} \\ \hline & \text{G.S.G.S} & \text{Exposer Catts} & \text{K.K.} & \text{G.S.G.S} \\ \end{array} \\ \hline & \text{JAU MUFRS IN BUSINEE COEFFICIENT K_{S}Kn & \text{G.S.G.S} \\ \hline & \text{JAU MUFRS IN OTURISSIES CASE 2:1 TOESTONS} & \text{K.K.} \\ \hline & \text{Errossere B} \\ \hline & \text{Teronal Inverses Into otures systems} & \text{G.S.G.} & \text{Heller} \\ \hline & \text{Terossere Constraints} & \text{G.S.G.} & \text{Heller} \\ \hline & \text{Terossere A Z1 & G & G & J & C & J & Z \\ \hline & \text{Toestons} & \text{Table G-7} & \text{O.55} \\ \hline & \text{Ressure Constraints} & \text{G.S.G.} & \text{Heller} \\ \hline & \text{Terossere A Z1 & G & G & J & C & J & Z \\ \hline & \text{Toestons} & \text{Table G-7} & \text{O.55} \\ \hline & \text{Ressure Constraints} & \text{G.S.G.} & \text{Heller} \\ \hline & \text{Table G-7} & \text{O.56} \\ \hline & \text{Table G-7} & \text{O.57} \\ \hline & \text{Torossere A Z1 & G & G & J & C & J & Z \\ \hline & \text{Ressure Constraints} & \text{G.S.G.} & \text{Heller} \\ \hline & \text{Table G-7} & \text{O.56} \\ \hline & \text{A Zamos O.66h > Zames = 30'} \\ \hline & Torossere Produce FLAT: Score Distributive four $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - CONSTRUCTION SET SPECE,                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                                   |                                                                                    |
| Expose 2 Construct of the B (3.5.6)<br>- UZBAN AND SUBPORAN AREAS (SUCHE RUMPS) (5.5.6.7<br>- UPWIND CONDITION ONCOMPLANCED (EXPOSED CASS) (5.5.6.7<br>- UPWIND CONDITION ONCOMPLANCED (EXPOSED CASS) (5.5.6.7<br>- a) ALL MUTRES TO BUSICOUS CASE 2: ITOUSTON K.K. (6.5.6.6)<br>TERRADU EXPOSURE CONSTRUCTS (6.5.6)<br>TERRADU EXPOSURE CONSTRUCTS (6.5.6)<br>HELE CONSTRUCTS (6.5.7)<br>REPOSURE A Z1 & G & C & E ZAMON<br>TOROCLAPHIC FACTOR ! KZL = 1.0 (6.7.7.2)<br>SO 0.60<br>H ZMON = 0.6h > ZAMON = 30'<br>HO 0.76<br>TOROCLAPHIC FACTOR ! KZL = 1.0 (6.7.7.2)<br>SO 0.61<br>- ASSUME FLAT : SCORE DISCONTINCE (6.5.7)<br>KZL = (1+K,KLS) FILE (6.4)<br>SO 0.45<br>KZL = (1+K,KLS) FILE (6.4)<br>SO 0.45<br>KZL = (1+K,KLS) FILE (6.5)<br>KZL = (1/(2/33)) = 4(63.38)<br>FILE (6.4)<br>DO 0.49<br>HO 1.09<br>LZ = 1(Z/33)) = 4(63.38)<br>FILE (6.7)<br>INT<br>Q = (1)<br>(10)<br>ITZ = (33/Z) <sup>16</sup> = 0.25<br>FILE (6.5)<br>FILE (24) <sup>15</sup><br>(10)<br>ITZ = (33/Z) <sup>16</sup> = 0.25<br>FILE (7)<br>ST 0.005<br>KZL = (1+1.779) IZ 0.0<br>(1)<br>HO 1.17<br>KZL = (1+1.779) IZ 0.0<br>SO 0.65<br>KZL = (1+1.779) IZ 0.0<br>(1)<br>HO 1.17<br>KZL = (1+1.779) IZ 0.0<br>KZL = (1+1.779) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                                   |                                                                                    |
| - UZBAN AND SIEVERAN AREAS (SUCHE RIEWAS)<br>- UPWEND CONDITION UNCLANCED (ENDONE CATS)<br>- UPWEND CONDITION UNCLANCED (ENDONE CATS)<br>YELDOCTAR PRESSURE EXPLOSIBLE COEFFICIENT K2, Kn 6.5.6.0<br>ERDOSIZE B<br>- a) ALL MURSS IN OTHER SYSTES<br>TERRATU ENDONE CONSTRAITS 6.5.6<br>TABLE 6-3<br>* b) ALL MURSS IN OTHER SYSTES<br>TERRATU ENDONE CONSTRAITS 6.5.6<br>HERE 6-3<br>* C. I. E. ZINNOF<br>B 7.0 1200 147 0341 144,0 030 320 1320 100.2<br>* ZMON = 0.6h > ZMON = 30'<br>TODOCEARTIC FACTOR Y KZL = 1.0 6.7.7.2<br>SO 0.61<br>* ZMON = 0.6h > ZMON = 30'<br>TODOCEARTIC FACTOR Y KZL = 1.0 6.7.7.2<br>SO 0.84<br>SO 0.70<br>KZL = (1+K, KLKS)<br>FICE 6-4<br>B - 204' h = 167'<br>KZL = 1.0 6.5.8.1<br>B - 204' h = 167'<br>KZ = (1, Z/33) <sup>E</sup> = 463.38<br>FQ - 6-7<br>ID 1.17<br>Q = $\begin{bmatrix} 1 \\ 1+0.53(B+n)^{005} \\ LZ \end{bmatrix}$ = 0.8<br>FUN 6-5<br>KZ = 0.025<br>KZ = 0.025<br>K2 = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXPOSURE CATEGORY: ERDER B                                                                                                                                                                                                                                                                                                                                                                             |                                 | 6.5.                                              | 6                                                                                  |
| - Upwerd conditions included (Exposed Cars) 6.5-6.5<br>Verify Pressure Exposure Corrections K, K, 6.5.6.6<br>- a) All MUTRES to BUZLOUS CASE 2: TONORE<br>- b) All MUTRES to OTHER STORES<br>TERNATU EXPOSURE CONSTRANTS 6.5.6<br>TERNATU EXPOSURE CONSTRANTS 6.5.6<br>- $\frac{1}{4}$ ( $\frac{1}{4}$ ) $\frac{1}{6}$ ( $\frac{1}{6}$ ) $\frac{1}{7}$ ( $\frac{1}{7}$ ) $\frac{1}{7}$                                                                                                                                                           | - URBAN AND SUBURDAN AREAS                                                                                                                                                                                                                                                                                                                                                                             | (SURFACE RUCHUESS)              | 6.5.                                              | 6.2                                                                                |
| $\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - UPWEND CONDITION UNKNAMED                                                                                                                                                                                                                                                                                                                                                                            | (ExPUDDER CATS)                 | 0.2-                                              | 0.5                                                                                |
| $\begin{array}{cccc} & Yelderry Pressure E Explose E Coefferent K2, Kn & D. 2.6.0 \\ & ERDSURE B \\ - a) All MUFRS TO BUELOUS CASE 2: TOUSTED \\ \hline Di All MUFRS TO OTHER STOTS & CASE 2: TOUSTED \\ \hline Di All MUFRS TO OTHER STOTS & CASE 2: TOUSTED \\ \hline TABLE 6-7. & TABLE 6-7. & O.57 \\ \hline DI ALL MUFRS TO OTHER STOTS & G. 5.6 \\ \hline TABLE 6-7. & O.57 \\ \hline DI DOLDAR V7 ASHI V4.0 030 320 V3.0 & 100.2 \\ \hline A ZMEU = 0.6h > ZMEU = 30' & 40 & 0.76 \\ \hline TO TO COLORAPTIC FACTOR : KZL = 1.0 & G.7.7.2 & S0 & 0.61 \\ - ASSUME FLAT : SLOPE DISCUETCANT > G. 5.7.1 & 60 & 0.85 \\ K_{ZL} = (1+K, K_{L}K_{S})^{C} & FILE 6-4 & 80 & 0.96 \\ \hline S RSOTD STRUCTES NL 2100 & G.5.8 & 90 & 0.91 \\ \hline B = 224' & h = 167' & 120 & G.5.8.1 & 100 & 0.99 \\ \hline L_{Z} = J(Z/33)^{E} = 463.38 & Fu. 6-6 & KRONDETT \\ \hline I = 0.85 & Fu. 6-6 & KRONDETT \\ \hline I = 0.85 & Fu. 6-6 & KRONDETT \\ \hline I = 0.85 & Fu. 6-6 & KRONDETT \\ \hline I = 0.25 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 \\ \hline I_{Z} = 0.95 & Fu + 6-5 & x = 0.75 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        | K K                             | 1 = 1                                             | 6.6                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VELOCITY PRESSURE EXPLOSURE COEFFICI                                                                                                                                                                                                                                                                                                                                                                   | Fry Kz, Kn                      | 0.2.0                                             |                                                                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E.R.S.                                                                                                                                                                                                                                                                                                                                                                                                 | JEE B<br>ILWORE                 | TABO                                              | 6 6.2                                                                              |
| $TEPRATU = APRODURE CONSTRUTS 6.5.6  TEPRATU = EAPRODURE CONSTRUTS 6.5.6  TABLE 6-2 0-5 0.57  TO DOG APHIC FACTOR 1 1/4.0 030 320 1/3.0 100.2 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.66  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.60  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.60  A ZMOU = 0.66 > ZMOU = 30' 20 0.62 25 0.60  A ZMOU = 0.66 > ZMOU = 0.65 8 40 0.45  A ZMOU = 0.65 M, 21.0 6.5 8.1 100 0.49  B = 224' h = 167' 120 6.5 8.1 100 0.49  U10 1.09  Lz = 1(Z/33)^{E} = 463.38 E0.6-7 100 1.13  A = \left[\frac{1}{1+0.63} \frac{(B+h)^{003}}{(Lz)}\right]^{1/2} = 0.8 E0.6-6  Fa + 6-5  Fz = 0.75  Tz = C(33/z)^{1/6} = 0.25 E0 + 6-5  Fz = 0.75  Tz = C(33/z)^{1/6} = 0.25 E0 + 6-5  Fz = 0.75  Tz = C(44^{2})^{-1} = 0.85  Fz = 0.75  Tz = 1.07 21.0  RED = 0.05 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - a) ALL MUTKS E ISJELDES CASE                                                                                                                                                                                                                                                                                                                                                                         | E d' TOESTON                    | K                                                 | K                                                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Of ALL MUTICS IN OTHER SYSTERS                                                                                                                                                                                                                                                                                                                                                                         |                                 | E.o.e.                                            | RE: B                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEORATAL ELONGE CONSTANTS                                                                                                                                                                                                                                                                                                                                                                              | 656                             | 4.121                                             | CASE 2                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TEDUTO EXTUDUCE CONSTANTS                                                                                                                                                                                                                                                                                                                                                                              | TARE 6-2                        | 0-15                                              | 0.57                                                                               |
| B       7.0       17       0341       1/4.0       030       320       1/3.0       100.2       25       0.66         #       Zmou = 0.6h > Zmus = 30'       40       0.76       30       0.67.7.2       30       0.66         Image: Construct = 0.6h > Zmus = 30'       40       0.76       50       0.61         Image: Construct = 0.6h > Zmus = 30'       40       0.76       50       0.61         Image: Construct = 0.6h > Zmus = 30'       40       0.76       50       0.61         Image: Construct = 0.6h > Zmus = 30'       40       0.76       50       0.61         Image: Construct = 0.6h > Zmus = 30'       50       6.5.7.1       50       0.61         Image: Construct = 0.6h > Zmus = 30'       Free 6-4       50       0.85       0.85         Ket = (I+K, K_1K_3)       Free 6-4       50       0.85       0.96         Gust Effect Factore       6.5.8       90       0.96       90       0.96         # Resourd Streamers       1.67'       1.21.0       6.5.8.8.1       100       0.97         Image: Construct = 5       1.21.0       6.5.8.5.8.1       100       1.13       100         Image: Construct = 5       1.21.0       1.21.0       1.17 <td>EXPOSE &amp; ZA &amp; B &amp; Z C O</td> <td>E Znev +</td> <td>20</td> <td>0.62</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXPOSE & ZA & B & Z C O                                                                                                                                                                                                                                                                                                                                                                                | E Znev +                        | 20                                                | 0.62                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 20 1200 117 0841 1/4 0130 320                                                                                                                                                                                                                                                                                                                                                                        | 1/20 100.2                      | 25                                                | 0.66                                                                               |
| $ \begin{array}{c} 1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + Z                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                            | 30                                                | 0.70                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · EMEN · DIGVI / CINE- VO                                                                                                                                                                                                                                                                                                                                                                              |                                 | 40                                                | 0.76                                                                               |
| - Assume FLAT: SLOPE INSUMERICANT -> 6.5.7.1 60 0.85<br>$K_{zt} = (1+K_1K_2K_3)^{-1}$ FIG 6-4 70 0.84<br>$K_{zt} = (1+K_1K_2K_3)^{-1}$ FIG 6-4 80 0.45<br>GUST EFFECT FACTOR 6.5.8 90 0.46<br>* REDOLD STRUCTURES 1.21.0 6.5.8.1 100 0.99<br>B = 224' h = 167' 100 1.13<br>$L_z = l(z/33)^{\overline{E}} = 463.38$ Fa.6-7 160 1.13<br>$Q = \begin{bmatrix} 1 & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -7^{1/2} & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TODY PAPHER FACTOR : KTL=1.0                                                                                                                                                                                                                                                                                                                                                                           | 6.7.7.2                         | 50                                                | 0.81                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - ASSUME FLAT : SLOPE IN SCHEFTCAN                                                                                                                                                                                                                                                                                                                                                                     | 5-> 6.5.7.1                     | 60                                                | 0.85                                                                               |
