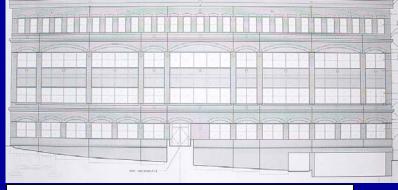


THE SIGNAL HILL PROFESSIONAL CENTER IMPLEMENTING A CONCRETE STRUCTURAL SYSTEM

Joseph Henry Senior Thesis, Structural Emphasis Dr. Hanagan, Advisor Department of Architectural Engineering The Pennsylvania State University Spring 2006

Signal Hill Professional Center

MANASSAS, VIRGINIA http://www.arche.psu.edu/thesis/eportfolio/current/portfolios/hjh139 Joseph Henry, Structural Option


ŧ.

A TRADITIONAL SUBURBAN OFFICE BUILDING.

45,000 square feet for office condos and a bank with four floors above grade and one floor of underground parking close to the Manassas Town Center to be completed in 2006

PROJECT TEAM.

OWNER	Mid-Atlantic Real Estate Investments
GC	R.W. Murray Co.
ARCHITECT	The M Group Architects
STRUCTURAL	Morabito Consultants
MEP	K.T.A. Group Inc.
CIVIL	Bowman Consulting
0	

MECHANICAL FEATURES.

HVAC—Two rooftop units each with 75-ton chillers, and 43-ton heating coils, with ductwork and VAV unit locations flexible per tenant requests **PARKING AREA**—277V 3-phase wires placed in ground surface used as ice-melting system **PLUMBING**—Three stacks throughout building designed for future tenant expansion

ARCHITECTURAL FEATURES.

SITE—Underground parking roof sloped to match site topography and to support fire engine loads

ENVELOPE—Traditional Virginian brick detail on exterior achieved through slender wall pre-cast concrete panel system, allowing 25% less themal transfer than traditional walls

STRUCTURAL FEATURES.

OFFICE BUILDING—Composite steel frame with 3.5" lightweight concrete slab

PARKING STRUCTURE—Traditional steel framing with W10 infill beams angled to match the topography of the site; 4.5" normal weight concrete slab with 4" topping

CONNECTIONS—Unique system of coped beams, varied connection heights, and W6 hangers to allow the driveway surface to connect to the building at varying elevations

ELECTRICAL/LIGHTING FEATURES

POWER—Three panelboards for floor for 480/277V and 208/120V loads, with much room for expansion **LIGHTING**—System of 277V HID, fluorescent, and compact fluorescent lights throughout the parking area, surrounding grass area, common areas, and basic office lighting.

TABLE OF CONTENTS

Introduction and Building Overview 5 Current Building Design Review 6 Structural System 6 Gravity System 9 Building Architecture 9 Floorplan 9 Façade 9 Lighting and Electrical 9 Piumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Alternatives 9 Procedure Findings, Direct Design Method Findings, Direct Design Method Findings, Direct Design Method Findings, Direct Design Structure 11 Alternatives 9 Procedure 21 Alternatives 9 Procedure 21 Alternatives 9 Procedure 21 Alternatives 9 Procedure	Executive Summary	. 3
Structural System 6 Gravity System 1 Lateral System 9 Building Architecture 9 Floorplan Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Alternatives Procedure Analysis Findings 21 Column Design . 24 Procedure Analysis Findings Column Design . 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysi	Introduction and Building Overview	. 5
Structural System 6 Gravity System 1 Lateral System 9 Building Architecture 9 Floorplan Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Alternatives Procedure Analysis Findings 21 Column Design . 24 Procedure Analysis Findings Column Design . 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysi	Current Building Design Review	. 6
Gravity System Lateral System Building Architecture 9 Floorplan Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Atternatives Procedure Findings, Direct Design Method Findings, Direct Design Method Findings, Direct Design Method Findings, Direct Design Method Findings, Structure Final Design Summary Lateral System Design 21 Alternatives Procedure Analysis Findings 21 Column Design Summary 24 Procedure Analysis Findings Column Design . 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure <t< th=""><th></th><th></th></t<>		
Building Architecture 9 Floorplan Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, Direct Design Method Findings, Direct Design Method Findings, Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design 21 Alternatives Procedure Analysis Findings 21 Column Design 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings		
Floorplan Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings Effects on Foundation System 26 Procedure		
Façade Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Problem Statement 11 Design Approach 11 Assumptions 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Column Design 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	0	9
Lighting and Electrical 9 Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design 11 Design Approach 11 Assumptions 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Atternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Column Design 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	•	
Plumbing 9 Fire Protection 10 Foundation 10 Proposal and Scope of Design. 11 Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings		•
Fire Protection 10 Foundation 10 Proposal and Scope of Design. 11 Problem Statement 11 Design Approach 11 Assumptions 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives 13 Procedure Findings, Direct Design Method Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design 21 Alternatives Procedure Analysis Findings Column Design 24 Procedure Analysis Findings 26 Effects on Foundation System 26 Procedure Analysis Findings 26 Procedure Analysis Findings 26		
Foundation10Proposal and Scope of Design11Problem Statement11Design Approach11Assumptions11Assumptions11Methods of Evaluation12Depth Analysis: Concrete Design13Two-Way Floor Slab13AlternativesProcedureFindings, Direct Design MethodFindings, ADOSS AnalysisSuperimposed Dead LoadsUndulating Parking StructureFinal Design Summary21Lateral System Design21AlternativesProcedureAnalysis Findings24ProcedureAnalysis FindingsEffects on Foundation System26ProcedureAnalysis FindingsAnalysis Findings26ProcedureAnalysis FindingsAlterstrings26	8	
Proposal and Scope of Design. 11 Problem Statement 11 Design Approach 11 Assumptions 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings		
Problem Statement 11 Design Approach 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	Foundation	. 10
Problem Statement 11 Design Approach 11 Assumptions 11 Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives 13 Procedure Findings, Direct Design Method Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary 21 Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	Proposal and Scope of Design	11
Assumptions 11 Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives 13 Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure 24 Analysis Findings 26 Procedure 26 Procedure 26 Analysis Findings 26		
Methods of Evaluation 12 Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method 13 Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure 11 Final Design Summary 21 Alternatives Procedure Procedure 21 Alternatives Procedure Procedure 21 Alternatives Procedure Procedure 21 Alternatives Procedure Procedure 24 Procedure 24 Procedure 24 Analysis Findings 26 Effects on Foundation System 26 Procedure Analysis Findings	Design Approach	. 11
Depth Analysis: Concrete Design 13 Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	Assumptions	. 11
Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	Methods of Evaluation	12
Two-Way Floor Slab 13 Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings	Denth Analysis: Concrete Design	13
Alternatives Procedure Findings, Direct Design Method Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design		
ProcedureFindings, Direct Design MethodFindings, ADOSS AnalysisSuperimposed Dead LoadsUndulating Parking StructureFinal Design SummaryLateral System Design	5	. 10
Findings, ADOSS Analysis Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design		
Superimposed Dead Loads Undulating Parking Structure Final Design Summary Lateral System Design	Findings, Direct Design Method	
Undulating Parking Structure Final Design Summary Lateral System Design	Findings, ADOSS Analysis	
Final Design Summary 21 Lateral System Design		
Lateral System Design 21 Alternatives Procedure Analysis Findings 24 Column Design 24 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings Effects on Foundation System 26 Procedure Analysis Findings		
Alternatives Procedure Analysis Findings Column Design	o b	
Procedure Analysis Findings Column Design		21
Analysis Findings Column Design		
Column Design		
Procedure Analysis Findings Effects on Foundation System		24
Analysis Findings Effects on Foundation System		. 24
Effects on Foundation System		
Procedure Analysis Findings		26
Analysis Findings		. 20
		27

TABLE OF CONTENTS, CONTINUED

Breadth Analysis 1: Architecture of Concrete System	30
Floorplan	30
Problem	
Proposed Solutions	
Exterior Façade	36
Existing Architecture Problem	
Proposed Solutions	
Breadth Analysis 2: Construction Management Comparison	38
Basis of Comparison	38
Cost and Schedule Comparison	38
Additional Construction Considerations for the Washington DC Area	39
Cost Adjustments in Northern Virginia Lead Times	
Supply and Demand	
Weather Conditions and Schedule	
Breadth Analysis 3: Integration of a Green Roof	41
Overview of Green Roof Types.	41
Feasibility of a Green Roof	41
Selection of a Green Roof	
Structural Considerations	
Mechanical Considerations	
Acoustic Considerations	
Architectural Considerations Cost Considerations	
Conclusions and Recommendations	45
Design Summary	45
Evaluation of the Concrete System	46
Evaluation of the Composite Steel System	47
Final Recommendations	48
Tables and Figures	49
References	51
Acknowledgments	52
Appendix A: Load Calculations	53
Appendix B: Concrete Floor System Calculations	56
Appendix C: Takeoff Info and Means References	53
Appendix D: Hand Steel Calculations	53

EXECUTIVE SUMMARY

The Signal Hill Professional Center is a suburban office building that houses over 68,000 square feet of open office space on four above ground levels in Manassas, Virginia. To increase the number of parking spaces, it takes advantage of its sloping site by excavating into the hillside to accommodate an underground parking area. To maximize this area to nearly 21,300 square feet, this underground space extends beyond the footprint of the building to nearly the limits of the site, and the supporting building structure slopes with the natural terrain.

As designed by Morabito Consultants of Baltimore, the current building structure employs a composite steel system in order to reduce floor section depth and building weight. This system generally uses W10 beams spanning 20'-0" to support a lightweight concrete slab on composite deck, while W21 and W24 girders spanning 30'-0" are sufficient in the office and parking structure, respectively. Due to smaller lateral loads in Northern Virginia, a system of moment frames which transfer shear forces to concrete shear walls in the basement are sufficient in preventing excessive drift.

Though an analysis of the original design revealed that composite steel was an efficient system for the given design conditions, the Signal Hill Professional Center is located outside Washington DC, where concrete design should be commonplace. In the District, strict height restrictions dictate that local structures normally use concrete flat plate systems to reduce floor-to-floor heights through smaller floor section depths. Though this particular building is not limited by height restrictions, and though a drop ceiling would negate any benefits from reduced floor section depth, perhaps the large presence of concrete contractors in the area may make a concrete design more economical.

Therefore, to investigate the possibility of using concrete instead of steel, a concrete system was designed for the Signal Hill Professional Center. This system was then evaluated for structural efficiency, architectural impact, constructability, and effectiveness at integrating green design considerations.

Structural Efficiency. While initially flexure and deflection controlled selection of a two-way concrete floor system, shear around columns from moment transfer came to control in most situations. Further, a new column layout was necessary to create square bays conducive to a two-way slab. The final design features:

- 8" concrete slab with 3.5" drops around all columns in Roof.
- 10" concrete slab with 3.5" and 4.5" drops around columns in Floors 2-4.
- 11" concrete slab with 3.5" and 7" drops around columns in the First Floor/Parking Deck.

