7.0 Structural Breadth

The suggested solar water heating system provides energy savings by reducing the natural gas consumed at the building. This equipment will be installed on the building's flat roof and consequently there will have to be a structural analysis to ensure that the existing structure can handle the loads imposed by the additional equipment.

The weight of each collector was conservatively estimated:

Collector Weight:133 lbWater in Collector:230 lbHeaviest Support Available:781 lbTotal Weight =1144 lb/collector

Table 7.1 – Conservative Collector Weight Estimate

Area of each collector: 4 ft x 8ft = 32 ft²

Pressure and Distributed Load Calculation:

Pressure: P = 1144 lb /35.4 ft² P = 36 lb/ft²

Distributed Load: W = 36 lb/ft² * 4 ft W = 144 lb/ft

Table 7.2 – Pressure and Distributed Load Calculations

Figure 7.1 – Dead Load Imposed From Solar Collector and Support Structure

For a typical 6 ft tributary area:

Point Load Calculation:

 $P = 143lb/ft * 6 ft \rightarrow P = 858 pounds$

The dead load of the joist used for the roof structure has a dead load of 21 pounds per linear foot (plf).

STANDARD LOAD TABLE/LONG SPAN STEEL JOISTS, LH-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist	Approx. Wt	Depth	SAFE	LOAD*																
Designation	in Lbs. Per	in	in L	.bs.	CLEAR SPAN IN FEET															
	Linear Ft.	inches	Betv	veen																
	(Joists Only)		47-59	60-64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
40LH08	16	40	16600	16600	254	247	241	234	228	222	217	211	206	201	196	192	187	183	178	174
					150	144	138	132	127	122	117	112	108	104	100	97	93	90	86	83
40LH09	21	40	21800	21800	332	323	315	306	298	291	283	276	269	263	256	250	244	239	233	228
			1.1.1		196	188	180	173	166	160	153	147	141	136	131	126	122	118	113	109
40LH10	21	40	24000	24000	367	357	347	338	329	321	313	305	297	290	283	276	269	262	255	249
					216	207	198	190	183	176	169	162	156	150	144	139	134	129	124	119
40LH11	22	40	26200	26200	399	388	378	368	358	349	340	332	323	315	308	300	293	286	279	273
					234	224	215	207	198	190	183	176	169	163	157	151	145	140	135	130

Figure 7.2 – Joist Selection Used In Roof Design

The superimposed dead load is 25 lb/ft² which translates to 150 plf because of the 6 ft tributary area. The total dead load for from the joist is 171 plf as calculated in below in Table 7.3.

Joist Dead Load:	21 plf				
Superimposed Dead Load:	<u>150 plf</u>				
Total Dead Load:	171 plf				

Table 7.3 – Dead Load Calculation for Joist

The maximum allowable total moment for the joist selected is 80.9 foot-kips.

$$M_{max} = \frac{W \cdot I^2}{8} + \frac{P \cdot I}{2}$$
$$M_{max} = \frac{171 \cdot 42^2}{8} + \frac{858 \cdot 42}{2}$$

 $M_{max} = 55.7$ foot-kips

Table 7.4 – Maximum Total Moment Applied on Joist from Equipment

55.7 foot-kips < 80.9 foot-kips → The solar equipment can be safely installed on the roof.