| GUST EFFECT FACTOR       6.5.8       90       0.96         * REATE STRATES TO STRATES N, 21.0       6.5.8       90       0.96         B= 224' h= 167'       100       0.99         Lz = $l(\overline{z}/33)^{\overline{z}} = 463.38$ Eq. 6-7       100       1.09         Lz = $l(\overline{z}/33)^{\overline{z}} = 463.38$ Eq. 6-7       100       1.13         Q = $\left[\frac{1}{1+0.63}\left(\frac{B+n}{L_{\overline{z}}}\right)^{005}\right]^{1/2}$ = 0.8       Eu. 6-6'       * RECOTOTY         C4 = 0.02       h = 167'       100       1.13       100       1.17         Q = $\left[\frac{1}{1+0.63}\left(\frac{B+n}{L_{\overline{z}}}\right)^{005}\right]^{1/6} = 0.25$ Eu. 6-6'       * RECOTOTY       C4 = 0.02         M = 167'       Tz = c (33/z)^{1/6} = 0.25       Eu. 6-5'       * = 0.75       Tz = 0.75         Tz = c (33/z)^{1/6} = 0.25 [(1+1.79aT_{\overline{z}} Q)] = 6.8157       Eq. 6-4'       I= 1.07 z 1.1' $\gamma = 9_V, 9_{\overline{z}} = 3.4'$ = 0.85'       * SEE SNEARL       RICTOTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $K_{74} = (1 + K_1 K_2 K_3)^2$                                                                                                                                                                                                                                                                                                                                                                         | FIG 6-4                         | 76                                                | 0.89                                                                               |
| GUST EFFECT FACTOR       6.5.8       90       0.96         * REVERS STRUCTURES 1, 21.0       6.5.8.1       100       0.99         B= 224' h= 167'       100       1.04       100       1.04         Lz = $l(z/33)^{E} = 463.38$ Fa.6-7       160       1.13         Q = $\left[\frac{1}{1+0.63}\left(\frac{B+h}{Lz}\right)^{003}\right]^{1/2}$ = 0.8       Fa.6-7       160       1.13         Q = $\left[\frac{1}{1+0.63}\left(\frac{B+h}{Lz}\right)^{003}\right]^{1/2}$ = 0.8       Fa.6-6       * REVENDENT         C4 = 0.02       H = 167'       X = 0.75       X = 0.75         Tz = C(33/z)^{1/6} = 0.25       Fa + 6-5       X = 0.75         Tz = C(33/z)^{1/6} = 0.25       Fa + 6-5       X = 0.75         Tz = 0.025 $\left(\frac{1+1.79a}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75         Y = 0.025 $\left(\frac{1+1.79v}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75         Y = 0.025 $\left(\frac{1+1.79v}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75         Y = 0.025 $\left(\frac{1+1.79v}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75         Y = 0.025 $\left(\frac{1+1.79v}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75         Y = 0.025 $\left(\frac{1+1.79v}{1+1.79v} \overline{z}\right)^{-1}$ 0.85       X = 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 80                                                | 0.93                                                                               |
| * REVERS STRUCTURES 1, 21.0 6.5.8.1 100 0.99<br>B= 224' h= 167' 100 1.09<br>$L_z = l(z/33)^{\overline{e}} = 463.38$ Eq. 6-7 160 1.13<br>$Q = \begin{bmatrix} 1 \\ 1+0.63(\frac{B+h}{L_z})^{003} \end{bmatrix}^2 = 0.8$ Eq. 6-7 160 1.13<br>$Q = \begin{bmatrix} 1 \\ 1+0.63(\frac{B+h}{L_z})^{003} \end{bmatrix}^2 = 0.8$ Eq. 6-6 * REVERTING<br>$L_z = c(33/z)^{16} = 0.25$ Eq. 6-6 * REVERTING<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 * $T_z = 0.02$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = c(33/z)^{16} = 0.25$ Eq. 6-6 $T_z = 0.75$<br>$T_z = 0.75$ $T_z = 0.75$ $T_z = 0.75$<br>$T_z = 0.75$ $T_z = 0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GUST EFFECT FACTOR                                                                                                                                                                                                                                                                                                                                                                                     | 6.5.8                           | 90                                                | 0,96                                                                               |
| $B = 224'  h = 167' \qquad 120  1.04 \\ 140  1.09 \\ 140  1.09 \\ 140  1.09 \\ 140  1.09 \\ 140  1.09 \\ 140  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  1.17 \\ 180  180  180 \\ 180  180  180  180 \\ 180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  180  18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * REVERS STRUCTURES 1, 21.0                                                                                                                                                                                                                                                                                                                                                                            | 6.5.8.1                         | 100                                               | 0.99                                                                               |
| $L_{\overline{z}} = \int (\overline{z}/33)^{\overline{z}} = 463.38 \qquad F_{\overline{u}}.6-7 \qquad 100 \qquad 1.09 \\ 1.09 \qquad 1.09 \qquad 1.09 \\ 1.00 \qquad 1.13 \\ 100 \qquad 1.17 \\ 100 \qquad 100 \qquad 100 \\ 100 \qquad 100 \\ 100 \qquad 100 \qquad 100 \\ 100 $ | B= 224' h= 167'                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 120                                               | 1.04                                                                               |
| $L_{z} = l(\overline{z}/33)^{e} = 463.38 \qquad Eq. 6-7 \qquad 100 \qquad 1.13 \\ RO \qquad 1.17 \qquad Rectar = \left[\frac{1}{1+0.63}\left(\frac{B+h}{2z}\right)^{1/2}\right] = 0.8 \qquad Eq. 6-6 \qquad * Rectar OFT \\ C_{4} = 0.02 \qquad h = 167' \\ T_{\overline{z}} = c(33/\overline{z})^{1/6} = 0.25 \qquad Eq. 6-5 \qquad * = 0.75 \\ T_{\overline{z}} = 6.925\left[\frac{(1+1.79aT_{\overline{z}}a)}{1+1.79vT_{\overline{z}}}\right] = 6.8157  Eq. 6-41 \qquad f_{\overline{z}} = 1.07 \ z_{1.7} \\ \Rightarrow 9v, 9v_{\overline{z}} = 3.4 \qquad = 0.85 \qquad * SEE SNEAR \\ RICTOTT \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 140                                               | 1.09                                                                               |
| $Q = \begin{bmatrix} 1 \\ 1 + 0.63 (\frac{B+n}{L_{z}})^{1/2} \\ = 0.8 \\ = 0.8 \\ = 0.02 \\ M = 167' \\ T_{z} = c (33/z)^{1/6} = 0.25 \\ G_{z} = 0.25 \\ F_{0} + 6-5 \\ G_{z} = 0.75 \\ T_{z} = C(33/z)^{1/6} = 0.25 \\ G_{z} = 0.25 \\ F_{0} + 6-5 \\ T_{z} = 0.75 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 160                                               | 1.13                                                                               |
| $Q = \begin{bmatrix} 1 \\ 1 + 0.63 (B+h)^{003} \end{bmatrix}^{2} = 0.8  \text{Eur 6-6}  \text{* Rivitolity} \\ C_{4} = 0.02 \\ M = 167' \\ T_{\overline{2}} = C (33/\overline{2})^{1/6} = 0.25  \text{Eur 6-5} \\ F_{\overline{2}} = 0.25  \text{Eur 6-5} \\ G_{\overline{1}} = 0.25 \begin{bmatrix} (1+1.79aT_{\overline{2}}a) \\ 1 + 1.79vT_{\overline{2}} \end{bmatrix} = 0.8157  \text{Eq 6-41} \\ f_{\overline{2}} = 1.07 \times 1. \\ 9yv, 9g = 3.4  \text{eq 6.855} \\ \text{Kintoir}  \text{Kintoir} \\ \text{Rivitoir} \\ \text{Rivitoir } \\ \text{Rivitoir} \\ \text{Rivitoir} \\ \text{Rivitoir } \\ \text{Rivitoir } \\ \text{Rivitoir} \\ \text{Rivitoir } \\ \ \text{Rivit } \\ \ \text{Rivitoir } \\ \ \text{Rivitoir } \\ \ Rivi$                                                                                                                                                                                                                                                  | L== l(Z/33)== 463.32                                                                                                                                                                                                                                                                                                                                                                                   | Eq. 6-7                         |                                                   | 1.17                                                                               |
| $\begin{bmatrix}  +0.63 (\frac{B+n}{L_{z}})^{603}   = 0.8 & Eu. 6-6 & * RIOTOLTY \\ C_{4} = 0.02 & C_{4} = 0.02 \\ N = 167' \\ T_{\overline{z}} = c (33/z)^{16} = 0.25 & E_{0} + 6-5 & x = 0.75 \\ C_{\overline{z}} = 0.925 \left[ (1+1.79a T_{\overline{z}} Q)^{-1} \right] = 0.8157 & E_{\overline{z}} 6-41 & f_{\overline{z}} = 1.07 \ge 1. \\ \gamma q_{Y}, q_{\overline{y}} = 3.4 & = 0.85 & * SEE SNFARL \\ RIOTOLT & R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $L_{\bar{z}} = l(\bar{z}/33)^{\bar{z}} = 463.38$                                                                                                                                                                                                                                                                                                                                                       | Eq. 6-7                         | 180                                               |                                                                                    |
| $\begin{aligned} I = (2z) \\ I = (33/z)^{1/6} = 0.25 \\ G_{\pm} = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $L_{\bar{z}} = l(\bar{z}/33)^{\bar{e}} = 463.38$<br>$Q = \int 1 - \int 1^{1/2} dz$                                                                                                                                                                                                                                                                                                                     | Ea. 6-7                         | 180                                               |                                                                                    |
| $I_{\overline{z}} = C \left( \frac{33}{\overline{z}} \right)^{1/6} = 0.25 \qquad E_{0.85} = 0.75 \qquad x = 0.75 \qquad $                                        | $L_{\overline{z}} = l(\overline{z}/33)^{\overline{e}} = 463.38$ $Q = \int \frac{1}{1+0.63/(B+n)^{0.03}} = 0.8$                                                                                                                                                                                                                                                                                         | Eq. 6-7                         | 180<br>* RIUT                                     | OET Y                                                                              |
| $\begin{aligned} I_{\overline{z}} &= c \left( \frac{33}{\overline{z}} \right)^{5} &= 0.25 \\ G_{\overline{z}}^{=} &= 6.925 \left[ \frac{(1+1)7q_{\alpha}I_{\overline{z}}\Omega}{1+1)7q_{\nu}I_{\overline{z}}} \right]^{-} &= 6.8157  Eq. 6-11 \\ f_{\overline{z}}^{=} &= 1.07  z.1. \\ g_{\nu}, g_{\eta}^{=} &= 3.4 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $L_{\overline{z}} = l(\overline{z}/33)^{\overline{e}} = 463.38$ $Q = \left[\frac{1}{1+0.63(\frac{B+n}{L_{\overline{z}}})^{0.03}}\right]^{1/2} = 0.8$                                                                                                                                                                                                                                                   | Ea. 6-6.                        | 180<br>* RTOT.<br>Ct                              | 0ET4<br>= 0.02                                                                     |
| $G_{\mp} = 6.925 \left[ \frac{(1+1)7q_{0} I_{\mp} Q}{1+1)7q_{0} I_{\mp} Q} \right] = 6.8157  Eq. 6-11 \qquad f_{\mp} [C_{4}h^{*}]^{T}$ $\Rightarrow q_{V}, q_{\xi} = 3.4 \qquad = 0.85 \qquad * SEE SNFARM RIDITOIT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $L_{\bar{z}} = \int (\bar{z}/33)^{\bar{z}} = 463.38$ $Q = \left[\frac{1}{1+0.63(\frac{B+n}{L_{\bar{z}}})^{0.63}}\right]^{1/2} = 0.8$                                                                                                                                                                                                                                                                   | Eu. 6-6.                        | 180<br>* RTUT.<br>C4                              | 0274<br>= 0.02<br>= 167'                                                           |
| $G_{\mp} = 6.925 \left[ \frac{(1+1)7q_{0} I_{\Xi} Q}{1+1)7q_{v} I_{\Xi}} \right] = 6.8157  Eq. 6-41 \qquad f_{\mp} = 1.07 \ 21.$ $\Rightarrow q_{v}, q_{q} = 3.4 \qquad = 0.85 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $L_{\overline{z}} = \int (\overline{z}/33)^{\overline{e}} = 463.38$ $Q = \left[\frac{1}{1+0.63(\frac{B+n}{L_{\overline{z}}})^{0.03}}\right]^{1/2} = 0.8$ $I_{\overline{z}} = C(33/\overline{z})^{1/6} = 0.25$                                                                                                                                                                                          | Ea. 6-5                         | 180<br>* RTOT.<br>Ct<br>N                         | 0ET<br>= 0.02<br>= 167'<br>= 0.75                                                  |
| 4 = 1.67 21.<br>$3 = 9_{V}, 9_{Q} = 3.4$ = 0.85<br>Rictoir Rictoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $L_{\bar{z}} = \int (\bar{z}/33)^{\bar{z}} = 463.38$ $Q = \left[\frac{1}{1+0.63(\frac{B+n}{L_{\bar{z}}})^{003}}\right]^{1/2} = 0.8$ $I_{\bar{z}} = c(33/\bar{z})^{1/6} = 0.25$                                                                                                                                                                                                                         | Ea. 6-7<br>Ea. 6-6.             | 180<br>* RIOT.<br>Ct<br>N<br>* =                  | 0ET<br>= 0.02<br>= 167'<br>= 0.75<br>FGh*]=1                                       |
| + 94,94 = 3.4 = 0.85 * * SEE SNFARM<br>RICTOIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L_{\overline{z}} = l(\overline{z}/33)^{\overline{z}} = 463.38$ $Q = \left[\frac{1}{1+0.63(\frac{B+h}{L_{\overline{z}}})^{003}}\right]^{1/2} = 0.8$ $I_{\overline{z}} = c(33/\overline{z})^{1/6} = 0.25$ $G = 6.925 \left[\frac{(1+1.79aI_{\overline{z}}Q)}{2}\right] = 0.81$                                                                                                                          | Ea. 6-7<br>Ea. 6-6<br>Ea. + 6-5 | 180<br>* RIOT.<br>C+<br>N<br>*=<br>T_4 0          | 0ET<br>= 0.02<br>= 167'<br>= 0.75<br>[C4h*]                                        |
| RICTOIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_{\overline{z}} = l(\overline{z}/33)^{\overline{e}} = 463.38$ $Q = \left[\frac{1}{ +0.63(\frac{B+n}{L_{\overline{z}}})^{6}}\right]^{1/2} = 0.8$ $I_{\overline{z}} = c(33/\overline{z})^{1/6} = 0.25$ $G_{\underline{z}} = 6.925\left[\frac{(1+1.79g)I_{\overline{z}}Q}{1+1.79y}I_{\overline{z}}\right] = 6.81$                                                                                       | Ea. 6-7<br>Ea. 6-6<br>Ea. 6-5   | 180<br>* REUT.<br>Ct<br>N<br>*=<br>Ta' L<br>+=    | 0274<br>= 0.02<br>= 167'<br>= 0.75<br>[C44"]<br>1.07 21.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $L_{\overline{z}} = l(\overline{z}/33)^{\overline{e}} = 463.38$ $Q = \left[\frac{1}{ +0.03(\frac{B+n}{L_{\overline{z}}})^{0.03}}\right]^{1/2} = 0.8$ $I_{\overline{z}} = c(33/\overline{z})^{1/6} = 0.25$ $G_{\underline{z}} = 6.925\left[\frac{(1+1.7q_{\overline{u}}I_{\overline{z}}Q)}{1+1.7q_{\overline{u}}I_{\overline{z}}}\right] = 6.81$ $\Rightarrow q_{\overline{u}}, q_{\overline{u}} = 3.4$ | Eu. 6-7<br>Eu. 6-6<br>Eu. + 6-5 | 180<br>* Rivit<br>Cit<br>N<br>* Ta U<br>+<br>* SE | 0274<br>= 0.02<br>= 167'<br>= 0.75<br>[CGH*] <sup>-1</sup><br>1.07 2 1.<br>ESAFARW |