Column sizes came to be controlled by shear rather than axial loads; larger column sizes led to larger shear perimeters and therefore larger shear resistance. Though a system of concrete moment frames was sufficient to resist drift, lateral loads increased these unbalanced moments around columns and intensified shear.

Architectural Impact. Since the new structural design relied upon a new column grid, this affected both the central corridor core layout and the positioning of precast panels on the east and west building façade. By re-evaluating the required areas in the

corridor core, three alternative floorplans were created which take advantage of the new column layout. These floorplans, as evaluated by the Building Owners and Managers Association industry standard, increased rentable areas, which could increase annual owner rental income by as much as \$17,750.

Due to the flexible nature of precast panels in the building façade, the elevations can be rearranged to prevent concrete columns from interrupting windows. A further study of façade arrangement produced a variety of possible elevations, which would reinforce the traditional base-shaft-capital office building icon.

Constructability. Including larger footing sizes, an estimate using R.S. Means 2006 revealed that the concrete system would cost about \$200,000 more than a composite steel system and would take almost three additional weeks to erect. Upon surveying both structural engineers and construction managers in the Washington DC area, it became readily apparent that steel may be the best solution because:

- Though regional adjustment factors for R.S. Means reveal that concrete is generally cheaper than steel, these factors do not offset the \$200,000 cost discrepancy.
- The Portland Cement Association placed Washington DC on the cement "tight supply" list for 2005, which would inhibit the ability of concrete contractors to cut costs for lower bids.
- Wintry conditions during building construction meant that heaters, covers, and protective devices would be necessary for concrete construction, which would increase cost and erection time.

Installation of a Green Roof. Using standard roof garden assemblies from Roofscapes, a green roof company in Philadelphia, roof gardens ranging from lightweight systems featuring sedum plants to extensive systems featuring turf and trees were assessed for possible improvements to the building; results show that:

- Structurally, the lighter systems would not drastically increase supporting gravity systems in both steel and concrete. The heavier systems would increase the roof structure to sizes beyond those in the office floors; further, larger loads at the roof diaphragm would produce larger seismic loads. Therefore, lateral systems would need to increase, primarily in the steel system.
- Aesthetically, a roof garden would produce a livable outdoor space in a setting where busy roads and large box stores overshadow pedestrianism. This increased livability comes at the expense of a 10% increase in initial cost and roughly \$1,000 per year to maintain.

Per the recommendation of many professionals in the Washington area, the most efficient final design may be a hybrid structure, using concrete columns and slabs in the first floor, and composite steel in the office areas above. Benefits would include increased lateral resistance for the steel system, which would make a green roof possible, and a natural fire stop between the parking area and offices above. Given that steel was determined to be more economical for Manassas, these benefits would not come at the expense of dramatically increased cost or construction duration. To enjoy the benefits of the new column layout with a reduced number of columns, member sizes would increase accordingly within reason.

INTRODUCTION AND BUILDING OVERVIEW

Located in the outskirts of Manassas, Virginia, the Signal Hill Professional Center houses over 68,000 square feet of open office space on four above ground levels. While the first floor houses a drive-through suitable for a bank, the upper floors feature flexible office areas.

Sited along Centreville Road in a commercial and light industrial district, the building compensates for its small sloping site by excavating into the hillside to accommodate an underground parking lot. To maximize parking area to nearly 21,300 square feet, this underground space extends beyond the footprint of the building to nearly the limits of the site, and the supporting building structure slopes with the natural terrain.

A brief tour of the greater Manassas area reveals a Northern Virginia icon: the suburban, low rise office building. While many nearby office buildings aim primarily for economy with limited design detail and anonymous parking areas, they have indeed become central to congested exurbs. Therefore, to improve the Signal Hill Professional Center structurally, aesthetically, economically, and environmentally, a new building design will borrow structural ideas in concrete from nearby Washington DC, explore the interplay of material supplies and local trades, play with spaces and compositions of both the floor plan and façade, and challenge the suburban office paradigm to include livable green spaces for the people working inside.

CURRENT BUILDING DESIGN REVIEW

Structural System

Gravity System. The Signal Hill Professional Center employs a composite steel system, which was originally chosen to:

- Reduce floor section thickness and associated weight,
- Span longer distances to provide large open office areas,
- Increase constructability through reducing the number of laborers required and erection time

The column grid creates bays ranging in size from 17'-6"x25'-0" to 20'-0"x30'-0" with beams generally spanning in the short direction. See Figures 1A and 1B for sample layouts.

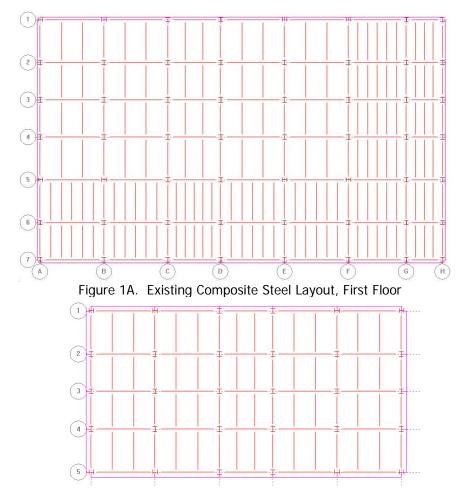


Figure 1B. Existing Composite Steel Layout, Floors 2-4

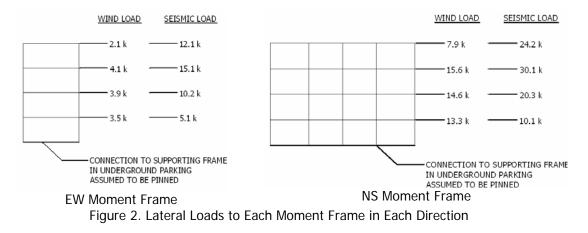
Though loads are standard for an open office building, they become more significant in the parking area:

- Roof Loads: 2.5 psf DL from 2" deck [USD catalog]
 - 7.5 psf DL from additional finishes and roof membrane [ASCE-07] 30 psf Snow Load [IBC 2003, Northern Virginia]
- Office Areas: 100 psf LL [Open Office, ASCE-07] 60 psf DL from 3" deck with additional 3.5" lightweight concrete slab [USD catalog]
 - 10 psf DL from additional finishes and MEP [ASCE-07]
- Parking Areas: 250 psf LL [Fire Engine loading]
 - 93 psf DL from 2" deck with additional 4.5" normal weight concrete slab and additional 4" asphalt topping [USD catalog, ASCE-07]
 - 30 psf Snow Load [IBC 2003, Northern Virginia]
- Precast Walls: 440 plf DL [2" precast concrete on light gage framing, ASCE-07]

As compared in a RAMSteel model, the structural sizes given in the existing design were more than adequate for the given loads:

- Roof Design: 2" non-composite deck and ballasted roof supported by W12x16 beams spaced 10'-0" OC, resting on W16x26 and W18x40 girders
- Office Areas: 3" composite deck and 3.5" lightweight concrete slab supported by W10x15 beams spaced 10'-0" OC, resting on W18x35 and W21x44 girders
- Parking Areas: 2" composite deck and 4" normal weight concrete slab supported by W10x15 and W10x19 beams spaced 5'-0" OC, supported by W24x55 and W 24x76 girders.

Columns under these loads range from W10x33 supporting the roof to W12x96 supporting all four office floors and parking structure.


Where the sloped parking area meets the office structure, beams and girders under the larger fire engine live loads frame into girders framing the office via a variety of connections, including:

- Beams in parking area coped at various levels to frame in at higher or lower elevations than the office areas. In certain locations, required W10 beams were upsized to W16 to establish suitable depth for large copes
- Where the elevation difference approached 33", a system of W6 hangers, welded into the first floor girder, would suspend beams in the parking area.

Additional infill beams throughout the office area frame superimposed loads from bank vaults, stairwell shaft walls, air handling units, and openings.

Lateral System. Since the structure only extends four floors above ground, and since Northern Virginia features less extreme wind and seismic loads, moment frames on the perimeter of the building were adequate. Lateral loads on each frame system are shown in Figure 2, and the moment frame layout is shown in Figure 3.

Three key load combinations were considered for this analysis, per ASCE-07:

1. 1.2D + 1.6L

- 2. 1.2D + 0.5L + 1.6W
- 3. 1.2D + 0.5L + 1.0E

While the gravity analysis showed that the W21 beams and W12 columns in the frames were oversized, an analysis in STAAD revealed that these were larger to resist lateral moments. In order to reduce beam and column sizes in the basement area, the concrete retaining wall was used as a shear wall; lateral loads were transferred from the frame to the wall through concrete piers, poured integrally. By absorbing more shear at the lowest building level, this system reduced moments and therefore member sizes in the critical frames adjoining both the office and parking areas.

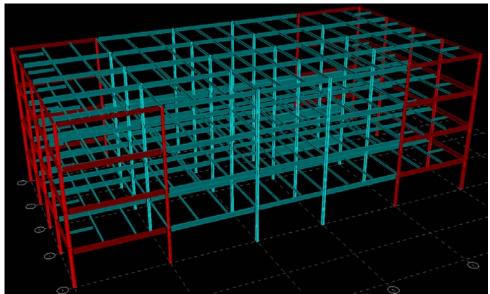


Figure 3. Moment Frame Layout: Gravity Structure in Blue, Moment Frames in Red

Building Architecture

Floorplan. Using the inner columns as a guide, the central core of the building features two elevators, two stairwells, restrooms, and telephone and electrical rooms. On the first floor, this layout changes to accommodate three entrances and an office area catering to a bank, with a separate vestibule entrance and a drive-through window.

Façade. Unlike many office buildings in the area, the Signal Hill Professional Center pays close attention to brick detail in archways around buildings and cornices between floors and at the roof. Though this brick detail is realistic, it is actually achieved through using the "Slender Wall" precast concrete exterior wall system produced by Smith-Midland of Midland, Virginia. This system employs galvanized steel studs attached to 2" thick precast concrete exterior panels, reinforced with welded wire fabric. With a ½" air space between concrete

panel and steel stud, this system claims to reduce thermal transfer by up to 25% and help isolate the exterior concrete skin from lateral stresses and movement incurred in the building superstructure. These façade elements are then connected to the steel frame at the floor diaphragm.

Mechanical/HVAC

Two rooftop air handling units serve each side of the building. Each features a 44.1 horsepower fan capable of supplying 27000 cfm of recirculated air, 75 ton chillers, and 43 ton heating coils with four compressors. Ductwork servicing these rooftop units extend downward through the electrical rooms to floors 1 through 4. Though ductwork is pre-existing in the office spaces, tenants are merely advised as to where to place VAV distribution boxes.