|         |                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H4 (Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9z (15)                                                                                                                                                                  | 1kgel                                                                                                                                                       |
|---------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | VELOCE PRESIDE                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.94                                                                                                                                                                     |                                                                                                                                                             |
|         | YELOLATY THESEDER                                                                                            |                                                                                                                                                                                                         | 92= 13.                                                                                                                                                     | 4264 NZ                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.63                                                                                                                                                                     |                                                                                                                                                             |
|         | 11- = 0.00256 Kak                                                                                            | 2+Kd V3                                                                                                                                                                                                 | - (16/A2)                                                                                                                                                   | Ed-6                                                                                                                                                                   | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,19                                                                                                                                                                     |                                                                                                                                                             |
|         | 1 /167-160 /1 -                                                                                              | 112/126                                                                                                                                                                                                 | 241) 12 6                                                                                                                                                   | 264 (1.13)                                                                                                                                                             | - 15 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9,75                                                                                                                                                                     |                                                                                                                                                             |
| · · ·   | $qh = \left(\frac{1}{120 - 100}\right)(1.17$                                                                 | -1115 1(1314                                                                                                                                                                                            | 2041+ 12.1                                                                                                                                                  | 1004(110)                                                                                                                                                              | - 15.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.58                                                                                                                                                                    |                                                                                                                                                             |
|         | ENCLOSURE CLASSIFICAT                                                                                        | TON                                                                                                                                                                                                     | 64                                                                                                                                                          | : 6.5                                                                                                                                                                  | .11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.28                                                                                                                                                                    |                                                                                                                                                             |
|         |                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.84                                                                                                                                                                    |                                                                                                                                                             |
| 000     | Frender Burlow                                                                                               | x                                                                                                                                                                                                       | + 0.18                                                                                                                                                      | F36-6-                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.59                                                                                                                                                                    |                                                                                                                                                             |
|         |                                                                                                              |                                                                                                                                                                                                         | - 0.18                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.37                                                                                                                                                                    |                                                                                                                                                             |
| S H S S |                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                             | 1 5 11                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.79                                                                                                                                                                    |                                                                                                                                                             |
| 5000    | EXTERNAL PRESSURE COEFFS                                                                                     | TUTENTS                                                                                                                                                                                                 |                                                                                                                                                             | 6. 5                                                                                                                                                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.48                                                                                                                                                                    |                                                                                                                                                             |
| 1442    | 1150 000 × 14/2                                                                                              | = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                 | 22.11                                                                                                                                                       | TABLE                                                                                                                                                                  | 6-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15,18                                                                                                                                                                    |                                                                                                                                                             |
| 55.5    | WANNALES - (15                                                                                               | 2 - March                                                                                                                                                                                               | VALUE 3                                                                                                                                                     | 11 00 2                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.74                                                                                                                                                                    |                                                                                                                                                             |
| D.      | I FELLARD I (UR                                                                                              | 1= 1.0                                                                                                                                                                                                  | ,                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.29                                                                                                                                                                    |                                                                                                                                                             |
| Vdi     |                                                                                                              | 5                                                                                                                                                                                                       |                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
| AM      | CP P                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
| 9       | DESTON WITHO LOAD                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                             | 6.5.12.                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
|         | MOIN WIND FORCE-R                                                                                            | RESISTENCE                                                                                                                                                                                              | SATEMS                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
|         | = P RIFLOT                                                                                                   | 115                                                                                                                                                                                                     |                                                                                                                                                             | 6.5.12                                                                                                                                                                 | 1.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
|         | $R_{2} = q G C_{p} - q H$                                                                                    | sepit 1                                                                                                                                                                                                 | (15/ff2)                                                                                                                                                    | Ea. 6                                                                                                                                                                  | 5-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
|         | REGELS SOLLOS<br>Pz = 96Cp - gitt<br>WINDWARD<br>PH = 926Cp                                                  | 5CP; ]                                                                                                                                                                                                  | (15/A+2)                                                                                                                                                    | Ea. 6                                                                                                                                                                  | 5-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                             |
|         | Pz = 96Cp - gitt<br>WINDWARD<br>Pr = 926Cp                                                                   | 567.T                                                                                                                                                                                                   | (15/4+2)<br>Winds                                                                                                                                           | Ea. 6<br>ward                                                                                                                                                          | 5-17<br>Leews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total MN                                                                                                                                                                 | WFRS                                                                                                                                                        |
|         | REALS SOLULA<br>PZ = 96Cp - gitt<br>WINDWARD<br>PH = 926Cp<br>LEEWARD                                        | SCP: T                                                                                                                                                                                                  | (15/4+2)<br>Winds<br>N-S                                                                                                                                    | Ea 6<br>ward<br>E-W                                                                                                                                                    | Leews<br>N-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ard E-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total MV<br>N-S                                                                                                                                                          | WFRS<br>E-W                                                                                                                                                 |
|         | REALD SOLULA<br>Pz = 96Cp - git<br>WINDWARD<br>PH = 926Cp<br>LEEWARD<br>P. = 96(2Cp                          | Z(ft)<br>0-15                                                                                                                                                                                           | (15/4+2)<br>Winds<br>N-S<br>5.18                                                                                                                            | Ea 6<br>ward<br>E-W<br>5.18                                                                                                                                            | Leews<br>N-S<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total MV<br>N-S<br>11.68                                                                                                                                                 | WFRS<br>E-W<br>11                                                                                                                                           |
|         | Pz = 96Cp - gitt<br>WINDWARD<br>PH = 926Cp<br>LEEWARD<br>Pl = 946Cp                                          | Z(ft)<br>0-15<br>20                                                                                                                                                                                     | (15/4+2)<br>Winds<br>N-S<br>5.18<br>5.63                                                                                                                    | ward<br><u>E-W</u><br>5.18<br>5.63                                                                                                                                     | Leewa<br>N-S<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ard E-W 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total MN<br>N-S<br>11.68<br>12.13                                                                                                                                        | WFRS<br><u>E-W</u><br>11<br>12                                                                                                                              |
|         | REALS SOLULA<br>PZ = 96Cp - gitt<br>WINDWARD<br>PH = 926Cp<br>LEEWARD<br>PJ = 946Cp                          | Z(ft)<br>0-15<br>20<br>25                                                                                                                                                                               | Winds<br>N-S<br>5.18<br>5.63<br>6.00                                                                                                                        | ward<br>5.18<br>5.63<br>6.00                                                                                                                                           | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total MV<br>N-S<br>11.68<br>12.13<br>12.50                                                                                                                               | WFRS<br><u>E-W</u><br>11<br>12<br>12                                                                                                                        |
|         | REALS SOLUL<br>Pz = 96Cp - git<br>WINDWARD<br>PH = 926Cp<br>LEEWARD<br>Pe = 946Cp                            | Z(ft)<br>0-15<br>20<br>25<br>30                                                                                                                                                                         | (15/4+2)<br>Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36                                                                                                    | Ea 6<br>Ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36                                                                                                                    | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86                                                                                                                      | WFRS<br>E-W<br>11<br>12<br>12<br>12                                                                                                                         |
|         | REALS SOLUL<br>Pz = 96Cp - git<br>WINDWARD<br>P= 926Cp<br>LEEWARD<br>Pe = 946Cp                              | Z(ft)<br>0-15<br>20<br>25<br>30<br>40                                                                                                                                                                   | (15/A+2)<br>Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91                                                                                            | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91                                                                                                                    | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total M<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40                                                                                                              | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13                                                                                                                   |
|         | REALLS SOLULA<br>$P_2 = qGCp - qift$<br>WINDWARD<br>$P_4 = q_2GCp$<br>$L_{EEWARD}$<br>$P_d = q_hGCp$         | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50                                                                                                                                                             | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36                                                                                                | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36                                                                                                            | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86                                                                                                    | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13                                                                                                             |
|         | REALLS SOLULA<br>$P_2 = qGCp - qift$<br>WINDWARD<br>$P_{H} = q_2GCp$<br>$L = P_0 = qhGCp$<br>$P_0 = qhGCp$   | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60                                                                                                                                                       | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72                                                                                        | E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72                                                                                                            | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ard -6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22                                                                                           | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>13                                                                                                 |
|         | REALS SOLULA<br>$P_2 = qGCp - qH$<br>WINDWARD<br>$P_{H} = qZGCp$<br>$L = P_1 = qHGCp$                        | Z(ft)<br>0.15<br>20<br>25<br>30<br>40<br>50<br>60<br>70                                                                                                                                                 | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09                                                                                | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09                                                                                            | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total M<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59                                                                                   | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>14<br>14                                                                                                 |
|         | REALS SOLULA<br>$P_2 = qGCp - qift$<br>WINDWARD<br>$P_4 = q_2GCp$<br>LEEWARD<br>$P_d = qhGCp$                | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80                                                                                                                                           | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45                                                                        | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45                                                                                    | Leews<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ard -6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59<br>14.95                                                                         | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>14<br>14<br>14                                                                                     |
|         | REALS SOLULA<br>$P_2 = qGCp - qift$<br>$WINDWARD P_H = q_2GCpL = qhGCpP_l = qhGCp$                           | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90                                                                                                                                     | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72                                                                | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72                                                                            | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>13.86<br>14.22<br>14.95<br>14.95<br>15.22                                                       | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14                                                                   |
|         | REALS SOLULA<br>$P_2 = qG(p - q)A$<br>$WINDWARD P_4 = q_2GCpL = q_hGCpP_1 = q_hGCp$                          | Z(ft)<br>0.15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100                                                                                                                              | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00                                                        | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00                                                                    | Leews<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total M<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59<br>14.95<br>15.22<br>15.49                                                        | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15                                                                         |
|         | REALS SOLULA<br>$P_2 = qG(p - q)A$<br>$WINDWARD P_4 = q_2GCpLEEWARDP_d = q_hGCp$                             | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120                                                                                                                       | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>8.72                                        | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45                                                            | Leews<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59<br>14.95<br>15.22<br>15.49<br>15.95                                              | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15                                                 |
|         | REALS SOLUL<br>$P_2 = qG(p - q)H$<br>$WINDWARD P_H = q_2GCpL = qhGCpP_l = qhGCp$                             | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120<br>120<br>140                                                                                                         | Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>40.07                               | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>4.02                                            | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>13.40<br>13.86<br>14.22<br>14.95<br>14.95<br>15.22<br>15.49<br>15.95<br>16.40                   | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 |
|         | REALS SOLULA<br>$P_2 = q GC_p - q H$<br>WINDWARD<br>$P_4 = q_2 GC_p$<br>$L = q h G C_p$<br>$P_1 = q h G C_p$ | Z(ft)<br>0.15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120<br>140<br>160<br>180                                                                                                  | (15/4+2)<br>Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.62          | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.62                                  | Leewa<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50 | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57<br>-7.57 | Total M<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59<br>14.95<br>15.22<br>15.22<br>15.49<br>15.95<br>16.40<br>16.77<br>17.12           | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16<br>16<br>17                                     |
|         | REALS SOLULA<br>$P_2 = qGCp - qift$<br>WINDWARD<br>$P_4 = q_2GCp$<br>$L_{EE}WARD$<br>$P_d = qhGCp$           | Z(ft)<br>0-15<br>20<br>25<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120<br>140<br>160<br>180                                                                                                  | Wind<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.63                       | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.63          | Leews<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                         | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total M<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.59<br>14.95<br>15.22<br>15.49<br>15.95<br>16.40<br>16.77<br>17.13                    | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>12<br>13<br>13<br>13<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16<br>16<br>17                               |
|         | REALS SOLULA<br>$P_2 = qGCp - qift$<br>WINDWARD<br>$P_4 = q_2GCp$<br>L = qhGCp<br>$P_1 = qhGCp$              | Z(ft)         0-15         20         25         30         40         50         60         70         80         90         100         120         140         160         180         –         167 | (15/A+2)<br>Winds<br>N-S<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.63<br>10.40 | ward<br>E-W<br>5.18<br>5.63<br>6.00<br>6.36<br>6.91<br>7.36<br>7.72<br>8.09<br>8.45<br>8.72<br>9.00<br>9.45<br>8.72<br>9.00<br>9.45<br>9.91<br>10.27<br>10.63<br>10.40 | Leews<br>N-S<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50<br>-6.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ard<br>E-W<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-6.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47<br>-7.47 | Total MV<br>N-S<br>11.68<br>12.13<br>12.50<br>12.86<br>13.40<br>13.86<br>14.22<br>14.95<br>15.22<br>14.95<br>15.22<br>15.49<br>15.95<br>16.40<br>16.77<br>17.13<br>16.89 | WFRS<br>E-W<br>11<br>12<br>12<br>12<br>13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>15<br>15<br>16<br>16<br>17<br>16                               |

#### WIND SHEAR ON LEVEL

NOTE: SIMPLIFIED ASSUMPTIONS TAKEN ESR DESTREBUTEON OVER FACH LEVEL.

- · LEVEL HEIGHTS TAKEN AS TREBUTARY HE/LEVEL
- · WIND LOAD DISTRIBUTION TAKEN AS AVERAGE OVER LEVEL.

EETS EETS EETS

#### Vertical Distribution of Wind Forces

| Wind Loadi | ng(N-S)      |           |              |             |                         |           |           |       |          |  |          | Wind Load | Shear | Moment   |
|------------|--------------|-----------|--------------|-------------|-------------------------|-----------|-----------|-------|----------|--|----------|-----------|-------|----------|
|            | Story Height | Elevation | Tributary    | Tributary   | Tributary               | Wind Load | Wind Load | Shear | Moment   |  | N-S      | Fx        | Vx    | Mx       |
| Level      | (ft.)        | (ft.)     | Height (ft.) | Width (ft.) | Area (ft <sup>2</sup> ) | (psf)     | (k)       | (k)   | (ft - k) |  | Level, x | (K)       | (k)   | (ft - k) |
| Roof       | 4            | 162.95    | 12           | 183         | 2196                    | 16.8      | 37        | 37    | -        |  | Roof     | 37        | 37    | -        |
| 16         | 16           | 146.95    | 13.5         | 183         | 2471                    | 16.5      | 41        | 78    | 590.3    |  | 16       | 41        | 78    | 590      |
| 15         | 11           | 135.95    | 10.83        | 183         | 1982                    | 16.3      | 32        | 110   | 1444.5   |  | 15       | 32        | 110   | 1445     |
| 14         | 10.66        | 125.29    | 9.995        | 224         | 2239                    | 16        | 36        | 146   | 2616.7   |  | 14       | 36        | 146   | 2617     |
| 13         | 9.33         | 115.96    | 9.33         | 224         | 2090                    | 15.5      | 32        | 178   | 3976.8   |  | 13       | 32        | 178   | 3977     |
| 12         | 9.33         | 106.63    | 9.33         | 224         | 2090                    | 15.5      | 32        | 211   | 5639.2   |  | 12       | 32        | 211   | 5639     |
| 11         | 9.33         | 97.30     | 9.33         | 224         | 2090                    | 15.4      | 32        | 243   | 7603.8   |  | 11       | 32        | 243   | 7604     |
| 10         | 9.33         | 87.97     | 9.33         | 224         | 2090                    | 15.2      | 32        | 275   | 9868.8   |  | 10       | 32        | 275   | 9869     |
| 9          | 9.33         | 78.64     | 9.33         | 224         | 2090                    | 14.9      | 31        | 306   | 12430.0  |  | 9        | 31        | 306   | 12430    |
| 8          | 9.33         | 69.31     | 9.33         | 224         | 2090                    | 14.6      | 31        | 336   | 15281.9  |  | 8        | 31        | 336   | 15282    |
| 7          | 9.33         | 59.98     | 9.33         | 224         | 2090                    | 14.2      | 30        | 366   | 18418.4  |  | 7        | 30        | 366   | 18418    |
| 6          | 9.33         | 50.65     | 9.33         | 224         | 2090                    | 13.9      | 29        | 395   | 21831.8  |  | 6        | 29        | 395   | 21832    |
| 5          | 9.33         | 41.32     | 9.33         | 224         | 2090                    | 13.6      | 28        | 423   | 25516.2  |  | 5        | 28        | 423   | 25516    |
| 4          | 9.33         | 31.99     | 9.33         | 224         | 2090                    | 13        | 27        | 450   | 29465.8  |  | 4        | 27        | 450   | 29466    |
| 3          | 9.33         | 22.66     | 9.33         | 224         | 2090                    | 12.5      | 26        | 477   | 33668.9  |  | 3        | 26        | 477   | 33669    |
| 2          | 9.33         | 13.33     | 11.33        | 224         | 2538                    | 11.7      | 30        | 506   | 38115.8  |  | 2        | 30        | 506   | 38116    |
| 1          | 13.33        | 0.00      | 6.665        | 224         | 1493                    | -         | -         | -     | 44864.9  |  | 1        | -         | -     | 44865    |
|            |              |           |              |             |                         |           |           |       |          |  |          |           |       | Σ=       |
|            |              |           |              |             |                         |           |           |       |          |  |          |           |       | 271333.8 |

|            |              |           |              |             |                         |           |           |       |          |  |          | 1         |       |          |
|------------|--------------|-----------|--------------|-------------|-------------------------|-----------|-----------|-------|----------|--|----------|-----------|-------|----------|
| Wind Loadi | ng(E-W)      |           |              |             |                         |           |           |       |          |  |          | Wind Load | Shear | Moment   |
|            | Story Height | Elevation | Tributary    | Tributary   | Tributary               | Wind Load | Wind Load | Shear | Moment   |  | E-W      | Fx        | Vx    | Mx       |
| Level      | (ft.)        | (ft.)     | Height (ft.) | Width (ft.) | Area (ft <sup>2</sup> ) | (psf)     | (K)       | (K)   | (ft - k) |  | Level, x | (K)       | (K)   | (ft - k) |
| Roof       | 4            | 162.95    | 12           | 62          | 744                     | 16.5      | 12        | 12    | -        |  | Roof     | 12        | 12    | -        |
| 16         | 16           | 146.95    | 13.5         | 62          | 837                     | 16.3      | 14        | 26    | 196.4    |  | 16       | 14        | 26    | 196      |
| 15         | 11           | 135.95    | 10.83        | 62          | 671                     | 16.1      | 11        | 37    | 481.5    |  | 15       | 11        | 37    | 482      |
| 14         | 10.66        | 125.29    | 9.995        | 222         | 2219                    | 15.8      | 35        | 72    | 873.1    |  | 14       | 35        | 72    | 873      |
| 13         | 9.33         | 115.96    | 9.33         | 222         | 2071                    | 15.3      | 32        | 103   | 1542.8   |  | 13       | 32        | 103   | 1543     |
| 12         | 9.33         | 106.63    | 9.33         | 222         | 2071                    | 15.2      | 31        | 135   | 2508.3   |  | 12       | 31        | 135   | 2508     |
| 11         | 9.33         | 97.30     | 9.33         | 222         | 2071                    | 15.1      | 31        | 166   | 3767.5   |  | 11       | 31        | 166   | 3767     |
| 10         | 9.33         | 87.97     | 9.33         | 222         | 2071                    | 14.9      | 31        | 197   | 5318.5   |  | 10       | 31        | 197   | 5318     |
| 9          | 9.33         | 78.64     | 9.33         | 222         | 2071                    | 14.7      | 30        | 228   | 7157.4   |  | 9        | 30        | 228   | 7157     |
| 8          | 9.33         | 69.31     | 9.33         | 222         | 2071                    | 14.3      | 30        | 257   | 9280.4   |  | 8        | 30        | 257   | 9280     |
| 7          | 9.33         | 59.98     | 9.33         | 222         | 2071                    | 14        | 29        | 286   | 11679.8  |  | 7        | 29        | 286   | 11680    |
| 6          | 9.33         | 50.65     | 9.33         | 222         | 2071                    | 13.7      | 28        | 315   | 14349.7  |  | 6        | 28        | 315   | 14350    |
| 5          | 9.33         | 41.32     | 9.33         | 222         | 2071                    | 13.3      | 28        | 342   | 17284.4  |  | 5        | 28        | 342   | 17284    |
| 4          | 9.33         | 31.99     | 9.33         | 222         | 2071                    | 12.8      | 27        | 369   | 20476.0  |  | 4        | 27        | 369   | 20476    |
| 3          | 9.33         | 22.66     | 9.33         | 222         | 2071                    | 12.3      | 25        | 394   | 23915.1  |  | 3        | 25        | 394   | 23915    |
| 2          | 9.33         | 13.33     | 11.33        | 222         | 2515                    | 11.4      | 29        | 423   | 27591.8  |  | 2        | 29        | 423   | 27592    |
| 1          | 13.33        | 0.00      | 6.665        | 222         | 1480                    | -         | -         | -     | 33227.1  |  | 1        | -         | -     | 33227    |
|            |              |           |              |             |                         |           |           |       |          |  |          |           |       | Σ=       |
|            |              |           |              |             |                         |           |           |       |          |  |          |           |       | 179649.8 |

Vertical Distribution of Wind Forces

### **N-S** Distribution



#### Wind Direction

### **E-W** Distribution

| _ | roof     |    |
|---|----------|----|
|   |          |    |
|   | level 16 |    |
|   | level    | 15 |
|   | level    | 14 |
|   | level    | 13 |
|   | level    | 12 |
|   | level    | 11 |
|   | level    | 10 |
|   | level    | 9  |
|   | level    | 8  |
|   | level    | 7  |
|   | level    | 6  |
|   | level    | 5  |
|   | level    | 4  |
|   | level    | 3  |
|   | level    | 2  |
|   | level    | 1  |



|      | Fair Array F                                                                                                                                                    | RE PRIVER                 | ASCE7-02                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|
|      | EQUEVALANT LOTARAC TO                                                                                                                                           |                           | SECT. 9                                  |
|      | SEISMIC DESIGN PL                                                                                                                                               | RAMETERS                  |                                          |
|      | / or ATTON!                                                                                                                                                     | ARITAVATAN, VA            |                                          |
|      | # OF STORIES!                                                                                                                                                   | N=16                      |                                          |
|      | INTER STORY HE                                                                                                                                                  | he = VARIES + 9'-4" (TYP) |                                          |
|      | BUTLDONG HE:                                                                                                                                                    | hn= 167'                  |                                          |
|      | SETEMER 1755 GROUP!                                                                                                                                             | I                         | TABLE 9.1.3                              |
| ETS  | ORNANCY IMPORTANCE!                                                                                                                                             | 1.0                       | TABLE 9.1.4                              |
| H    | SITE CLASSIFICATION!                                                                                                                                            | A                         | 9,4,1.2                                  |
| 000  | ACCELERATIONS !                                                                                                                                                 |                           |                                          |
| 4    | 0.25-7                                                                                                                                                          | Sc= 0.199-5               | FIG. 9,4,1,1(a)                          |
| 2-14 | 1.05 >                                                                                                                                                          | 5,= 0.069-5               | FIG. 9,4,1,1(6)                          |
| 0    | SITE CLASS FACTOR :                                                                                                                                             | Fg = 0,80                 | TARE 9,4.1.20                            |
| 9    | SITE CLASS BACOR '                                                                                                                                              | Fy = 0.80                 | TABLE 9.4.1.26                           |
| (HI) | ADJUSTED ACCERPATIONS:                                                                                                                                          | Smg= Fa Sa + 0.148 4-5    | 9.4.1.2.4-1                              |
| MIN  | (MAXIMOM)                                                                                                                                                       | Sm, = FV S, + 0.050 g-5   | 9.4.1.2.4-2                              |
| 3)   | DESIGN SPECTRAL                                                                                                                                                 |                           |                                          |
|      | RESPUNSE ACCELERATIONS                                                                                                                                          | 505= 2/3 5ms + 0.0999-5   | 9.4.1,2.5-1                              |
|      |                                                                                                                                                                 | Soi = 2/3 Soi > 0.0339-5  | 9.4.1.2.5-2                              |
|      | SEBMEC DESELAN CATEGORY                                                                                                                                         | A                         | 9.4.2.10/6                               |
|      | RESPONSE MODIFICATION                                                                                                                                           | R=3                       | TABLE 9,5.2.2                            |
|      | DEFLECTION MODIFICATION                                                                                                                                         | Ca= 5                     |                                          |
|      | ALLOWABLE STORT DREFT                                                                                                                                           | 1 = 0.02 hst              | TABLE 9.5.2.8                            |
|      | FUNDAMENTAL PERFOD                                                                                                                                              |                           | 9.5.5.3.2                                |
|      | SHEAR WALLS                                                                                                                                                     |                           | EU 9,5.5.3.2-2                           |
|      |                                                                                                                                                                 |                           | Ea 9.5.5.3.2-3                           |
|      | $T_q = \frac{0.0019}{\text{JCw}} hn$                                                                                                                            |                           |                                          |
|      | $C_{\omega} = \frac{100}{A_{B}} \sum_{i=1}^{\infty} \left(\frac{h_{n}}{h_{i}}\right)^{2} \frac{A_{i}}{\left(1+0.85\left(\frac{h_{i}}{D_{i}}\right)\right)^{2}}$ | 2                         |                                          |
|      | VERTICAL DISTRIBUTION<br>OF SEISMIC FORCES                                                                                                                      |                           |                                          |
|      | $\overline{F}_X = C_{YX} V$                                                                                                                                     | Eq. 9,5,5,4-1             |                                          |
|      | Cyx = Wxhx E                                                                                                                                                    | a 9,5,5,4-2               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|      | L wihik ,                                                                                                                                                       |                           | £                                        |
|      | OVERTURNENCE                                                                                                                                                    |                           |                                          |
|      | $M_{x} = \sum_{i=1}^{n} F_{i}(h_{i} - h_{x})$                                                                                                                   | Ea 9.5.5.6                | •                                        |

| Location:                | Arlington, Virginia      |         |              |
|--------------------------|--------------------------|---------|--------------|
| Number of Stories:       | N = 16                   |         |              |
| Inner Story Height:      | hs =  varies - 9'4" typ. |         |              |
| Building Height:         | hn = 167                 |         |              |
| Seismic Use Group:       | 1                        | Table:  | 9.1.3        |
| Occupancy Importance:    | l = 1.0                  | Table:  | 9.1.4        |
| Site Classification:     | A                        |         | 9.4.1.2      |
| Accelerations:           |                          |         |              |
| 0.2 s                    | Ss = 0.19                | Figure: | 9.4.1.1(a)   |
| 1.0 s                    | S1 = 0.06                | Figure: | 9.4.1.1(b)   |
| Site Class Factor:       | Fa = 0.8                 | Table:  | 9.4.1.2(a)   |
|                          | Fv = 0.8                 | Table:  | 9.4.1.2(b)   |
| Adjusted Accelerations:  | Sms = 0.152              |         | 9.4.1.2.4-1  |
| (max.)                   | Sm1 = 0.048              |         | 9.4.1.2.4-2  |
| esign Spectral Response  | S <sub>DS</sub> = 0.101  |         | 9.4.1.2.5-1  |
| Accelerations:           | S <sub>01</sub> = 0.032  |         | 9.4.1.2.5-2  |
| Seismic Design Category: | A                        |         | 9.4.2.1(a/b) |
| Response Modification:   | R = 3                    | Table:  | 9.5.2.2      |
| Deflection Modification: | Cd = 5                   |         |              |