Lighting and Electrical

Power enters the building from the west side via a 10-way concrete ductbank featuring 10 4" PVC pipes. The main feeder consists of seven sets of 4 500 KCMIL wires with two #2/0 ground wires capable of carrying 2500A at 480/277V. Upon entering the main distribution panelboard, the power is distributed to five 480/277V panelboards, one per floor. These panelboards service exterior HID lighting, floor heaters, VAV boxes, water heaters, corridor compact fluorescent lamps, and existing interior fluorescent lighting. Each floor also features a step down transfer to provide 208/120V power for two additional panelboards, intended for individual tenant use.

<u>Plumbing</u>

Water is brought into the building via 3" pipes which then serve four separate risers which become progressively smaller as they ascend the building. One riser is used for the bathrooms, while an additional two are capped for future tenant use.

Fire Protection

Office, bathroom, and parking areas are protected by an automatic sprinkler system to be installed by the contractor. Additionally, bays responsible for dividing the parking and office areas and bays primarily around corridors, the stairway, and elevator feature 2-hour fire rated slabs, 2-hour rated beam fireproofing, and 2-hour rated column fireproofing.

Foundation System

To support the given loads, columns and foundation walls rest on spread footings, formed from 3000 psi concrete, while the site features a 5000 psf bearing capacity.

PROPOSAL AND SCOPE OF DESIGN

Problem Statement

Though an analysis of the original design revealed that composite steel was an efficient system for the given design conditions, the Signal Hill Professional Center is located outside Washington DC, where concrete design should be commonplace. In the District, strict height restrictions dictate that local structures normally employ concrete flat plate systems to reduce floor-to-floor heights through smaller floor section depths.

Unlike office and residential structures downtown, this building uses a drop ceiling and ceiling mounted air handling equipment, which negates any benefits from using the underside of a concrete slab as a finished surface. However, it is possible that the availability of more concrete contractors in Northern Virginia with associated lower prices may make a steel system less economical. Combined with the benefits of a smaller section depth and a natural fire stop under the parking area, concrete indeed may be the better design.

Design Approach

To redesign the Signal Hill Professional Center as a concrete building, initial hand calculations using ACI 318-05 will be used to direct design while ADOSS and ETABS will be used to confirm hand calculations and further evaluate the efficiency of the concrete frame as a lateral resisting system. The concrete design will include:

- Two-Way Slab, with additional considerations for superimposed loads and the connection between the parking deck and office first floor slab
- Concrete Moment Frames
- Columns
- Foundations

Assumptions

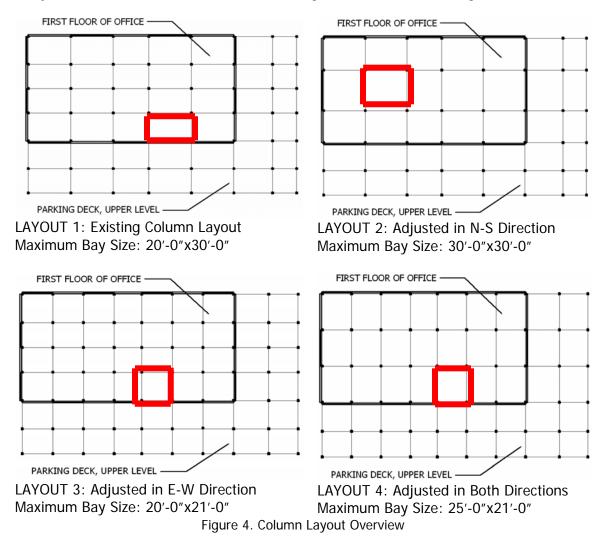
Since this is a for-lease suburban office building, economy rather than architectural expression should direct design. Therefore, for the concrete structure, key assumptions include:

- **Floorplan Flexibility.** The only restrictions on floor layout are the parking spaces in the basement and the location of the bank vault on the first floor. If it would lead to greater structural efficiency, both the column layout and the central corridor core layout can be altered accordingly.
- **Façade Flexibility.** Since this building uses precast architectural panels, they can be easily adjusted and moved around to better align the structural system with the exterior windows and columns.
- **Constant Building Height.** The building was originally intended to house four floors of office space, and since height changes would be generally small and therefore less influential on lateral loads, it will be assumed that the floor-to-floor height will remain a constant 13'-4".

Methods of Evaluation

When determining the feasibility of the concrete system for the Signal Hill Professional Center, the new concrete design will be evaluated according to:

- **Structural Efficiency.** For the gravity system, this includes floor section depth, building weight, deflections, overall complexity, and material usage. For the lateral system, this includes drift and overall complexity.
- Architectural Usability (Breadth 1). New column sizes and layouts will affect the location of service facilities in the corridor core area, as well as the layout of the exterior façade. New layouts will be evaluated considering profitability of the given space and overall appeal and flexibility.
- **Constructability (Breadth 2).** Through takeoffs and estimates, approximate costs for both the concrete and steel systems will be compared, taking into account local building practices, material availability, and opinions from construction managers in the Washington area. Duration of construction will also be a consideration.
- Application to Green Architecture (Breadth 3). Since recyclable or locally produced materials in structural design only play a small role in environmentally friendly construction, the structural, economical, and architectural implications of a much more significant green roof will be considered.

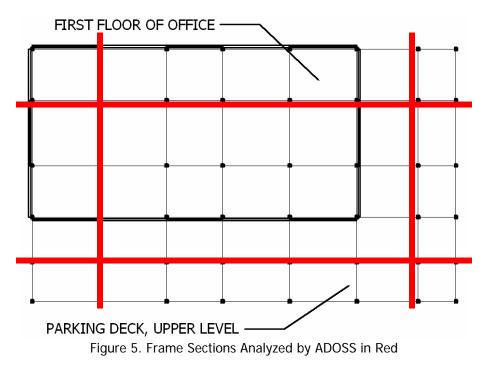

DEPTH ANALYSIS: CONCRETE DESIGN

Two-Way Floor Slab

Alternatives. An initial estimate of differing floor systems using the CRSI Manual found that a two-way slab, though heavy, would effectively reduce floor section thickness, and provide for easiest construction. However, this estimate assumed a new column layout with square bays rather than the current 30'-0"x17'-6" size. In addition, to more effectively control the large live loads in both the office and parking areas, differing two-way slab systems were considered, including:

- Flat Plate
- Flat Plate with Edge Beams
- Flat Slab with Drops
- Flat Slab with Drops and Edge Beams
- Flat Slab with Beams between all Columns

Four differing column layouts were considered, making sure to provide a column-free entry centered on the north and south building façade, as shown in Figure 4.


Procedure. Before using a more exact analysis, the **Direct Design Method** was used to find approximate values of positive and negative moments in the column and middle strips of the two way slabs. The Direct Design Method can be used throughout the entire structure because [ACI 318-05 13.6.1]:

- In each condition, there are at least three spans in all directions.
- The most drastic rectangular bay is $17'-6'' \times 30'-0''$, which has a $I_2/I_1 = 1.72 < 2.0$.
- The most drastic shift in span length between two adjacent spans is 5'-0", or 16%, less than one-third of the larger span.
- Columns are minimally offset from the basic building grid.
- Only in a few situations are separate concentrated or line loads presented (ie. Bank Vault, HVAC equipment). These panels will be assessed individually. Even in the parking structure, due to the large dead weight of concrete, live loads should not be greater than two times the dead load.

The minimum slab depths given by Table 13.5 of *Design of Concrete Structures* (436) are used to ensure satisfactory deflections.

Using results from the Direct Design Method, acceptable designs and layouts were then assessed in **ADOSS** at six different sections, as shown in Figure 5:

- On an interior column line in the East-West direction in the office.
- On an interior column line in the North-South direction in the office.
- On an interior column line in the East-West direction passing between the first floor of the office and the parking deck.
- On an interior column line in the East-West direction passing entirely through the parking deck.
- On an interior column line in the North-South direction passing between the first floor of the office and the parking deck.
- On an interior column line in the North-South direction passing entirely through the parking deck.

Findings, Direct Design Method. Results are summarized in the Table 1. For comparison purposes, worst case reinforcement requirements at the interior support of the exterior span are presented.

Slab Type, Bay Size	Design Estimate	Notes
Office Flat Plate, 30'-0"	12" thick	Largest slab moment (417 ft-
	#7@6", As=1.20 in ²	k) at interior support, column
	(worst case)	strip, end span
Office Flat Slab	11" thick	Moment distribution largely
with Drops, 30'-0"	3.5" thk 6'-8"x10'-0" drops	unaffected, weight reduction
-	#6@6", As=0.88 in ²	
	(worst case)	
Office Flat Plate with 12'x20"	11" thick	Interior moment in end span
edge beam, 30'-0"	#7@6", As=1.20 in ²	effectively reduced by 40 ft-k,
	(worst case)	interior spans generally
		unaffected
Office Flat Slab with 12"x20"	8" thick	Moments in slabs drastically
beams between all columns,	#5@4", As=0.91 in ²	reduced (by over 350 ft-k at
30'-0"	(worst case)	interior support, column strip,
		end span), steel larger from
		smaller slab
Parking Flat Plate, 30'-0"	14" thick	Largest slab moment (632 ft-
	#6@4", As=1.32 in ²	k) at interior support, column
	(worst case)	strip, end span
Parking Flat Slab	14" thick	Similar moment distribution to
with Drops, 30'-0"	3.5" thick drops	flat plate, larger drops
	#5@3", As=1.24 in ²	required
	(worst case)	
Parking Flat Slab Slab with	10" thick	Slab moment effectively
14"x24" beams between all	(slab) #5@3", As=1.24 in2	reduced to 345 ft-k at interior
columns, 30'-0"	(beam) $4-\#9$, As=4.0 in ²	support, column strip, end
Office Flat Dista 25/ 0/	(worst case)	span
Office Flat Plate, 25'-0"	10'' thick	Largest slab moment (298 ft-
	#6@6", As=0.88 in ²	k) significantly reduced from
Office Flat Plate with 12"x20"	(worst case)	30'-0" span condition Moment distribution not
	9.5" thick #6@6", As=0.88 in ²	
edge beam, 25'-0"	#6@6", AS=0.88 m (worst case)	largely affected
Office Flat Slab with 12"x20"	7" thick	Drastically reduced moments
	(slab) #5@12", As=0.31 in ²	5
beams between all columns, 25'-0"	(siab) $\#5@12$, As=0.31 iii (beam) 4- $\#9$, As=4.0 in ²	throughout al slab sections
23-0	(worst case)	

Table 1. Summary of Estimates for Concrete Size and Required Steel Area

Initial estimates found that:

- When estimating sizes for the larger 30'-0" span, deflections came to control slab thickness; as the span reduced in length, thickness reduced significantly. However, this is using conservative deflection guidelines.
- The constructability of a flat plate system outweighs its larger thickness than with other systems; the 12" thick plate needed for the existing office area layout could be reduced to 10" if the maximum bay length were reduced to 25'-0".
 However, in the parking structure, a 14" slab combined with a 4" asphalt topping seems less effective.
- 12"x20" edge beams serve mostly the purpose of reducing positive midspan moment in the exterior bays, which does not significantly affect slab thickness at the more critical negative moment areas, but may affect deflection.
- 3.5" thick drop panels do not significantly affect moment distribution, but rather increase effective slab depths to reduce steel sizes.
- 12"x20" beams between all columns serve to reduce enhance flexural resistance and to reduce deflection, requiring slab thicknesses as small as 7". Though these beams will affect plenum space, they will be hidden by a drop ceiling in the office area, and are significantly smaller than existing girders in the parking structure.