|    | Eundomonto              | Deried  |         |         |         |
|----|-------------------------|---------|---------|---------|---------|
|    | rundamenta              | rerioa  |         |         |         |
|    | A <sub>B</sub>          | 22000   |         |         |         |
| 11 | hn                      | 167.000 |         |         |         |
|    | N-S                     |         |         |         |         |
|    | Shearwalls              | A       | В       | С       | E       |
|    | t                       | 1.167   | 1.167   | 0.833   | -       |
|    | Di                      | 10.000  | 10.000  | 13.875  | -       |
|    | A <sub>t</sub>          | 11.670  | 11.670  | 11.563  | -       |
|    | h                       | 32.000  | 32.000  | 147.000 | -       |
|    | Σ <sub>9.5.5.32-3</sub> | 66.919  | 66.919  | 0.158   | -       |
|    |                         |         |         |         |         |
|    | Cw                      | 0.609   |         |         |         |
|    | Та                      | 0.407   |         |         |         |
|    | E-W                     |         |         |         |         |
|    | Shearwalls              | A       | В       | С       | E       |
|    | t                       | 0.800   | 0.800   | -       | 0.800   |
|    | Di                      | 20.167  | 19.330  | -       | 29.417  |
|    | A <sub>t</sub>          | 16.134  | 15.464  | -       | 23.533  |
|    | h                       | 32.000  | 32.000  | -       | 125.300 |
|    | Σ <sub>9.5.5.32-3</sub> | 142.213 | 128.615 | -       | 2.603   |
|    |                         |         |         |         |         |
|    | Cw                      | 1.243   |         |         |         |
|    |                         |         |         |         |         |

| 2       | ROUF: MAD ROOF AREA: 6100 SF. (ROUGH TAKE OFF)                                                   |
|---------|--------------------------------------------------------------------------------------------------|
|         | DEAD: HERENETER! 502 FT (ROUTINGE OFF)                                                           |
|         | PTITO TOBLATTANI 075 PSF                                                                         |
|         | MEMBRANE! I BF                                                                                   |
|         | CONCRETE ! 100 PSF (BASED ON & CONCRETE SLAB)                                                    |
|         | CONCRETE BRANS: 63 PSF (ASSUMED AJU. SEZE: WAND. =  KLF)                                         |
| S S S   | 1/2 GP. CETTER: 5 1035 * PSF BASED OFF CUM, LEADTH OF<br>1A=0 : 10 PSF BEAMS EVER AVE. FLOY LOPA |
| 00 SHEE | TOTAL GROOF : 191.75 POF                                                                         |
| 42 1    | ROUF! 15th LEVEL - POUL TERRACE AREA: 100005F (Exculored Rouc)                                   |
| 22-1    | DEAD PRIEMETRE: 515 FT.                                                                          |
| ů       | TILE DAVERS: 15 PSF                                                                              |
| IPA.    | (ANSCRETE 112.5 PSF (BASED ON AND. (E) EVALUES FROM B" = 11"]                                    |
|         | 1/2" GYP CERLOL: 5 PSF                                                                           |
| 3       | MEP : 10 PSF                                                                                     |
|         | TOTAL gross: 143.5 PSF                                                                           |
|         | FLOOR: 16th LEVEL ARBA 9700 SF (RUSHITAKE OFF)                                                   |
|         | DEAD : PRASMETER: SOZA (ROULIT TAKE OFF)                                                         |
|         | FLOORING: 4 PSF                                                                                  |
|         | (DARRETE SAB: 150 PSF (BASED ON 12" CONCRETE SLAB)                                               |
|         | CONCRETE BEAMS : 30 PSF                                                                          |
|         | 1/2" GYP CERER: 5 PSF                                                                            |
|         | MEP IOPF                                                                                         |
|         | PURTE ARRA: LUDPS= (STRUCTURAL SET)                                                              |
|         | TOTAL 910th 307 psf                                                                              |
|         | FLOOR: 15th LEVEL AREA: 9700 SF (ROUGH TAKE-OFF)                                                 |
|         | DEAD: PERIMETER! SO2 FT (ROULITAKE-OPE)                                                          |
|         | FLODE WG : 9 FOF                                                                                 |
|         | (JULRETRESAS: 112.5 (BASED ON AVALLE) [UPPCLES FROM 8" 11"])                                     |
|         | 1/2" GYP LEADL! SPSF                                                                             |
|         | MEP 10PSIE                                                                                       |
|         | LIVE!                                                                                            |
|         | TOTO A REAL 179.5 PS F                                                                           |
|         | JUIM 915                                                                                         |
|         |                                                                                                  |
|         |                                                                                                  |
|         |                                                                                                  |
|         |                                                                                                  |

REMATURE FLOORS: (1-14) LEVELS AREA: 22,000 PSF "(AUG.) PERENERAL' BOD FT. \* (RUCHATANEOFF) DEAQ: FLOORENSE' 4 PSF CONTRATE SLAB: 100 PST (BASED ON S'(4 SLAB) PACTITERS: 8 PSF 1/2 GYP CEELOG: 5 PSF MEP : IDPSF LIVE! 50 SHEETS 100 SHEETS 200 SHEETS Apr & Coresson: 40 pot (STRUCTURAL SET) TOTAL 940000 167 pot 22-141 22-142 22-144 PERDMETER WALL! DEAD : ExTERENT WALL: JUNE: 56.0 pol (STUD BRECK VENER / WENCH SYSTEM) SNOW LOND ! SNOW: YSACH: 4.2 pole (20% OF FLAT ROUG LOAD)

EAMPAD"

|                          | Area  | Perimeter  | Total q          | Weight (w <sub>x</sub> ) |              |
|--------------------------|-------|------------|------------------|--------------------------|--------------|
|                          | (SF)  | (ft)       | (PSF)            | (Kips)                   |              |
| Main Roof                | 6100  | 502        | 191.75           | 1507.019                 |              |
| Roof: Level 15           | 10000 | 515        | 143.5            | 1588.7172                |              |
| Floor: Level 16          | 9711  | 502        | 207              | 2459.969                 |              |
| Floor: Level 15          | 9711  | 502        | 139.5            | 1663.9165                |              |
| Level 14                 | 19453 | 850        | 127              | 2977.947                 | w/floor 2-13 |
| Levels 2-13              | 23111 | 850        | 127              | 35665.272                | 3379.205     |
| Level 1                  | 18476 | 850        | 127              | -                        |              |
|                          |       |            | $W = \Sigma W =$ | 45862.8407               |              |
|                          |       | E-W        |                  |                          |              |
| <b>q</b> <sub>wall</sub> |       | Base Shear |                  |                          | hs           |
| (PSF)                    |       | (Kips)     | Cs (Ta, E-W)     | Level                    | (ft)         |
| 56                       |       | V = Cs * W | 0.037            | 1                        | 13.33        |
|                          |       | 2044.871   |                  | 2 - 13                   | 9.33         |
|                          |       |            | Cs               | 14                       | 10.66        |
| exp. K                   |       | N-S        | 0.034            | 15                       | 11           |
| k;.5≤Ta≤2.5              |       | Base Shear |                  | 16                       | 16           |
| 1.21                     |       | (Kips)     | Cs (Ta, N-S)     | Roof                     | 4            |
|                          |       | V = Cs * W | 0.026            |                          |              |
|                          |       | 2044.871   |                  |                          |              |
|                          |       |            | Cs (Min.)        | Cs (Ta02)                | Ta - (.02)   |
|                          |       |            | 0.045            | 0.036                    | 0.93         |

| ses                     | ŧ      |                                 |           | 0       | <u>Б</u>  | 4         | 50        | ø         | n       | ω       | 5       | g        | 0       |         | 0       | 0       | 5       | 5<br>S  | <del>م</del> |       |    | L‡       |  |
|-------------------------|--------|---------------------------------|-----------|---------|-----------|-----------|-----------|-----------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------------|-------|----|----------|--|
| nic For                 | Momer  | Ŵ                               | (ft-kips  | 22,73   | 29,55     | 32,90     | 25,08     | 23,99     | 19,91   | 16,25   | 13,01   | 10,14    | 29'2    | 5,57    | 3,83    | 2,44    | 1,38    | 64      | 19           | '     |    | 2153/    |  |
| of Seisi                | Shear  | ××                              | (kips)    | 0       | 139       | 340       | 582       | 782       | 686     | 1176    | 1343    | 1491     | 1620    | 1731    | 1824    | 1899    | 1958    | 2001    | 2030         | 2045  |    |          |  |
| stribution              | Load   | Fx                              | (kips)    | 139     | 201       | 242       | 200       | 207       | 187     | 167     | 148     | 129      | 111     | 8       | 76      | 53      | 43      | 28      | 15           |       |    |          |  |
| Vertical D              |        | s-N                             | Level, x  | Roof    | 16        | 15        | 14        | 13        | 12      | 11      | 10      | <b>б</b> | ω       | 7       | 9       | S       | 4       | m       | 2            | -     |    |          |  |
|                         |        |                                 |           |         |           |           |           |           |         |         |         |          |         |         |         |         |         |         |              |       |    |          |  |
|                         | Moment | Mx                              | (ft-kips) | 22,730  | 29,559    | 32,904    | 25,085    | 23,996    | 19,913  | 16,258  | 13,015  | 10,146   | 7,670   | 5,573   | 3,830   | 2,440   | 1,385   | 645     | 199          |       | =  | 215347   |  |
|                         | Shear  | ٧×                              | (kips)    |         | 139       | 340       | 582       | 782       | 986     | 1,176   | 1,343   | 1,491    | 1,620   | 1,731   | 1,824   | 1,899   | 1,958   | 2,001   | 2,030        | 2,045 |    |          |  |
|                         | Load   | Fx                              | (kips)    | 139     | 201       | 242       | 200       | 207       | 187     | 167     | 148     | 129      | 111     | 93      | 76      | 59      | 43      | 28      | 15           |       | =2 | 2045     |  |
|                         |        | Cur                             |           | 0.068   | 0.098     | 0.118     | 0.098     | 0.101     | 0.091   | 0.082   | 0.072   | 0.063    | 0.054   | 0.045   | 0.037   | 0.029   | 0.021   | 0.014   | 0.007        |       | =  | 1.000    |  |
|                         |        | w <sub>z</sub> h <sub>z</sub> * |           | 732,728 | 1,055,881 | 1,270,351 | 1,051,948 | 1,086,958 | 981,264 | 877,986 | 777,134 | 677,920  | 581,518 | 488,065 | 397,302 | 310,263 | 227,459 | 149,573 | 78,520       |       | =  | 10744870 |  |
| se                      |        | ۳ <u>"</u>                      | (#)       | 163     | 147.1     | 136.1     | 125.3     | 116       | 106.63  | 97.3    | 88      | 78.64    | 69.31   | 60      | 50.65   | 41.32   | 32      | 22.66   | 13.33        |       |    |          |  |
| Seismic Forc            |        | w                               | (kips)    | 1507    | 2460      | 3253      | 2978      | 3379      | 3379    | 3379    | 3379    | 3379     | 3379    | 3379    | 3379    | 3379    | 3379    | 3379    | 3379         |       | =2 | 50748    |  |
| ertical Distribution of |        | N-N                             | Level, x  | Roof    | 16        | 15        | 14        | 13        | 12      | 11      | 10      | 6        | 8       | 7       | 9       | 5       | 4       | 3       | 2            | 1     |    |          |  |
| >                       |        |                                 |           |         |           |           |           |           |         |         |         |          |         |         |         |         |         |         |              |       |    | -        |  |

|        | -   |                |           |       | Load           | Shear  | Moment         |   |         | Load   | Shear  | Moment    |  |
|--------|-----|----------------|-----------|-------|----------------|--------|----------------|---|---------|--------|--------|-----------|--|
| w,x    |     | h <sub>x</sub> | w*h*      | C     | F <sub>x</sub> | ٧×     | M <sub>x</sub> |   | E-W     | F×     | ×۸     | M×        |  |
| (kips  |     | (#)            |           |       | (kips)         | (kips) | (ft-kips)      | Ľ | evel, x | (kips) | (kips) | (ft-kips) |  |
| 150    | ~   | 163            | 732,728   | 0.068 | 139            |        | 22,730         |   | Roof    | 139    | 0      | 22,730    |  |
| 246    |     | 147.1          | 1,055,881 | 0.098 | 201            | 139    | 29,559         |   | 16      | 201    | 139    | 29,559    |  |
| 325    |     | 136.1          | 1,270,351 | 0.118 | 242            | 340    | 32,904         |   | 15      | 242    | 340    | 32,904    |  |
| 297    | ω   | 125.3          | 1,051,948 | 0.098 | 200            | 582    | 25,085         |   | 14      | 200    | 582    | 25,085    |  |
| 33     | 79  | 116            | 1,086,958 | 0.101 | 207            | 782    | 23,996         |   | 13      | 207    | 782    | 23,996    |  |
| ŝ      | 79  | 106.63         | 981,264   | 0.091 | 187            | 989    | 19,913         |   | 12      | 187    | 989    | 19,913    |  |
| ŝ      | 79  | 97.3           | 877,986   | 0.082 | 167            | 1,176  | 16,258         |   | 11      | 167    | 1176   | 16,258    |  |
| ä      | 879 | 88             | 777,134   | 0.072 | 148            | 1,343  | 13,015         |   | 10      | 148    | 1343   | 13,015    |  |
| Ж      | 379 | 78.64          | 677,920   | 0.063 | 129            | 1,491  | 10,146         |   | 6       | 129    | 1491   | 10,146    |  |
| Ж      | 879 | 69.31          | 581,518   | 0.054 | 111            | 1,620  | 7,670          |   | ω       | 111    | 1620   | 7,670     |  |
| č      | 379 | 60             | 488,065   | 0.045 | 83             | 1,731  | 5,573          |   | 7       | 83     | 1731   | 5,573     |  |
| ŝ      | 379 | 50.65          | 397,302   | 0.037 | 76             | 1,824  | 3,830          |   | 6       | 76     | 1824   | 3,830     |  |
| ε<br>Γ | 379 | 41.32          | 310,263   | 0.029 | 65             | 1,899  | 2,440          |   | 5       | 59     | 1899   | 2,440     |  |
| č      | 379 | 32             | 227,459   | 0.021 | 43             | 1,958  | 1,385          |   | 4       | 43     | 1958   | 1,385     |  |
| č      | 379 | 22.66          | 149,573   | 0.014 | 28             | 2,001  | 645            |   | e       | 28     | 2001   | 645       |  |
| ς<br>Γ | 379 | 13.33          | 78,520    | 200.0 | 15             | 2,030  | 199            |   | 2       | 15     | 2030   | 199       |  |
|        |     |                |           |       |                | 2,045  |                |   | 1       |        | 2045   |           |  |
|        | =   |                | =         | =     | 2=             |        | =2             |   |         |        |        | =2        |  |
| 20     | 748 |                | 10744870  | 1.000 | 2045           |        | 215347         |   |         |        |        | 215347    |  |
|        |     |                |           |       |                |        |                |   |         |        |        |           |  |

## **N-S** Distribution

| roof         | <u>/</u> 139 К |   |        |
|--------------|----------------|---|--------|
| level 16     | ∠ 201 к        |   |        |
| <br>level 15 |                | 2 | 242 K  |
|              | level 14       | / | 200 K  |
|              | level 13       | 2 | 207 K  |
|              | level 12       | 2 | 187 K  |
|              | level 11       | / | 167 K  |
|              | level 10       | / | 148 K  |
|              | level 9        | / | 129 k  |
|              | level 8        | / | 111 K  |
|              | level 7        | / | 93 K   |
|              | level 6        |   | 76 K   |
|              | level 5        |   | 59 K   |
|              | level 4        |   | 43 K   |
|              | level 3        |   | 28 K   |
|              | level 2        |   | 15 K   |
|              | level 1        |   | 2045 k |

## E-W Distribution

| ro   | of     |          |   | 139 K  |
|------|--------|----------|---|--------|
| lev  | vel 16 |          | , | 201 K  |
|      |        | level 15 | / | 242 K  |
|      |        | level 14 | , | 200 к  |
|      |        | level 13 | / | 207 K  |
|      |        | level 12 | / | 187 K  |
|      |        | level 11 | 1 | 167 K  |
|      |        | level 10 | / | 148 K  |
|      |        | level 9  | / | 129 k  |
|      |        | level 8  | 4 | 111 K  |
| <br> |        | level 7  | / | 93 K   |
|      |        | level 6  | / | 76 K   |
|      |        | level 5  | / | 59 K   |
|      |        | level 4  | / | 43 K   |
|      |        | level 3  | / | 28 K   |
|      |        | level 2  | / | 15 K   |
|      |        | level 1  |   | 2045 K |

|                        | Appendix – D SNOW LOA                   | AD          |          |
|------------------------|-----------------------------------------|-------------|----------|
| )                      | ROOF SNOW LOND                          |             | ASCE7-02 |
|                        | GROUND SNOW LOAD:                       | Rg = 30 PSF | 7.2      |
|                        | THERMAL FACTOR:                         | Ct= 1.0     | 7.3.2    |
|                        | SNOW EXPOSURE FACTOR!                   | Ce = 0.7    | 7.3.1    |
| 0 SHEETS<br>0 SHEETS   | IMPORTANCE FACTOR !<br>* CATEGORT : II  | I=1.00      | 7.3.3    |
| 22-142 10<br>22-144 20 | FLAT ROOF SNOW LOADS:<br>Pt: 0.7CeC+Ipg | Pt= 14,7psf | 7.3      |
| AMPAD"                 | * STRUCTURAL SET DESIGNED:              | Pt= 21 psf  |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |
|                        |                                         |             |          |

## Appendix – E GRAVITY LOAD CHECK

|   | Incorrowii IST I EVEL (F | 17.5  | )         |           |      |    |      |    |
|---|--------------------------|-------|-----------|-----------|------|----|------|----|
|   | ETTE: 10 " YOL"          | 1     | 10.4      |           | 1    |    |      |    |
|   | DICE: 10 A AD            | 0     | 0 0       |           | 1    |    |      |    |
| - | P-0 10 + 11              | 0     | 6         | 75        | []   |    |      | 22 |
|   | KEDAR 12 411             |       | 0         |           | 4    |    |      | -  |
| - | ty i oo the              | 0     | 26        |           |      |    |      |    |
| - | p; 200                   |       | 0         |           | 1    |    |      |    |
|   |                          | 0     | 0 0       |           | 1    |    |      |    |
|   | LOADS!                   |       |           |           | 1    |    |      |    |
| - | ROOF LEVEL! DEAD         |       | LIVE      |           | 95   | ;  |      |    |
| - | 8 CONESIARS :            | 100   | KOOF      | : 30      |      |    |      |    |
|   | BAMSI                    | 25    | MECH      | 150       |      |    |      |    |
|   | CONFER ;                 | 5     |           | 180       |      |    |      |    |
|   | MEP                      | 10    |           |           |      |    |      |    |
|   |                          | 140   |           |           |      |    |      |    |
|   | 16th LEVEL: DEAD         |       | LIVE      |           |      |    |      |    |
|   | 12" CONC SLAB            | : 150 | RELEC     | : 100     |      |    |      |    |
|   | PAETETONS                | : 8   | Collezade | 1 40      |      |    |      |    |
|   | CLO/FLR :                | 9     |           | 148       |      |    |      |    |
|   | MEP                      | 10    |           |           |      |    |      |    |
|   | (15') COLUMNO !          | 15    |           |           |      |    |      |    |
|   |                          | 192   |           |           |      |    |      |    |
|   | 15th Level: DEAD         |       | LIVE:     |           |      |    |      |    |
|   | S" CINC SIAS             | 100   | colesper: | 40        |      |    |      |    |
|   | PARITIONS                | 8     |           | 40        |      |    |      |    |
|   | CLUIFLR "                | 9     |           |           |      |    |      |    |
|   | MED                      | 10    |           |           |      |    |      |    |
|   | (III) COLUMN :           | 10    |           |           |      |    |      |    |
|   |                          | 137   |           |           |      |    |      |    |
|   | 2ND = 14th / EVEL: DEAD: |       | LIVE      |           |      |    |      |    |
|   | A" COJC. SLAR:           | 100   | CORREDY   | : 40      |      |    |      |    |
|   | PARTERNAS                | 8     |           | 40        |      |    |      |    |
|   | CLG-IFIR                 | 9     |           |           |      |    |      |    |
|   | MEP :                    | 10    |           |           |      |    |      |    |
|   | (E') COLUMN :            | 7     |           |           |      |    |      |    |
|   |                          | 134   |           |           |      |    |      |    |
|   | Courses Inan'            |       |           |           |      |    |      |    |
|   | (1-12D+                  | 1.61  | - 3465    | DIRE      |      |    |      |    |
|   | ton - ling t             | NUC   | 510       | - P3F .   |      |    |      |    |
|   | P-11×A                   | -     | 3460 Der  | (15:25)   |      |    |      |    |
|   | in which the             |       | UNFO A    | (aunac)   |      |    |      |    |
|   | D - 142                  | K .   | a Dian    | K (Array) |      |    |      |    |
|   | FA = dlod                |       | -r and    | (reade)   | 04   |    | 1. m |    |
|   | CRST DESTON HANDBO       | xc    | 2002      |           | 9011 |    |      |    |
|   | RECTANGULAR COUMS        | 5:    | 18"+26"   |           |      |    |      |    |
|   |                          |       | 12- #11   | RENFORCEN | TUS  |    |      |    |
|   |                          | 1     | DP = DRG  | INK SP.   | 10   | OK |      |    |

|                             |        |          | R                    | ECTA         | NGU           | LAR          | TIED          | col               | UMN           | IS 18        | 8″ × 2            | 6″         |                   |                   |               |
|-----------------------------|--------|----------|----------------------|--------------|---------------|--------------|---------------|-------------------|---------------|--------------|-------------------|------------|-------------------|-------------------|---------------|
| Short                       | oolumn | is – r   | io side              | sway         |               | Mina         | -             |                   | 1             | f'c          | = 8,00            | 00 psi     | $f_y = d\rho$     | 60,00             | 0 psi         |
| Doru                        | ngara  | Δ        | 01 11                | 10F a.A.     | 5             | MA,-         |               | H .               |               | φ.           | M III III III     | оп-кара    | i que             | in ispa           | Zero          |
| BARS                        | RHO    | x        | Max                  | Сар          | 0%            | fy           | 251           | o fy              | 50%           | 6 fy         | 100               | % fy       | .1 <sup>7</sup> c | Ag                | Axial         |
|                             |        | S        | φм                   | φP           | $\phi$ M      | φP           | φм            | $\phi \mathbb{P}$ | φМ            | ¢₽           | $\phi \mathbf{M}$ | ¢₽         | φM                | $\phi \mathbb{P}$ | Load<br>¢M    |
| 10-#11                      | 3.33   | MA<br>Mi | 5714<br>3793         | 2247<br>2247 | 9438<br>6133  | 1599<br>1546 | 10307<br>6490 | 1339<br>1278      | 10852<br>6684 | 1113         | 11632<br>6931     | 749        | 10082<br>6131     | 374<br>374        | 9068<br>5771  |
| 10-110                      | 2.71   | MA       | 5448                 | 2160         | 8627          | 1576         | 9294          | 1314              | 9626          | 1102         | 10006             | 776        | 8601              | 374               | 7512          |
| 4L - 35<br>10-#11           | 3.33   | MA       | 5610                 | 2160         | 6169<br>8979  | 1400         | 9714          | 1348              | 10124         | 1121         | 10684             | 767        | 9507              | 374               | 4930<br>8953  |
| 4L - 3S<br>10-#14           | 4.81   | MI<br>MA | 3840<br>6018         | 2247<br>2452 | 6420<br>9811  | 1528<br>1760 | 6871<br>10756 | 1275<br>1446      | 7140          | 1056<br>1181 | 7524<br>12411     | 700<br>759 | 6441<br>11522     | 374<br>374        | 5876<br>11987 |
| 4L - 3S<br>10-#10           | 2.71   | MI<br>MA | 4095<br>5299         | 2452<br>2160 | 7030<br>8311  | 1644<br>1586 | 7634<br>8873  | 1364<br>1323      | 8064<br>9099  | 1108<br>1121 | 8755<br>9227      | 674<br>780 | 7800<br>8028      | 374<br>374        | 8115<br>7170  |
| 5L-2S                       | 2.22   | М        | 3844<br>5432         | 2160         | 6476<br>8505  | 1483<br>1636 | 6969          | 1233              | 7271          | 1030         | 7708              | 707        | 6196<br>8765      | 374               | 4914<br>8426  |
| 51 - 25                     | 4 91   | M        | 3958                 | 2247         | 6786          | 1521         | 7340          | 1258              | 7712          | 1042         | 8302              | 691        | 6849<br>10520     | 374               | 5853          |
| 51 - 28                     | 4.01   | M        | 4257                 | 2452         | 7546          | 1638         | 8295          | 1341              | 8870          | 1089         | 9846              | 663        | 8509              | 374               | 8109          |
| 12#10                       | 3.26   | MA       | 5753                 | 2236         | 9600<br>9724  | 1602         | 10420         | 1328              | 11003         | 1115         | 11845             | 754        | 10190             | 374               | 8974<br>5807  |
| 12/10                       | 326    | MA       | 5664                 | 2236         | 9123<br>9727  | 1623         | 9930<br>9950  | 1348              | 10402         | 1122         | 11052             | 770        | 9694<br>9729      | 374               | 8937<br>5935  |
| 12,011                      | 4.00   | MA       | 5868                 | 2340         | 9577          | 1683         | 10481         | 1390              | 11059         | 1146         | 11956             | 760        | 10824             | 374               | 10599         |
| 12-#10                      | 326    | MA       | 5617                 | 2236         | 8807          | 1633         | 9509          | 1356              | 9875          | 1141         | 10283             | 774        | 9114              | 374               | 8558          |
| 5L - 3S<br>12-#11           | 4.00   | MA       | 3871<br>5693         | 2236 2340    | 6476<br>9193  | 1694         | 6969<br>9970  | 1282              | 10421         | 1064         | 11013             | 710<br>763 | 6561<br>10072     | 374<br>374        | 10102         |
| 5L - 3S<br>12-#14           | 5.77   | MA       | 3991<br>6138         | 2340<br>2587 | 6786<br>10114 | 1584<br>1859 | 7340          | 1317<br>1540      | 7712          | 1081<br>1248 | 8302<br>12875     | 692<br>752 | 7221<br>12374     | 374<br>374        | 6943<br>13716 |
| 5L - 3S<br>12.410           | 3.26   | MI<br>MA | 4306<br>5410         | 2587<br>2238 | 7546<br>8491  | 1728<br>1639 | 8295<br>9090  | 1424<br>1377      | 8870<br>9354  | 1144         | 9646<br>9582      | 662<br>790 | 8899<br>8584      | 374<br>374        | 9596<br>8306  |
| 6L - 2S                     | 4.00   | M        | 3970                 | 2236         | 6783          | 1530         | 7363          | 1267              | 7751          | 1050         | 8359              | 701        | 6875              | 374               | 5818          |
| 6L - 2S                     | 4.00   | MA       | 4107                 | 2340         | 7152          | 1579         | 7808          | 1300              | 8284          | 1067         | 9080              | 684        | 9360<br>7657      | 374               | 6926          |
| 14/10                       | 3.80   | MA       | 5879                 | 2312         | 9619<br>6240  | 1671<br>1629 | 10556         | 1382              | 11178         | 1143         | 12117             | 764<br>710 | 10787             | 374<br>274        | 10361         |
| 14/10                       | 3.80   | MA       | 5734                 | 2312         | 9303          | 1680         | 10145         | 1390              | 10651         | 1162         | 11338             | 768        | 10199             | 374               | 9950          |
| 5L - 4S<br>14-#11           | 4.67   | MA       | 3956<br>5951         | 2312<br>2433 | 6544<br>9792  | 1600<br>1752 | 7053<br>10737 | 1319<br>1456      | 7370<br>11356 | 1085<br>1193 | 7864<br>12286     | 713<br>756 | 6968<br>11379     | 374<br>374        | 6662<br>11783 |
| 5L - 4S<br>14- <i>1</i> /10 | 3.80   | MI<br>MA | 4094<br>5630         | 2433<br>2312 | 6864<br>8987  | 1662<br>1686 | 7437<br>9726  | 1361<br>1411      | 7828<br>10130 | 1106<br>1169 | 8487<br>10637     | 693<br>784 | 7670<br>9663      | 374<br>374        | 7760<br>9703  |
| 6L - 3S                     | 4.07   | М        | 3998                 | 2312         | 6783          | 1583         | 7363          | 1316              | 7751          | 1084         | 8359              | 704        | 7221              | 374               | 6729          |
| 6L - 3S                     | 9.07   | MA       | 4141                 | 2433         | 7152          | 1642         | 7808          | 1359              | 8284          | 1107         | 9080              | 685        | 8005              | 374               | 8004          |
| 14-#10<br>7L - 2S           | 3.80   | MA<br>MI | 5622<br>4096         | 2312         | 8631<br>7090  | 1703<br>1577 | 9518<br>7756  | 1417<br>1301      | 9632<br>8231  | 1188<br>1071 | 9954<br>9012      | 800<br>695 | 9093<br>7553      | 374<br>374        | 9224<br>6717  |
| 16- <i>1</i> /10            | 4.34   | MA       | 5949<br>2009         | 2388         | 9799<br>9947  | 1728         | 10781         | 1424              | 11427         | 1182         | 12394             | 762        | 11284             | 374<br>974        | 11346         |
| 16-#10                      | 4.34   | MA       | 3990<br>5847         | 2366         | 9483          | 1003         | 10362         | 1445              | 10906         | 1189         | 6022<br>11693     | 704<br>778 | 10743             | 374               | 11082         |
| 6L - 4S<br>16 #11           | 5.33   | MI<br>MA | 4083<br>6088         | 2388<br>2526 | 6851<br>10015 | 1647<br>1818 | 7446<br>10995 | 1353<br>1506      | 7650<br>11659 | 1106<br>1226 | 8517<br>12709     | 707<br>767 | 7642<br>11979     | 374<br>374        | 7504<br>12953 |
| 6L - 4S                     | 4.34   | М        | 4245                 | 2526<br>2388 | 7230          | 1721         | 7906<br>0054  | 1403<br>1451      | 8400<br>10407 | 1131         | 9265<br>11010     | 686<br>794 | 8444              | 374<br>374        | 8765          |
| 7L - 3S                     | 4.04   | MI       | 4125                 | 2388         | 7090          | 1630         | 7756          | 1350              | 8231          | 1105         | 9012              | 698        | 7884              | 374               | 7622          |
| 18-#10<br>6L - 5≎           | 4.88   | MA<br>Mi | 6064<br>4124         | 2463<br>2463 | 9980<br>6951  | 1781<br>1700 | 10998         | 1479<br>1472      | 11681<br>7004 | 1210<br>1340 | 12749<br>8675     | 772<br>698 | 11822             | 374<br>374        | 12465         |
| 18-#10                      | 4.88   | MA       | 9129<br>5958<br>4210 | 2463         | 9623<br>74.00 | 1798         | 10590         | 1485<br>1997      | 11183         | 1229         | 12065             | 788        | 11242             | 374<br>374        | 12015         |
| rL - 45                     | 5.45   |          | 9210                 | 2903         | 1100          | 1050         | 1040          | 1007              | 0000          | 1120         | 10404             | 701        | 04297<br>4 004 0  | 074               | 0300          |
| 204/10<br>7L - 58           | 5.43   | ма<br>М  | 6174<br>4251         | 2539<br>2539 | 7261          | 1645<br>1747 | 7964          | 1519<br>1436      | 8474          | 1250<br>1160 | 13121<br>9328     | 782<br>692 | 12316<br>8637     | 374<br>374        | 13415<br>9037 |