Findings, ADOSS Analysis. Through changing values in ADOSS at each of the six sections, it was easy to adjust design parameters, concrete sizes, and ascertain whether each size is feasible. Three problems not completely considered in the Direct Design Method became immediately apparent:

- Excessive Deflection. While economizing slab depth, deflection came to control especially with larger 30'-0" spans, with two apparent solutions. A first solution would be edge beams, which are able to absorb negative moment at the exterior edge to reduce positive moment at midspan and therefore deflection. Another solution would be placing beams between all columns, which effectively absorb most midspan moment.
- Flexure and Unbalanced Moments. Since the smaller spans throughout the first floor of the office area in layouts 3 and 4 are more capable of absorbing unbalanced moments from the adjacent parking area, they experience deflection and flexure problems that can only be solved by a thicker slab.
- Shear and Moment Transfer. At the exterior edge of the floor slab, smaller column sizes provided for large shear from moment transfer through alternating load patterns. To combat this problem, larger columns in conjunction with drops were used despite relatively small compressive loads; larger column dimensions produced greater shear areas and torsional moments of inertia, reducing shear transfer. Therefore, column sizes increased to a minimum of 20" square, and since the transverse column direction affected shear transfer more than the parallel direction, rectangular columns up to 20"x30" were used.

Therefore, only two-way slab systems with edge beams and drop panels or beams between all columns were analyzed, with results summarized in the following table. As it became apparent that Layout 2 was most likely the best choice, further analysis produced varying column sizes. Results are summarized in the Table 2. Reinforcement sizes are presented at the interior support of the exterior span, and serve as a comparison to direct design method findings. Under the first floor and parking deck, using drops instead of beams increased steel requirements within reason. Reinforcement layouts for a typical 30'-0"x30'-0" bay are shown in Figures 6 and 7.

Slab Type, Layout	ADOSS Design Summary	Notes
Office Flat Slab with 3.5" drops with 15"x15" edge beam Layout 1, 20'-0"x30'-0" bay	9.5" slab, 15" columns #7@7", As=1.02 in ² (worst case)	Drops at edges should be thicker to combat shear moment transfer
Office Flat Slab with 3.5" drops with 20"x20" edge beam Layout 2, 30'-0"x29" bay	10" slab, varying columns 4.5" drops at ext columns #7@8", As=0.92 in ² (worst case)	Column and edge beam sizes increased to combat moment shear transfer; ext column sizes limited by exterior wall panel size and windows
Office Flat Slab with 3.5" drops with 15"x15" edge beam Layout 3, 21'-0"x20'-0" bay	7" slab, 15" columns #5@7", As=0.53 in ² (worst case)	
Office Flat Slab With 3.5" drops With 15"x15" edge beam Layout 4, 21'-0"x25'-0" bay	8" slab, 15" columns #6@9", As=0.52 in ² (worst case)	Drops at edges should be thicker to combat shear moment transfer
Parking Flat Slab with beams between all columns Layout 1, 20'-0"x30'-0" bay	(office) 8" slab, 15" columns, 15"x15" beams #5@8", As=0.46 in ² (parking) 10" slab, 18" columns, 18"x18" beams #6@7", As=0.79 in ² (worst case)	Edge beam used between office and parking areas, shear transfer a concern in north- south direction
Parking Flat Slab with 3.5"/7" drops with 20"x20" edge beam Layout 2, 30'-0"x31'-0" bay	(office) 11" slab, varying columns, 20"x20" edge beam #7@8", As=0.68 in ² (parking) 11" slab, varying columns, 20"x20" edge beam #9@12", As=0.96 in ² (worst case)	Edge beam used between office and parking areas; increased drop depth at interior columns in parking area combats flexure without thicker slab
Parking Flat Slab with beams between all columns Layout 3, 21'-0"x20'-0" bay	(office) 7" slab, 15" columns, 15"x15" beams #4@9", As=0.28 in ² (parking) 9" slab, 18" columns, 18"x18" beams #6@7", As=0.78 in ² (worst case)	Shear moment transfer at columns a concern in east- west direction
Parking Flat Slab with beams between all columns Layout 4, 21'-0"x25'-0" bay	(office) 8"/9" slab, 15" columns, 15"x15" beams #5@8", As=0.47 in ² (parking) 10" slab, 18" columns, 18"x18" beams #6@8", As=0.63 in ² (worst case)	Thicker slab at office bay adjoining parking structure to combat flexure from unbalanced moment transfer, shear transfer a concern in north-south direction

Table 2. Summary of Results for Concrete Size and Required Steel Area

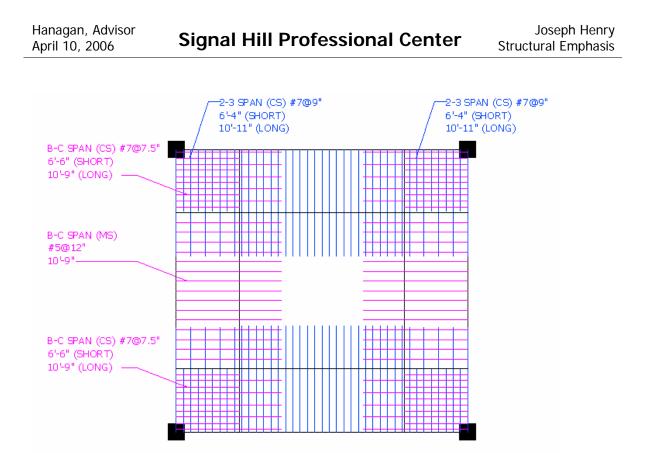


Figure 6A. Negative Reinforcement Layouts in Bay bounded by Column Lines B and C, 2 and 3

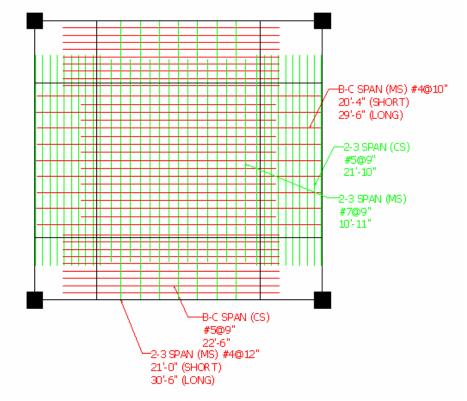


Figure 6B. Positive Reinforcement Layouts in Bay bounded by Column Lines B and C, 2 and 3

Figure 7. Sample Slab/Drop/Column Section along Column Line 2

30'

(C2)

(B2)

Superimposed Dead Loads. When the 55,000-lb bank vault and two 10,230-lb air handling units on the roof were added to the ADOSS input for this design, the concrete slab design proved to be more forgiving to load irregularities than the steel system, as reinforcement areas changed to accommodate irregularities rather than the entire floor thickness. For example, when the bank vault load was applied, required steel areas in the column strip increased from 4.6 in² to 7.5 in² at midspan and from 9.24 in² to 12 in² and from 12 in² to 13.43 in² at each support, respectively. This added load served to only slightly increase moments and therefore required steel areas at supports in adjacent spans, while midspan steel areas reduced from 5.58 in² to 4.96 in² and from 7.92 in² to 7.48 in² in adjacent office and parking spans, respectively. From the perspective of moment transfer, larger 7" drops at columns adjacent to the vault would be sufficient to resist shear.

Undulating Parking Structure. This entire design assumed that the parking structure was flat when it actually fluctuates in elevation by 35" from one side to another. Though this will not significantly affect the actual slab design, the connection from the slab under the parking area to slab under the first floor of the office must be reviewed. The edge beam dividing the two areas will therefore be enlarged to provide a connection between two different elevations, and will need to be designed to torsion in addition to flexure and shear.

Shear, torsion, and moment output from the initial ADOSS analysis revealed that alternating load patterns between the parking and office span caused large unbalanced moments and therefore large torsion. Per ACI code 11.6.3.1, the size of each beam was expanded to a minimum of 20x26 along column line 4 and 24x32 along column line F to prevent cracking, while larger beam sizes accommodate variations in elevation between the office slab and parking deck. See Table 3 for a design summary, and Figure 8 for a sample detail.

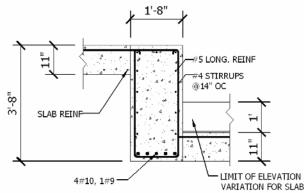


Figure 8. Sample Slab and Reinforcement Layout for Beam Spanning Column A4 to B4

Hanagan, Advisor April 10, 2006

Beam	Size	Max Shear	Max Torsion	Max Moment	Steel Design Summary
A4-B4	20x44	80.7	107.9	888.6	(shear) #4 stirrups @ 14" 11#5 long. Distributed on three sides (flexure) 4#10, 1#9
B4-C4	20x36	80.7	107.9	863.0	(shear) #4 stirrups @ 12" 9 # 5 long. Distributed on three sides (flexure) 4#11, 1#10
C4-D4	20X30	80.7	107.9	516.9	(shear) #4 stirrups @ 10" 7 #5 long. Distributed on three sides (flexure) 4#10, 1#9
D4-E4	20x26	80.7	107.9	7367	(shear) #4 stirrups @ 9.5" 5 #5 long. Distributed on three sides (flexure) bottom row: 4#10, 1#1 top row: 5#9
E4-F4	20x28 +2" elev.	80.7	107.9	7367	(shear) #4 stirrups @ 9.5" 5 #5 long. Distributed on three sides (flexure) bottom row: 4#10, 1#1 top row: 5#9
F1-F2	24x34 +2" elev.	96.0	151.0	606.4	(shear) #4 stirrups @ 10" 7 # 5 long. Distributed on three sides (flexure) 4#11, 4#10
F2-F3 F3-F4	24x32	96.0	151.0	606.4	(shear) #4 stirrups @ 10" 7 # 5 long. Distributed on three sides (flexure) 4#11, 4#10

Table 3. Summary of Design Considerations for Transverse Beams

Floor System Design Summary. Layout 2 was determined to be the most effective because:

- Slab section depth did not increase dramatically as the north-south spans expanded; it increased by 0.5" in the office area, and by 1" in the parking area from the existing layout.
- It reduced the number of interior columns from 12 in the existing layout to 8. Meanwhile, Layout 3 used 18 columns while Layout 4 used 12. This provides for more unobstructed open office areas.
- The reduced east-west span length in Layouts 3 and 4 conflicted with the parking layout in the floor below; a 30'-0" wide entrance ramp in the existing layout would need to be moved so it could be evenly divided by a column, which would reduce the number of parking spaces.
- 22'-6" and 30'-0" spans in the north-south direction easily accommodate precast panels for the façade in increments of 3'-9" and 5'-0", as discussed further in the architectural breadth section.

See Figure 11 for a final design drawing.

Lateral System Design

Alternatives. Since this building design is only five stories tall, and since Northern Virginia experiences mild wind and seismic loads, it was proposed that the given structure could be modeled as a system of concrete moment frames. Therefore, there is no need for shear walls or additional lateral load resistance as long as drift and lateral stresses in slabs, columns, and beams are acceptable.

The given concrete frames, as optimized for the floor system, will therefore be evaluated based on:

- Shear and flexural capacity in the slab when loaded with lateral loads, and
- Total drift of the structure.

Procedure. Using new seismic loads derived from a greater building weight, a building model was created on ETABS and new loads were placed on the floor diaphragms. Assumptions for this model include:

- All floor areas are rigid diaphragms with columns rigidly attached. These are meshed at all column lines and drops, and lateral loads are directly applied to the centroid of each diaphragm.
- All columns are considered part of a concrete frame system.
- There are five total stories, and since the first floor is a basement, lateral loads are only applied to the top four. No restraint is provided at the first level to represent ground pressures, however, because some sides of the basement area will be excavated for access to underground parking and there will be no resisting compressive ground force.

The model, shown in Figure 9, was then checked for drift in each direction.

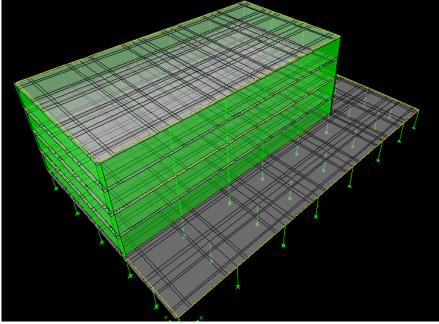


Figure 9. ETABS Model, Viewed from Southwest Corner

To assess flexural and shear capacity of the slab, first moments determined from the ETABS model were compared to a portal analysis of the concrete frames, assuming that exterior frames were half as stiff as interior frames and therefore resisted half the lateral forces. Then more conservative lateral loads were applied to the ADOSS model; since ADOSS calculates lateral loads using a simplified procedure similar to a portal analysis, this comparison ensures that larger and more conservative loads are used for the frame analysis.

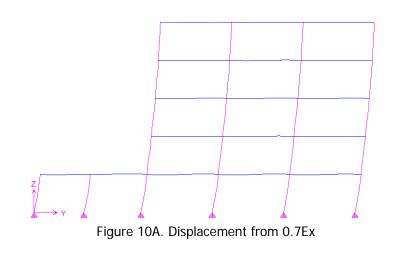
Analysis Findings. Seismic loads dramatically increased due to much larger building weights than in the original steel design as shown in Table 4. With a base shear of 354 kips, these are almost double the seismic loads associated with steel construction, and these values in turn will control. For the serviceability requirement of drift, these values were then adjusted by a factor of 0.7 to bring them from ultimate to service values.

Diaphragm	Wind Load (NS) *critical wind load	Wind Load (EW)	Seismic Load
Roof	15.8k	8.3k	131k
Floor 4	31.1k	16.4k	111k
Floor 3	29.1k	15.3k	75k
Floor 2	26.4k	13.9k	37k

Table 4. Summary of New Seismic Loads

Final drift values are summarized in Table 5, and deflection in both directions is shown in Figure 10. Allowable drift is H/400, or 1.57". Therefore, these drift values are acceptable and there is no need for further lateral resisting elements than the slab and rigidly attached columns.

Load Case	Diaphragm	Drift (in)
0.7Ex	Roof	0.876
	4	0.773
	3	0.607
	2	0.394
	1	0.186
0.7Ey	Roof	0.818
	4	0.734
	3	0.605
	2	0.439
	1	0.253
Wind	Roof	0.292
	4	0.274
	3	0.237
	2	0.179
	1	0.105


Table 5. Drift Values in Both Directions Under Seismic and Wind Loads

Moments in the slab calculated using the portal frame analysis were generally greater than moments found in the ETABS model, revealing that the exterior frames may

actually absorb more than half the lateral load. This more greatly affected resistance in the east-west direction, where there were only four frames.

Therefore, the same lateral loads used for the portal analysis were applied to the ADOSS model, which would analyze eight different loading patterns including both gravity and lateral loads. Results show that flexure in the slab was satisfactory; however, critical shear stresses from moment transfer in the interior columns were exceeded. Therefore, interior columns under the third floor, where lateral loads are greater, were upsized to 20x24 to increase the shear perimeter and reduce shear stresses.

See Figure 11 for a final design drawing.

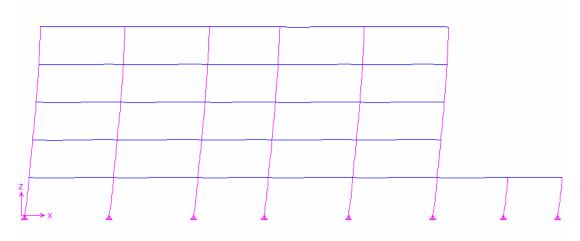


Figure 10B. Displacement from 0.7Ey

Column Design

Procedure. Initial column sizes were governed by shear transfer in the slabs and axial loads were determined directly from the ETABS model and then hand checked using tributary area. Moments in the columns were determined from the same ADOSS model used for the lateral load analysis; this way, unbalanced moments transferred to columns from both lateral loads and unbalanced gravity loading could be considered.

Upon determining moments and axial loads applied to representative columns along grid lines 3 and 5, rough steel design estimates were determined using the CRSI Handbook. For simplicity, the 1988 CRSI Handbook, with comparable load factors to ADOSS was used.

Analysis Findings. Column design considerations are summarized in Table 6. Results generally showed that:

- Moments determined on ETABS were generally less than as determined through a portal analysis. This can be attributed to an inaccurate assumption that the exterior frames only resist half as much lateral load as the interior frames; this assumption affects moments in the east-west direction more severely, as there are less frames. Larger and therefore more conservative loads from the portal analysis were used for the ADOSS analysis.
- Due to the relatively short 13'-4" unbraced length of each column and double curvature, slenderness effects could be neglected.
- While moments from lateral loads controlled in most columns, load patterns featuring only gravity loads controlled in select cases for exterior columns and columns supporting the parking deck. At these locations, unbalanced moment from large live load fluctuations between spans would be a key consideration.

See Figure 11 for a final design drawing.

Hanagan, Advisor April 10, 2006

Signal Hill Professional Center

Grid	Floor	Moments	Axial	Final Design
		Top/Bottom	Load	
A2	Floors 3-4	262.0/-235.1	171.1	20″x24″, 4#10
	Floors 1-2	265.4/-238.1	602.8	20"x24", 4#10
	Parking	278.5/0	777.9	20"x30", 6#11
B2	Floors 3-4	139.8/-103.6	407.1	20"x20", 4#9
	Floors 1-2	153.4/-135.8	940.3	20"x24", 4#10
	Parking	86.6/0	1234.1	24x24", 8#10
C2	Floors 3-4	170.2/-126.8	363.3	20"x20", 4#9
	Floors 1-2	181.3/-177.5	838.4	20"x24", 4#10
	Parking	129.8/0	1092.9	24x24", 8#10
E2	Floors 3-4	see B2		
	Floors 1-2	see B2		
	Parking	see B2		
F2	Floors 3-4	see A2		
	Floors 1-2	see A2		
	Parking	279.2/0	962.6	24"x24", 4#11
G2	Parking	324.7/0	431.0	24"x24", 8#8
H2	Parking	123.5/0	156.0	20″x20″, 4#9
A1	Floors 3-4	262.0/-235.1	154.9	20″x20″, 4#9
	Floors 1-2	265.4/-238.1	358.5	20″x20″, 4#9
	Parking	281.3/0	455.8	20″x20″, 4#9
A5	Parking	581.5/0	199.8	20″x20″, 8#18
B5	Parking	328.1/0	441.2	20″x20″, 8#10
C5	Parking	315.3/0	369.8	20″x20″, 8#8
D5	Parking	328.0/0	375.9	20″x20″, 8#8
E5	Parking	288.0/0	419.6	20″x20″, 8#7
F5	Parking	255.1/0	378.4	20″x20″, 8#7
G5	Parking	209.2/0	304.2	20″x20″, 8#7
H5	Parking	138.4/0	117.6	20″x20″, 8#7
B6	Parking	155.7/0	172.4	20"x20", 4#9

Table 6. Summary of Representative Column Design Details

Effects on Foundation System

Procedure. By using basement level column loads from the original steel analysis and the given 5000 psf soil bearing capacity, the original factor of safety can be determined. Using this factor of safety, new column takedown loads were used to size new footings. Since the original building was modeled to have pinned connections at the footings, any possible moment is determined to be minimal and only axial loads were considered.

Analysis Findings. Using a general factor of safety of 2, it was determined that though the spread footings under each column will drastically enlarge to offset heavier axial loads, the new sizes are still reasonable for the given design. See Table 7 for a summary of design conditions and Figure 12 for a design detail.

Column	New/Old Axial Loads	Old Size	New Size	New Size Reinforcement
A3	(new) 579k (old) 198k	9'x9'x28″	13.5′x20′x28″	(long) 41#6 (short) 40#6
B5	(new) 305k (old) 110k	6.5′x6.5′x20″	11.5′x11.5′x28″	23#6 each direction
D2	(new) 810k (old) 251k	8'x8'x24"	16.5′x20′x34.5″	(long) 50#6 (short) 40#6
D4	(new) 639k (old) 273k	8'x8'x24"	15'x18'x30"	(long) 45#6 (short) 36#6
F4	(new) 538k (old) 254k	9'x9'x28″	15'x15'x28″	30#6 each direction
G2	(new) 303k (old) 94k	6'x6'x18"	11.5′x11.5′x28″	12#6 each direction
D1	(new) 532k (old) 226k	8'x8'x24"	12'x18'x26"	36#6 each direction
D6	(new) 104k (old) 57k	6.5′x6.5′x20″	9′x9′x12″	9#6 each direction
H3	(new) 103k (old) 54k	6'x6'x18"	9′x9′x12″	9#6 each direction

 Table 7.
 Summary of Representative Footing Design Details

See Figure 11 for a final design drawing.