|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C.5.                                                                                                    | Misi Cis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |
|---|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|   | CONCRETE SLAB:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                       | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Π-                                                                                              |
| • | DESCRIPTION                                                                                     | A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | SLAB: 2                                                                                         | 1-WAY to=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | £                                                                                               | = 5KSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | RETNERGY MENT                                                                                   | #4024'00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOTHWATS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22'                                                                                             |
|   | Netra PORCEASA                                                                                  | 10-440 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IMMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                                                                                       | #4ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
|   |                                                                                                 | REINFORMENT: #4024'0C Community<br>10-#44 & community<br>$f_{ij} = 60^{481}$<br>COLUMN : 18'x20'<br>S<br>$f'_{ij} = 50^{481}$<br>COLUMN : 18'x20'<br>S<br>$f'_{ij} = 50^{481}$<br>S<br>$f'_{ij} = 50^{481}$<br>S<br>DEAD (RE)<br>LEVE: (RE)<br>DEAD (RE)<br>$f'_{ij} = 50^{481}$<br>S<br>DEAD (RE)<br>$f'_{ij} = 50^{481}$<br>S<br>DEAD (RE)<br>$f'_{ij} = 50^{481}$<br>$f'_{ij} = 50$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | COLUMN :                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | LOADING:                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | DEAD . (RE                                                                                      | F) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IVE ! (PSF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | SLAB                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CORPTOR 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $D = W_{ij} = 1$                                                                                        | 20+1,6L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |
|   | PARTITION                                                                                       | 8 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ESTORITAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                       | 2(127)+1.6/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0)                                                                                              |
|   | C1612 Q                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | MEP                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lal. =                                                                                                  | 216.4 PSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |
|   | In Alter 1                                                                                      | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000-                                                                                                    | ettert Lm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
|   |                                                                                                 | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | 1                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RA                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | MINIMUM KI                                                                                      | EINFORCMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HTEN (0,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ong @ 2                                                                                                 | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                               |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A= 0,0018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 x (24%) x                                                                                             | (8)= 0,3456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UT                                                                                              |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   |                                                                                                 | #4 @ 24"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O.C. BOTH WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 -> Az=                                                                                               | 0.4 to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40)<br>200)<br>2003 ft-k                                                                        |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | INTERIOR                                                                                        | DANEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | INTERIOR                                                                                        | DANEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22'<br>                                                                                         |
|   | INTERIOR                                                                                        | DANEL<br>MOMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mas (1) []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (216.41)(22')                                                                                           | (22.833) 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
|   | INTERIOR                                                                                        | DAVEL<br>MOMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mo= Wulit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = (216,4)(22')                                                                                          | (22.833) <sup>°</sup> <u>-</u> 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |
|   | INTERIOR<br>STATE                                                                               | DANEL<br>MOMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mo= Wolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = (216.4)(22')<br>8                                                                                     | $\frac{1}{3} \frac{1}{3} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
|   | INTERIOR                                                                                        | DANEL<br>MOMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
|   | INTERIOR<br>STATIC                                                                              | DANEL<br>MOMENT:<br>STRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo= Wulth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = (216.4)(22')<br>8<br>STRID WEDTH                                                                      | (22.833) <sup>7</sup> = 310<br>Mu (ftoFWTRTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ».3 ft-k                                                                                        |
|   | INTERIOR<br>STATIC<br>LOCATION<br>SUPPORT                                                       | DAVEL<br>MOMENT:<br>STRIP<br>C.S. 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo= Wulth 8<br>TOTAL MU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (216.4)(22')<br>8<br>STRID WEDTH                                                                      | $\frac{(22.833)^2}{M_0/(4+oFWSRTH)} = 310$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ».3 ft-k                                                                                        |
|   | INTERIOR<br>STATIC<br>LOCATION<br>SUPPORT<br>0.65 MU                                            | DAVEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo= Wult/n<br>8<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'                                                        | $\frac{6 \text{ gWoc}}{25'}$ $\frac{1}{25'}$ $\frac{1}{25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
|   | INTERIOR<br>STATIC<br>LOCATION<br>SUPPORT<br>0.65 MU<br>NITEDAN                                 | DANEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mo= Wulz/n<br>8<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K<br>65.2 A-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'                                                 | $\frac{(22.833)^{2}}{M_{2}(4+0FW3R3TH)} = 310$ $\frac{M_{2}(4+0FW3R3TH)}{13,75} + \frac{4+K}{2}$ $\frac{4}{6} + \frac{4+K}{2}$ $\frac{6}{6} + \frac{6+K}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ».3 ft-k                                                                                        |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>0.65 MU<br>MIDSDAN<br>0.35 MU                      | DANEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo= Wulz/n<br>8<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K<br>65.2 A-K<br>43,4 A-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'                                   | $\frac{(22.833)}{M_{3}(A_{to}FWSRT#)} = 310$ $\frac{M_{3}(A_{to}FWSRT#)}{13.75} = 310$ $\frac{H_{4}}{F_{2}}$ $\frac{H_{4}}{G} = \frac{H_{4}}{F_{4}}$ $\frac{H_{4}}{F_{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ». 3 ft-k                                                                                       |
|   | INTERIOR<br>STATIC<br>LECATION<br>SUPPORT<br>0.65 MU<br>MITEDAN<br>0.35 MU                      | DANEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo= Wulzla<br>B<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K<br>65.2 A-K<br>43,4 A-K<br>BOTTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = (216.4)(22')<br>8<br>STRID WEDTH<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II | $ \frac{(22.833)}{(4.6FW3637)} = 310 $ $ \frac{M_3 (4.6FW3637)}{13.75} = 310 $ $ \frac{13.75}{4.6} = \frac{4.5}{4.7} $ $ \frac{4.6}{4.7} = \frac{4.5}{4.7} $ $ \frac{4.6}{4.7} = \frac{4.5}{4.7} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ». 3 ft-k                                                                                       |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>0.65 MU<br>MIDSOM                                  | DANEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo= Wulzla<br>B<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K<br>43.4 A-K<br>BOTTON<br>RETUSFORCHENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = (216.4)(22')<br>8<br>STRID WEDTH<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II'<br>II | $ \frac{(22.833)}{(4.6FW3637)} = 310 $ $ \frac{M_3 (4.6FW3637)}{13.75} = 310 $ $ \frac{13.75}{4.6} = \frac{4.5}{4.7} $ $ \frac{4.6}{4.7} = \frac{4.7}{4.7} $ $ \frac{4.6}{4.7} = \frac{4.7}{4.7} $ $ \frac{4.7}{4.7} = \frac{4.7}{4.7} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3 ft-k                                                                                        |
|   | INTERIOR<br>SPATTO<br>LOCATION<br>SUPPORT<br>0.65 MU<br>MIDSDAN<br>MIDSDAN                      | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>U ! CHECK<br>a= A-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo= Wollin<br>TOTAL MU<br>151,3 A-K<br>50.4 A-K<br>65.2 A-K<br>43.4 A-K<br>BOTTON<br>RETUFORCUENT<br>4 (015)(60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $ \begin{array}{c} (22.833) \\ \hline M_{3} (AtoFWARTH) \\ \hline 13.75 \\ \hline 4.6 \\ \hline 4.6 \\ \hline 4.4 \\ \hline 4 \\ \hline 5 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 5 \\ \hline 6 \\ \hline 6 \\ \hline 6 \\ \hline 7 \\ \hline 7$ | 2.3 ft-k                                                                                        |
|   | INTERIOR<br>SPATER<br>SUPPORT<br>O.65 MU<br>MIDSOM<br>MIDSOM                                    | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASP<br>085C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo= Wollin<br>B<br>TOTAL MU<br>151,3 A+K<br>50.4 A+K<br>65.2 A+K<br>43.4 A+K<br>BOTTON<br>RETUFORCUENT<br>4 = (0.15)(60)<br>0.85(5)(0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(4.6)^{2}} = 310$ $\frac{M_{3}(A_{10},F_{WMRT})}{(13.75)^{\frac{41}{2}}}$ $\frac{13.75}{4.6}$ $\frac{4.6}{4.7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3 ft-k<br>1764<br>5-,5-25=68                                                                  |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>0.65 MU<br>MIDSOM<br>MIDSOM                        | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%<br>J ! CHECK<br>a= ASP<br>0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo= Wollin<br>TOTAL MU<br>151,3 A+K<br>50.4 A+K<br>65.2 A+K<br>43.4 A+K<br>BOTTON<br>RETUFORCUENT<br>4 = (0.15)(60)<br>6' 0.85(5)(10").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(4.6)^{2}} = 310$ $\frac{M_{3}(A_{10})^{2}}{(4.6)^{2}} = 310$ $\frac{M_{3}(A_{10})^{2}}{(4.6)^{2}} = \frac{4}{32}$ $\frac{4}{4} = \frac{4}{4} + \frac{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3 ft-k<br>17€4<br>5-,5-25=68                                                                  |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>0.65 MU<br>MIDSDAN<br>0.35 MU                      | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASP<br>0005C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mo= Wultin<br>B<br>TOTAL MU<br>151,3 A+K<br>50.4 A+K<br>65.2 A+K<br>43.4 A+K<br>BOTTON<br>RETUFORCUENT<br>4 = (0.15)(60)<br>b' = 0.85(5)(10").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | (22.833) = 310<br>M. (AtoFWARTH<br>13,75 4 K<br>13,75 4 K<br>4,6 4 K<br>4,6 4 K<br>4 4 Atr<br>4 4 Atr<br>4 4 Atr<br>6 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.1705 V/n/1) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3 ft-k<br>1.8<br>525=61<br>4 2 ft-r, 1                                                        |
|   | INTERIOR<br>STATES<br>LECATTER<br>SUPPORT<br>0.65 MJ<br>MIDSOM                                  | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASP<br>a035%<br>MM= \$A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I = 1, 3 + k$ $50.4 + k$ $65.2 + k$ $43.4 + k$ $B_{0} = 0$ $RETUFFORCHENT$ $H = \frac{(0.15)(60)}{0.85(5)(2^{n})}$ $5 + \sqrt{(d - \frac{9}{2})} = 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{3}(A+oFWSMTH)}{13,75} = 310$ $\frac{13,75}{4} = \frac{4+K}{4}$ $\frac{4,6}{4} = \frac{4+K}{4}$ $\frac{4}{4} = \frac{4+K}{4}$ $\frac{4}{4} = \frac{4-K}{4}$ $\frac{4}{4} = \frac{4-K}{4}$ $\frac{4}{4} = \frac{4-K}{4}$ $\frac{4}{4} = \frac{6}{4} = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.3 H-K<br>1764<br>5-,5-25=61<br>4.3 A-K                                                        |
|   | INTERIOR<br>STATES<br>LOCATTON<br>SUPPORT<br>0.65 MU<br>MIDSOM<br>MIDSOM                        | DAVIEL<br>MOMENT:<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASP<br>apSC<br>dMn= \$A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $65.2 f + k$ $65.2 f + k$ $65.2 f + k$ $B_{0} = 0.85(5)(0^{2})$ $c_{1} = 0.85(5)(0^{2})$ $c_{2} = 0.85(5)(0^{2})$ $c_{3} = 0.85(5)(0^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A+0FWSMTH}{13,75} = 310$ $\frac{13,75}{4} = \frac{4+1}{5}$ $\frac{4}{4} = \frac{6}{4} = \frac{6}{4}$ $\frac{6}{4} = \frac{6}{4} = \frac{6}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3 H-K<br>9.8 H-K<br>9.8 H-K<br>9.555 = 6.1<br>4.3 H-K<br>4.4 < 6                              |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>0.35 MU<br>MIDSDAN<br>SURVET | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASP<br>a050<br>dMn= &A<br>: CHECK &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $75.2 f + k$ $15.2 f + k$ | = (216.4)(22')<br>8<br>STRID WEATH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A_{10} + \omega_{303} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3 H-K<br>9.3 H-K<br>9.3 H-K<br>9.3 H-K<br>4.3 H-K<br>4.3 H-K<br>4.3 K-K<br>4.3 K-K<br>4.3 K-K |
|   | INTERIOR<br>STATES<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>B.35 MJ<br>MIDSDAN<br>SURVET             | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASC<br>a05C<br>dMA= dA<br>: CHECK &<br>a= (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $Borrow REDUFORCHENT 4 = (0.15)(60) cb' = 0.85(5)(2'') sf_{4}(d - \frac{a_{2}}{2}) = 0.1 TOFORCHENT oril(60) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = (216.4)(22')<br>8<br>STRID WEATH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A_{10} + \omega_{303} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.3 H-K<br>9.3 H-K<br>5-25=61<br>4.3 A-K<br>+ < 6                                               |
|   | INTERIOR<br>STATES<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>B.35 MU<br>MIDSDAN<br>SURVET             | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASC<br>a05C<br>dMA= dA<br>: CHECK &<br>a= (1)<br>0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $Bottor $ $REDUFORCHENT 4 = (0.15)(60) cb' = 0.85(5)(2'') sf_{4}(d - \frac{a_{2}}{2}) = 0.11 TOTEORCHENT 0.11(60) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = (216.4)(22')<br>8<br>STRID WEATH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A+0FW30374)}{(13.75)^{4+K}}$ $\frac{13.75}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{4}{(4.6)^{4+K}}$ $\frac{6}{(4.6)^{2}}$ $\frac{6}{($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.3 H-K<br>9.3 H-K<br>9.3 H-K<br>4.3 H-K<br>4.3 H-K<br>4.3 K-K<br>4.3 K-K<br>4.3 K-K<br>4.3 K-K |
|   | INTERIOR<br>STATES<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>0.35 MU<br>MIDSDAN<br>SURVET             | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J ! CHECK<br>a= ASC<br>a05C<br>dMn = dA<br>: CHECK &<br>a= (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $REDUFORCHENT$ $H = (0.15)(60)$ $cb' = 0.85(5)(2'')$ $sf_{4}(d - \frac{a_{2}}{2}) = 0.1$ $TO = 0.11$ $D = 0.11$ $D \leq (5)(12) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A+0FUSERTH)}{13,75} = 310$ $\frac{13,75}{4} = \frac{4}{5}$ $\frac{4}{4}, 6 = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{5} = \frac{150}{2}$ $\frac{150}{2} = \frac{150}{2}$ $\frac{150}{2} = \frac{150}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.3 ft-k<br>9.3 ft-k<br>4.3 <u>ft-k</u><br>4.3 <u>ft-k</u> < 6                                  |
|   | INTERIOR<br>STATES<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>D.35 MU<br>MIDSDAN<br>SURVET             | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J : CHECK<br>a= ASC<br>a05C<br>dMn = QA<br>C.AECK RE<br>a= (1)<br>of<br>dMn = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $REDUFORCHENT$ $H = (0.15)(60)$ $cb' = 0.85(5)(2'')$ $Sf_{4}(d - \frac{a_{2}}{2}) = 0.11$ $TO = 0.11$ $D = (0.1)(60)(6.5 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2}(A+0FUSERTH)}{13,75} = 310$ $\frac{13,75}{4} + \frac{4+5}{5}$ $\frac{4}{4} + \frac{6}{4} + \frac{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.3 H-K<br>9.3 H-K<br>4.3 <u>H-K</u> < 6<br>324                                                 |
|   | INTERIOR<br>STATES<br>SUPPORT<br>O.65 MU<br>MIDSDAN<br>D.35 MU<br>MIDSDAN<br>SUPART             | DAVIEL<br>- MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>J : CHECK<br>a= ASC<br>a05C<br>dMn = QA<br>CAECK RE<br>a= (1<br>0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I \leq I, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $REDUFORCHENT$ $H = (0.15)(60)$ $1b' = 0.85(5)(2'')$ $5f_{4}(d - \frac{a_{2}}{2}) = 0.11$ $TO = 0.11$ $D = 0.11(00)(6.5 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{2} (A+0FUSERTH)}{13,75} = 310$ $\frac{13,75}{4} = \frac{4}{5}$ $\frac{4}{4}, 6 = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{4} = \frac{4}{5}$ $\frac{4}{5} = \frac{150}{2}$ $\frac{150}{2} (\sqrt{4})^{2} = \frac{0.1705}{2} (\sqrt{4})^{2} = \frac{0.1705}{2} (\sqrt{4})^{2} = \frac{0.1705}{2} (\sqrt{4})^{2} = \frac{150}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.3 H-K<br>9764<br>6-,525=61<br>4.3 AL-K<br>4.3 AL-K<br>4.4                                     |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>O.65 MU<br>MIDSOM<br>MIDSOM<br>SUPPORT             | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>M.S. 40%<br>U ! CHECK<br>a= ASC<br>aBSC<br>dMn = QA<br>CHECK &<br>a= (1)<br>0%<br>D = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I = 1, 3 f + k$ $50.4 f + k$ $65.2 f + k$ $43.4 f + k$ $Borrow$ $REDUFDECUENT$ $4 = (0.5)(60)$ $cb' = 0.85(5)(2'')$ $5f_{4}(d - \frac{a}{2}) = 0.1$ $TOTEDECUENT$ $0.1)(60) = 0.11$ $05(5)(12) = 0.11$ $05(5)(12) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{0}(A+oFWSRSTH}{13,75} + \frac{4}{25}$ $\frac{4}{13,75} + \frac{4}{13}$ $\frac{4}{13,75} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3 ft-k<br>17/4<br>5-,5-25=6:<br>4.3 ft-k<br>14.3 ft-k<br>14.5 ft-k<br>14.5 ft-k               |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>O.65 MU<br>MIDSOM<br>MIDSOM<br>SURJET              | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%<br>U! CHECK<br>a= ASC<br>ABSC<br>OMM = OMM<br>- ON<br>POST TRUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I = I, 3 ft-k$ $50.4 ft-k$ $65.2 ft-k$ $43.41 ft-k$ $Borrow$ $REDUFDEC UFNT$ $4 = (0.15)(60)$ $cb' = 0.85(5)(2'')$ $5fy(d - \frac{a}{2}) = 0.1$ $TOTEDECENENT 0.1)(bo) = 0.11$ $05(5)(12) = 0.11$ $05(5)(12) = 0.11$ $05(5)(12) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= \frac{(216.4)(22')}{8}$ STRID WEDTH $  '   '   '   '   '   '   '   '   '   $                         | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{0} (f_{1-0} \in W_{STRT} + 13, 75)^{\frac{11}{25}}}{(13, 75)^{\frac{11}{25}}} = \frac{4}{(15)^{\frac{11}{25}}} = \frac{4}{(15)^{\frac{11}{25}}} = \frac{4}{(15)^{\frac{11}{25}}} = \frac{4}{(15)^{\frac{11}{25}}} = \frac{4}{(15)^{\frac{11}{25}}} = \frac{6}{(15)^{\frac{11}{25}}} = \frac{6}{($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.3 ft-k<br>974<br>6-,5-,25= 61<br>4.3 ft-k<br>4.3 ft-k<br>61<br>74                             |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>O.65 MU<br>MIDSOM<br>MIDSOM<br>SURJET              | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%<br>U! CHECK<br>a= ASC<br>ABSC<br>AMM = ON<br>AMM = ON<br>POST TRUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I = 1, 3 ft - k$ $50.4 ft - k$ $65.2 ft - k$ $43.41 ft - k$ $Borrow$ $REDUFDEC WENT$ $4 = (0.15)(60)$ $cb' = 0.85(5)(2'')$ $5fy(d - 9'_{2}) = 0.1$ $TOI $ $For Forecoment$ $0,1)(60) = 0.11$ $05(5)(12) = 0.11$ $05(5)(12) = 0.11$ $05(5)(12) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{0} / (f_{1-0} \in W_{3}) \times H_{2}}{(13,75)^{2}}$ $\frac{H_{1}}{(13,75)^{2}}$ $\frac{H_{1}}{(15)^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3 ft-k<br>5%<br>4.3 <u>ft-k</u><br>4.3 <u>ft-k</u><br>5%<br>4.3 <u>ft-k</u><br>5%             |
|   | INTERIOR<br>STATES<br>LOCATION<br>SUPPORT<br>O.65 MU<br>MIDSOM<br>MIDSOM<br>SURJET              | DAVIEL<br>MOMENT:<br>STRIP<br>C.S. 75%<br>M.S. 25%<br>C.S. 60%<br>N.S. 40%<br>U ! CHECK<br>a= ASP<br>a850<br>OMM = OA<br>CHECK &<br>a= (1)<br>OMM = OA<br>POST TRUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M_{0} = \frac{W_{0} l_{2} l_{n}}{8}$ $T_{0TAL} M_{0}$ $I = 1, 3 ft + k$ $50.4 ft + k$ $65.2 ft + k$ $43.41 ft + k$ $REDUFDEC WENT$ $4 = (0.15)(60)$ $15^{1} = 0.85(5)(2^{n})$ $5f_{4}(d - \frac{a}{2}) = 0.1$ $TOTEDECENENT 0.1)(60) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11 05(5)(12) = 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = (216.4)(22')<br>8<br>STRID WEDTH<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11'<br>11               | $\frac{(22.833)^{2}}{(22.833)^{2}} = 310$ $\frac{M_{0} / (f_{1-0} \in W S N S T + 1)}{(13.75)^{2}}$ $\frac{H_{0}}{(13.75)^{2}}$ $\frac{H_{0}}{($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3 ft-k<br>5%<br>4.3 ft-k<br>4.3 ft-k<br>5%<br>4.3 ft-k<br>6%                                  |