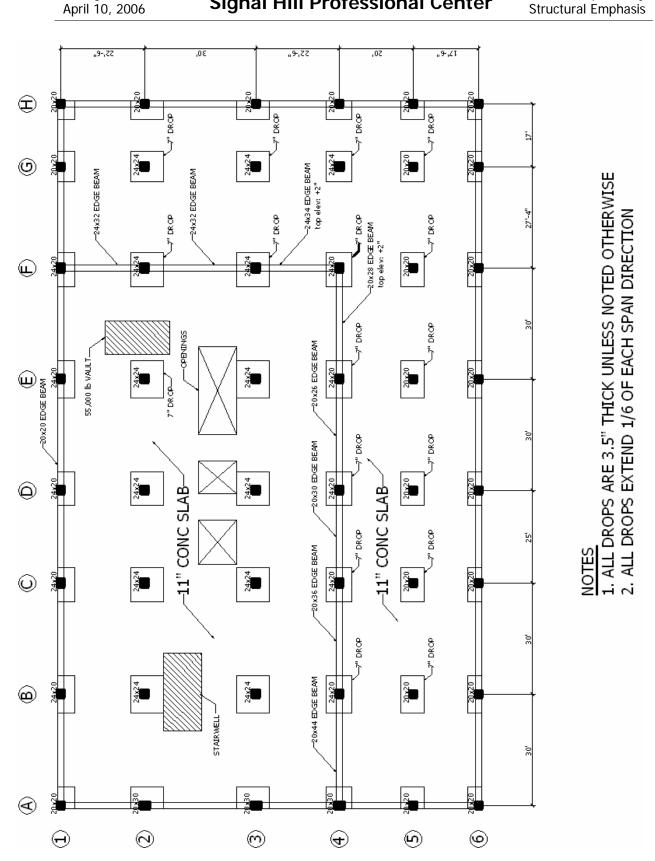


Figure 11A. First Floor/Parking Deck Final Design

Hanagan, Advisor

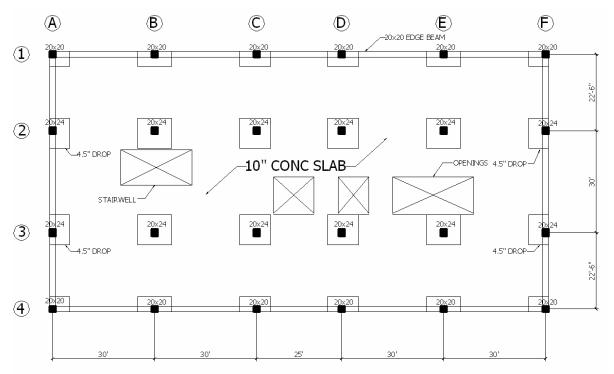


Figure 11B. Second, Third, and Fourth Floor Final Design

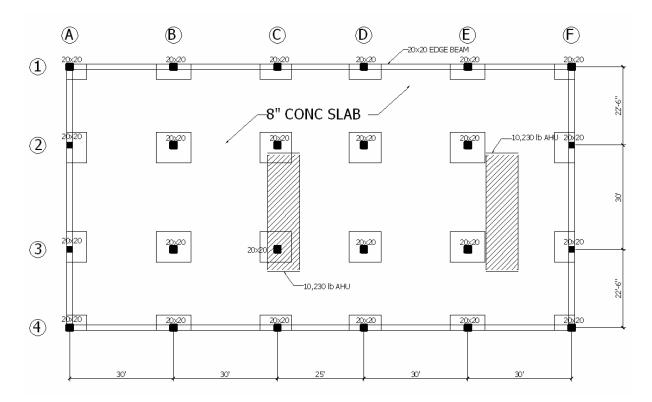


Figure 11C. Roof Floor Final Design

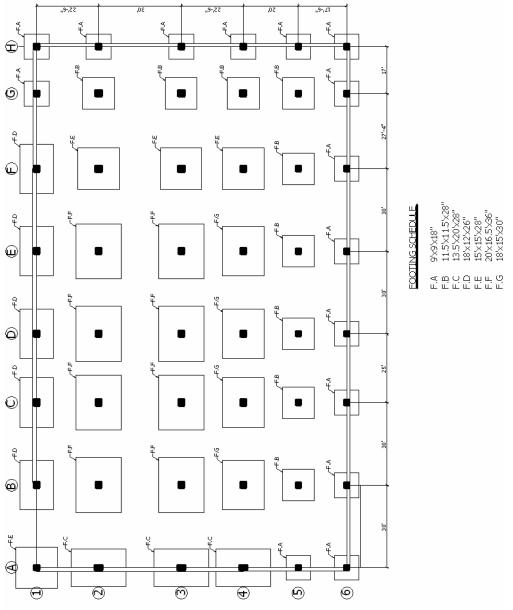


Figure 11D. Revised Footing Layout and Schedule

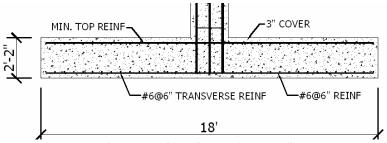


Figure 12. Sample Footing Detail

BREADTH ANALYSIS 1: ARCHITECTURAL ALTERATIONS FROM CONCRETE SYSTEM

<u>Floorplan</u>

Existing Architecture. The focus of the existing layout is both parking orientation and office area efficiency. In the parking area, columns, elevators, and stairwells are situated around driveway areas that are a minimum of 17'-6" wide. Upstairs, the central core housing the elevators, stairwells, and service rooms is centered so it is wide enough between the exterior wall and central core to accommodate offices and internal corridors. Office areas were calculated and assessed using the Building Owners and Managers Association (BOMA) industry standard, where Rentable Area is most affected by Common Areas and Unusable Areas.

Problem. The most significant impact of the new concrete system and column layout would be the location of columns directly over a driveway in the underground parking area; expanding the span from column line 1 to 2 by 2'-6" shifted columns 2'-6" into an already constricted area. Therefore, the central core area will need to be altered and shifted to allow for a minimal 17'-6" wide driveway in the basement.

Proposed Solutions. Though the central core could simply be moved 2'-6" to accommodate a suitable underground parking area layout, three alternate layouts were produced to represent floorplans that maximize rentable office area while minimizing common areas. See Figures 13, 14, 15 and 16.

Based on the given layout, the following requirements were established for each floor:

- Two Stairwells (232 square feet)
- Two Elevators (130 square feet)
- Men's Room (130 square feet) and Women's Room (160 square feet)
- Janitor's Closet (60 square feet) and Tech Room (70 square feet)
- Pump Room (125 square feet) / Electrical Room (275 square feet) in basement
- Three exterior entrances, first floor
- At least two entrances to office areas on Floors 2-4

Floorplans created primarily for the concrete structural system tried to place floor penetrations in the middle strip of each concrete bay, where the slab does not resist as much moment. While all must place elevator shafts and stairwells in some column strips, Alternative #3 most effectively centers these penetrations in bays. Where these openings most strongly affect slab moment resistance, concrete beams will serve as supplements.

From a purely architectural standpoint, the symmetry of Alternatives 1 and 2 are most appealing, and both of these alternatives create a central lobby room. This stands in contrast to the corridor-like spaces most prominent in the original layout. A summary of rentable area is provided in Table 8. Each floorplan presents a reduction in common area and increase in usable area for each office. Given an average annual rental value of \$25 for a suburban office in Prince William County, these new floorplans may boost potential owner income by \$7425 to \$17750.

Signal Hill Professional Center

BOMA Measurement	Existing Layout (ft ²)	Alt #1	Alt #2	Alt #3
Floor 1				
Common Area	1615	1314	1520	1482
Unusable Area	480	480	480	480
(North Office) Rentable Area	1932	2360	2317	2490
(South Office) Rentable Area	2560	1918	1914	2030
(East Office) Rentable Area	4095	4602	4491	4252
Floors 2-4				
Common Area	872	765	840	827
Unusable Area	480	480	480	480
Rentable Area	9381	9520	9435	9448
Total				
Common Area	4231	3609	4040	3983
Unusable Area	1920	1920	1920	1920
Rentable Area	36730	37440	37027	37116
R / U Ratio	16.74%	14.77%	16.09%	15.90%
Underground Parking Spaces	44	48	46	47

Table 8. Summary of Rentable Areas for Three Alternative Floorplans

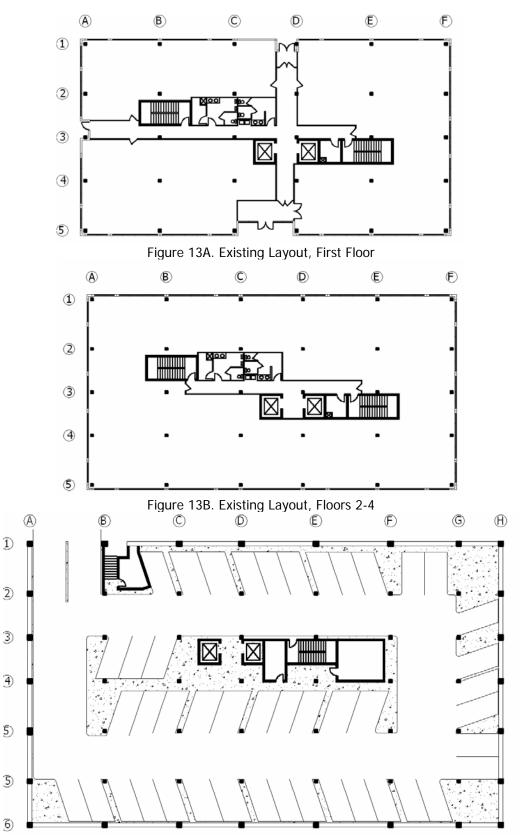


Figure 13C. Existing Layout, Underground Parking Area

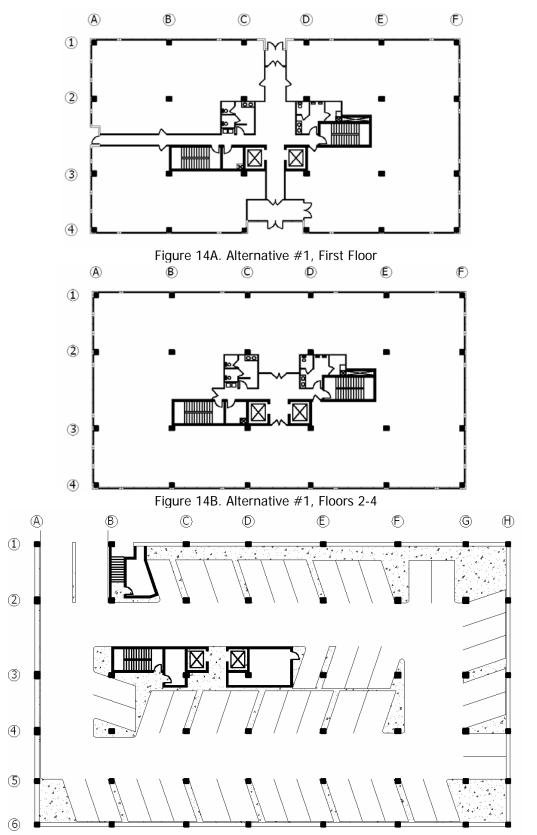


Figure 14C. Alternative #1, Underground Parking Area

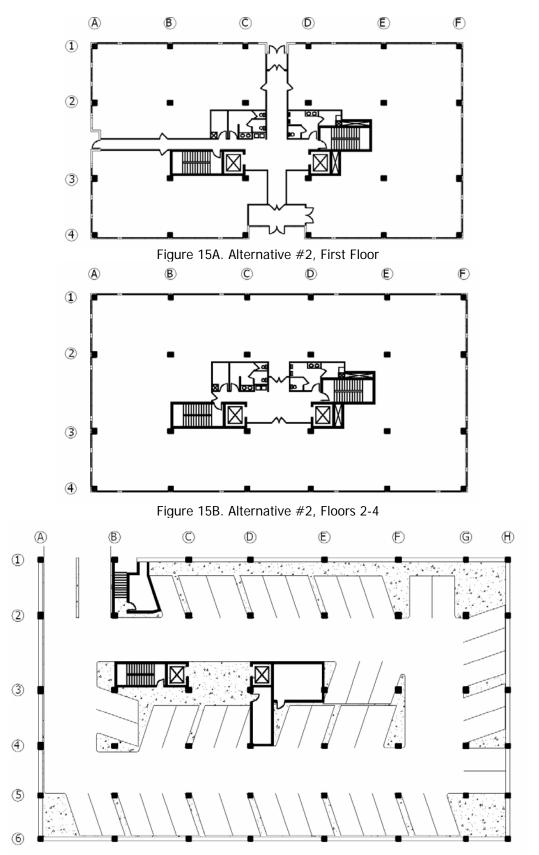


Figure 15C. Alternative #2, Underground Parking Area

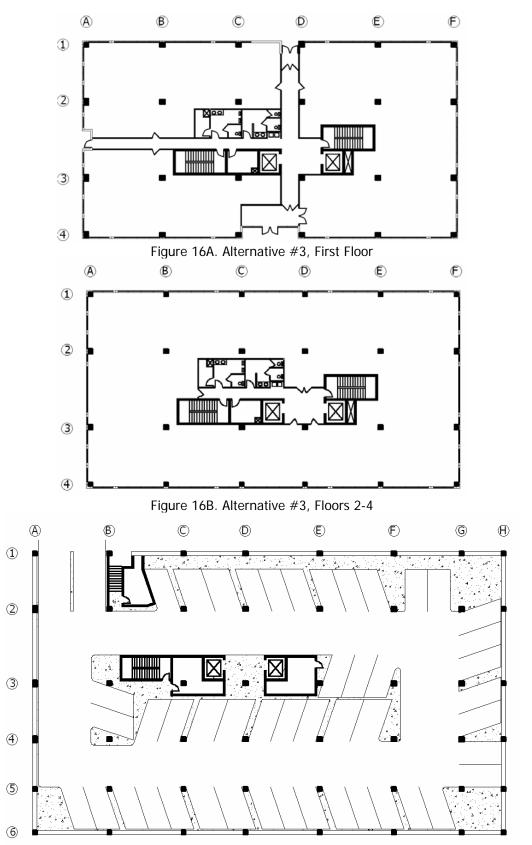


Figure 16C. Alternative #3, Underground Parking Area

Exterior Façade

Existing Architecture. Created from the Slender-Wall system by Smith-Midland, the exterior walls create a traditional Virginian brick look using concrete precast wall panels attached at the floor diaphragm. In order to simplify shipment, these are limited in length to a maximum 30' and certain panels are reused throughout.

Horizontally, the exterior façade adheres to modules that dictate window and brick placement. Used to simplify detailing the exterior façade, the north and south façade use a 5'-0" wide module while the east and west façade combine both 5'-0" and 3'-9" wide modules. Vertically, the façade adheres to the classic tall-office building icon; though modified for suburban purposes, the façade features a base, central shaft, and ornate capital, separated by cornices and differing window styles.

Problem. Though the steel structural system placed W10 columns in front of windows, the new concrete design features columns up to 24" wide. If the existing façade layout were to be used with the new column layout, 24" wide columns would be placed directly in front of windows, blocking views and sunlight. Therefore, the east and west facades must be rearranged in order to coordinate 2'-0" wide brick elements with columns.

Proposed Solutions. The new north-south column layout reflects the existing horizontal façade module; 3'-9" modules could cover the two 22'-6" spans, while 5'-0" modules could cover the 30'-0" span. The two 24x20 columns that would

otherwise block the windows therefore are placed behind vertical brick elements and have less impact. See Figure 17 for an alternate facade. Similar panels between the two elevations are highlighted in red, blue and green.

Figure 17. Original Elevation on Left, Rearranged Alternate Elevation on Right

This alternate façade represents the most logical new layout because it uses many similar precast sections with the north and south elevation, it creates a rhythm of windows suited towards dividing the interior into individual offices, and it maintains the vertical distribution of window surfaces.

Though this alternate is the most convenient, the use of precast wall sections for an exterior façade presents an interesting situation: by creating a collage of exterior wall elements, drastically different elevations can be produced. Figure 18 shows a variety of elevations using both 5'-0" and 3'-9" module widths.

Figure 18A. Collaged 5'-0" Precast Panels

Figure 18B. Collaged 3'-9" Precast Panels

When these façades are combined, drastically different elevations are produced. See Figure 19 for possible combinations. While the first reinforces the dramatic base-shaft-capital building icon through an anonymous grid in the shaft section giving way to wide, arched windows in the capital section, the second reinforces the symmetry found in the original façade while maintaining even spacing for individual office divisions.

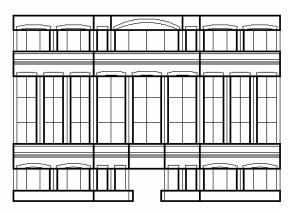


Figure 19A. Base-Shaft-Capital Façade Alternate

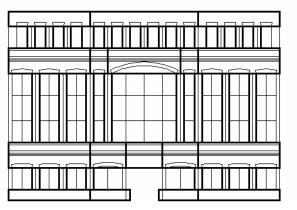


Figure 19B. Symmetrical Façade Alternate

BREADTH ANALYSIS 2: CONSTRUCTION MANAGEMENT COMPARISON

Basis of Comparison

To most effectively compare the cost and constructability of both the steel and concrete systems, only the structures will be considered. For the concrete system, this includes concrete slabs, columns, and beams, while for the composite steel system, this includes steel columns and beams, composite decks, shear studs, concrete on the decks, and fireproofing. Since footings increased dramatically while floor section depths reduced under the concrete system, their impact will be analyzed, though separately.

Cost and Schedule Comparison

Using R.S. Means 2006, takeoffs and schedules are summarized in Table 9 and Figure 20. Cost estimates from the construction manager, R.W. Murray Company, suggest that the scope of structural steel encompassed 8 weeks erection time and \$550,000, so it can be assumed that the steel estimate is conservative if not accurate.

Material	Cost	Construction Duration
Concrete System		
Columns, Slabs, Beams	\$1,120,566	14 weeks
Footings	\$230,887	2 weeks
Steel System		
Columns and Beams	\$668,928	8 weeks
Deck and Shear Studs	\$170,345	
Poured Conc. On Deck	\$162,010	
Fireproofing	\$73,044	
Total	\$1,074,327	12 weeks, 4 days
Footings	\$73,044	3 days

Table 9. Summary of Cost and Duration for Both Structural Systems

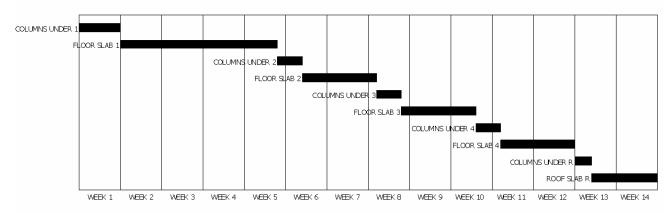


Figure 20A. Schedule for Concrete System, using Critical Path Method

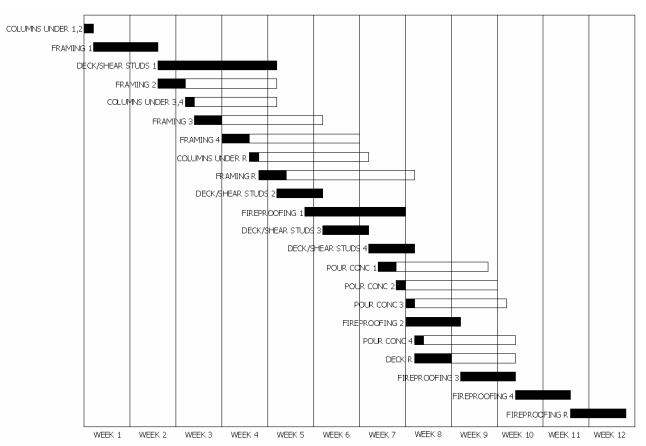


Figure 20B. Schedule for Steel System using Critical Path Method (Clear areas are float times)

It appears that the steel system is cheaper and requires a shorter erection time. When the increased footing size under the concrete system is additionally considered, the steel system becomes slightly more than \$200,000 cheaper, requiring almost 3 less weeks of construction. Even when considering that the overall depth of the underground parking area will reduce by almost 13" in the concrete system due to a significantly narrower floor section depth, this equates to only about 400 less bank cubic yards of excavation, which would reduce construction costs by only \$3,575 to \$8,495.

Additional Construction Considerations for the Washington DC Area

Though the reduced floor section depth in the concrete system does not play a large role in this particular building, reduced floor section depths are equated with more floors and therefore more profit in many buildings subject to strict height restrictions throughout the Washington area. However, it seems that the steel system for this given building is significantly and consistently cheaper than the concrete system. Perhaps the local construction trades and economy come to influence building construction, making R.S. Means less indicative of an accurate cost analysis.

Cost Adjustments in Northern Virginia. Data supplied by representatives at the American Institute of Steel Construction regarding steel and concrete costs relative to the national average are summarized in Table 10. In the Washington area, concrete construction is indeed less expensive on average than steel.

Location	Concrete Costs	Steel Costs	
Washington, DC	0.992	1.062	
Fairfax, VA	0.921	0.921	
Arlington, VA	0.902	0.898	
Alexandria, VA	0.915	0.952	
Winchester, VA	0.795	0.891	

Table 10. Summary of Material Costs relative to the National Average

Assuming that the Manassas area would be grouped with nearby Fairfax, the values given by R.S. Means are directly proportional to the national average. If the construction costs were compared neglecting footing placement, concrete would be cheaper in Washington, Alexandria, and Winchester, though steel is still cheaper at all locations when footings are considered.