EXTERIOR PANEL STATIC MOMENT Mo= (216.4 Y25)(20.5)2 = 284.2 CH-K STREP UTOTI+ MU/CH OF LUDOFIL TOTAL MG STRIP LOCATION C.S. 70% 11.1 139.3 12.5' INT SUPPORT 4.8 M.S 30% 59.7 12.5 0.70 Mo 50 SHEETS 100 SHEETS 200 SHEETS C.S 608% 88.7 12.5 7.1 MEDSPAN M.5 40% 59.1 12,5' 4.73 0,52 Mo 73,9 n.s' 5.9 C.S. 100% EXT SUPPORT M.S. 0% 0 12.5' 0 0,26 MD 22-141 22-142 22-144 MIDSPAU : CHECK RENSFORMENT # 46 24 OK. A5= ,1 EAMPAD" d= 6.5" Q= (011)(60) . 0.11765 dMn= 0.9(0.1)(60)(6.5 - 11755)(1/2) = 2.9 4+ ENT SUPPORT: CHECK RENTORMANT HUE 36" D.C. As= ,057 1=6.5 a = (0\$8 (00) = .078 0.85(5)(12) OMn= 0.9 (0.002 (00) (6.5 - 2) (1/2) = 1,95 2+ INT SUPPORT ! CHECK REDITORINENT HY CO24 "O.C. AS-1 1=6.5 a = (0.1100) 0.85(5)(21 = 0.11705 QMA = Q.9(0.1/00)(6.5- 11765)(1/2)= 2.9 K+H POST. TRUSIDNEWS REQUIRED IN SLAPS.

|                                         | FOUE 32' PUT                                              |
|-----------------------------------------|-----------------------------------------------------------|
|                                         | EXTERCIOR FRINEL (MO), 45-7                               |
|                                         | FOST I FINGLONDUCE 17                                     |
|                                         | LOADTNG: MAX SPRUSCE INITIAL                              |
|                                         | WS = 167 PS= WS = 100 PS=                                 |
|                                         |                                                           |
|                                         | MOMENTS: MAX INSTIAL                                      |
|                                         | No= Wo (2h) 243 131.3 H                                   |
|                                         | B 5576"-4 231"-K                                          |
|                                         | MTOSTORN (M.S) (SV(4)MO 547.3"-4 3277"-"                  |
| 000000000000000000000000000000000000000 | FIT 5000007 (M.S) (0%)MO                                  |
| 104                                     |                                                           |
| 52-14                                   | COMPRESSION: Pe= 1300 " n=.85 SECTION: S= 50 = 1600 PM    |
| 6                                       | PE:= 1105" A= 1200 JUZ                                    |
| MIPAL                                   | N - == 5' N' - 5 K= 2                                     |
|                                         | STRESSES : +COS +C. 00                                    |
| A A A A A A A A A A A A A A A A A A A   | Ocs = , Otc = 0 Uts = Missec = 100 Ucr + 100 Utr - 50 tcr |
|                                         | STORSS CHECK :                                            |
|                                         | INT SUPPORT (M.S) SERVICE                                 |
|                                         | OTTOP = - 1105" + (1105"YB") - 552.6"-K - , 8"" > Jes     |
|                                         | 120023 160023 160023                                      |
|                                         | 4 / w// -P                                                |
|                                         | OBOT = - 1105 - (1105)(3) + 552.6 = -2.6 5 - C OCS        |
|                                         | 1000 104 1000 104 1000 00                                 |
|                                         | MIDSDAN (M.S) - SERVICE.                                  |
|                                         |                                                           |
|                                         | 0 TOP = 1105" _ (1105" (3") + 54713"" = -; "31" 4 OCS     |
|                                         | 120022 16002 1600 WT                                      |
|                                         | 1105° (1105×13") 547.3"-4 = 265×55 (54-                   |
|                                         | 0 BUT = 120002 1000 2 1600 W                              |
|                                         | INT SOPPOR (MS) - TNITTAL                                 |
|                                         | (TENDE 1300", (1300")(3") 557.6"-" - 1,0"5" > OTE         |
|                                         | 101 100 100 100 TUS                                       |
|                                         | 1300 (1300 4 (300 4 552.6"3,17 2 Ocs                      |
|                                         | (DOT = 120005 160023 160024                               |
|                                         | NTOSOA N (MS) - TNETTAL                                   |
|                                         | PHOLONY (INIS) - THE IT                                   |
|                                         | 100 p = 1000 - (000 20) + 000 = - (0 2 0 23               |
|                                         |                                                           |
|                                         | JB = 1300 (300 (23) - 547.3" - 3,17 > Ju                  |
|                                         | 1200 TN2 1600 TN3 1600 TN                                 |
|                                         |                                                           |
|                                         |                                                           |
|                                         |                                                           |