Lead Times. Though the actual erection time for the steel system is shorter, the overall length of construction time increases with longer procurement lag times. On average, after design completion, procurement, submittals, and approvals, it takes 12 weeks to produce structural steel while it only takes 3 weeks to produce rebar for concrete construction. Therefore, even with the longer erection time, concrete may take 6 less weeks from design completion to complete structural construction.

Supply and Demand. In any area, it is possible that any given contractor can undercut a bid to promote either concrete or steel construction. However, short term influences can affect this ability; two years ago, steel costs increased dramatically due to relative shortages of scrap materials, while in 2005, the Portland Cement Association placed Washington DC on the "tight cement supply" list, with similar market conditions predicted for 2006.

Weather Conditions and Schedule. As suggested by R.W. Murray Company, wintry conditions onsite during construction would increase the time and cost to pour and place a concrete system. According to ACI 318-05, all concrete forms must be free from frost and all concrete materials must be protected from freezing conditions. Therefore, it is locally accepted that concrete will only be placed if conditions can be maintained above 40 degrees Fahrenheit. Given that winter temperatures in Northern Virginia are often below freezing, protective tarps, covers, and heaters may be required throughout structural construction, raising cost and extending construction duration.

BREADTH ANALYSIS 3: INTEGRATION OF A GREEN ROOF

Overview of Green Roof Types

These systems range from less invasive systems featuring only 2" deep soil and 15 psf saturated weight supporting sedum plant species to most invasive systems featuring 9"+ deep soil and 54+ psf saturated weight supporting turf grasses and small trees. As systems become more intensive, weight when fully saturated with rainwater becomes more of a structural consideration, but improved energy efficiency and the possibility of creating inhabitable garden spaces may increase building livability in the long run.

Green roof systems were analyzed and compared to the existing system using model assemblies from Roofscapes, Inc., a green roof system provider located in Philadelphia. Consisting primarily of a thin plant layer, a growing media layer, and a drainage layer over a waterproofing membrane, these systems have been shown to

- Reduce runoff and erosion, improving water quality.
- Serve as a thermal and acoustic barrier to reduce energy usage.
- Increase the service life of the roof system.
- Improve the aesthetic environment for the building inhabitants.

While discussing Green Roof feasibility, structural, mechanical, acoustic, architectural, and cost considerations were analyzed in more detail.

Feasibility of a Green Roof

Selection of a Green Roof. Roofscapes, Inc. supplies data for four green roof systems ranging from non-invasive to large-scale. Weights and depths are summarized in Table 11.

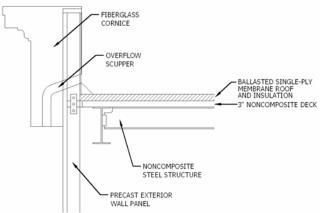
System	Thickness/ Sat.Weight
Flower Carpet	2-3"/ 12-18 psf
Aromatic Garden	3-4"/ 18-24 psf
Savannah	4-6"/ 24-36 psf
Meadows	6-9"/ 36-54 psf

Table 11. Summary of Roofscapes Green Roof Types

For this analysis, all systems were considered both as a non-public space with merely the additional garden load, and as an accessible space, with the additional garden load and a 50 psf live load from limited walkways and patio areas. Composite steel designs assumed the same 3" composite deck with 3.5" slab used in the inhabitable office areas.

Structural Considerations. While the Flower Carpet System adds a relatively insignificant load to the building structure, a saturated Meadows system with public access places a 134 psf additional load on the roof structure, increasing steel and slab sizes beyond those of occupied office floors. Sizes are summarized in Table 12.

Concrete Structural System	Steel Structural System
8" slab w/3.5" drops	W18x40 max girders
8" slab w/3.5" drops	W16x40 max girders
9" slab w/3.5" drops	W21x48 max girders
8" slab w/3.5" drops	W16x40 max girders
10" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns	W21x50 max girders
8.5" slab w/3.5"	W21x44 max girders
11" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns	W14x22 composite girders, 3" deck with 3.5" conc slab
9" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns	W21x48 max girders
11" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns	W14x22 max composite girders, 3" deck with 3.5" conc slab
	8" slab w/3.5" drops 8" slab w/3.5" drops 9" slab w/3.5" drops 9" slab w/3.5" drops 10" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns 8.5" slab w/3.5" 11" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns 9" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns 11" slab w/4.5" drops around column lines A and F, larger 20x24 interior columns


 Table 12. Approximate Structural Systems Under Roof Gardens

In addition to larger concrete slabs and supporting steel girders, a larger roof weight increases controlling seismic base shear:

- **Concrete Design**. From 354k to 386k for the Flower Carpet System and to 420k for the Meadows System.
- **Steel Design**. From 170k to 180k for the Flower Carpet System and to 200k for the Meadows System.

While the concrete moment frame design effectively reduces drift and will most likely be able to resist these larger lateral loads, the steel moment frame lateral system may need to be enhanced by shear walls or braced frames around the core area.

Mechanical Considerations. A key benefit to a roof garden would be enhanced R-values in the roof system, reducing heating and cooling loads. However, R-values for roof garden systems are still under evaluation, as soil type between systems affects thermal resistance as well as saturation level in differing climates and seasons. As can be seen in the roof sections in Figure 21, added layers of water distribution fabric, porous gravel fill, soil, and vegetation would contribute to greater thermal resistance.

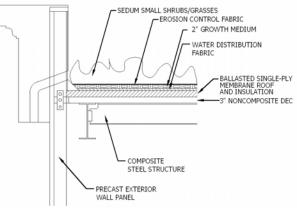


Figure 21A. Roof Section, Existing Steel System

Figure 21B. Roof Section, Flower Carpet on Steel System.

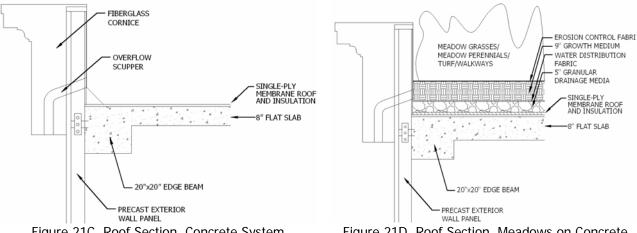


Figure 21C. Roof Section, Concrete System

Figure 21D. Roof Section, Meadows on Concrete System.

Acoustic Considerations. Another benefit cited by green roof manufacturers are reduced sound transmission through the roof structure. Soil, as a solid and flexible material, would provide increased sound isolation over a regular system. As soil mass increases from the Flower Carpet System to the Meadows system, the STC rating will increase, though in less dramatic increments. Additional membranes and drainage layers would increase mass and therefore transmission loss through the roof system as well.

Architectural Considerations. Besides the structural, mechanical, and constructionrelated considerations of installing a green roof, the architectural implications of creating a green space on the roof of an office building present a unique opportunity to suburban architecture. Where the Centreville Road corridor through Manassas hosts a myriad of fast food restaurants, big-box stores, strip malls, car dealerships, and light industrial complexes, there are few green areas designed completely for pedestrian use, as shown in Figure 22. Therefore, the people who inevitably work in the Signal Hill Professional Center will not have any immediate areas to enjoy the outdoors.

Figure 22. Adjacent Green Space Along Liberia Avenue

The Roofscapes garden systems also include pavers for patios and walkways to pedestrianize their roof gardens, and by extending stairway access to the roof, those working inside the building only need to walk upstairs to enjoy the outdoors above the busy surrounding suburban area. Zoning regulations provided by the city of Manassas do not mention roof gardens; however, they do impose a 55'-0" height restriction to all B-1 rated office buildings. Since this building is currently 53'-4" tall, floor-to-floor heights would need to be reduced on each floor to allow an 8'-0" tall enclosure at the top of each stairwell.

To further improve the aesthetic of the roof garden and to disguise the functionality of the stairwells and rooftop air handling units, the same architectural precast panels used throughout the exterior façade could be implemented in a coordinated manner.

Cost Considerations. Cost information supplied by Roofscapes, Inc. indicates that it would cost \$10-13 per square foot to install a 5" deep system. Further, maintenance to weed, fertilize, and replant roof gardens as necessary should require 4-6 man hours per 1000 square feet per year. Therefore, a 9000 square foot Savannah roof garden system would cost \$90,000 to \$117,000 to install and roughly \$720 to \$1,080 per year to maintain. In addition to roof garden installation, larger structural sizes under this system will increase structural construction costs by roughly \$17,500 for the steel system and \$30,000 for the concrete system.

However, reduced thermal loads through greater R-values in the roof system and increased productivity from a more livable work environment may offset these costs for the owner. Further, since more than 50% of the roof area would be vegetated despite air handling units, stairwells, walkways, and patios, this building would be eligible for one point under the LEED Green Building rating system (Heat Island Effect: Roof, Credit 7.2). However, given that 26 points are required for LEED Certification, further revision of all major building systems would be necessary.

CONCLUSIONS AND RECOMMENDATIONS

Design Summary

Both the composite steel and concrete systems strive to support open office loads and large parking loads in an efficient manner. The composite steel system supports office loads through a 3" composite deck with 3.5" lightweight slab, supported by W10 beams spaced 10'-0" OC spanning the short direction of 30'-0"x20'-0" bays. In the parking structure, a 4" slab on 2" composite deck is supported by W10 beams spaced 5'-0" OC. Girders approach W21 in the office area and W24 in the parking structure. Due to lighter loads, the roof structure is non-composite with slightly larger beams.

The new reinforced concrete design maximizes the efficiency of a two-way slab by changing the column layout to produce a central 30'-0"x30'-0" bay. Though this is a relatively large bay, it produces a column layout conducive to the given parking layout utilizing four less columns than the given system. An 8", 10" and 11" slab is found in the roof, office area and parking deck, respectively. While 3.5" drop panels are primarily used, they are upsized to 4.5" in edge columns in the office structure and to 7" in interior columns in the parking structure to combat shear by moment transfer. Larger columns ranging from 20" square to 20"x30" also combat shear by moment transfer, and they rest on enlarged spread footings.

Evaluation of the Concrete System

Structural Efficiency

Pros

- Smaller 15.5" (office) / 18" (parking) floor section depths
- Resilience to Superimposed Loads
- Simple Connections to Parking
 Structure
- Limited Lateral Drift
- No complicated fireproofing
- Possibly less excavation from smaller parking deck depth

Architectural Layout

Pros

- Wider areas around building perimeter for office areas
- Larger Rentable Areas
- Columns disguised by central corridor core
- More parking spaces
- Compatible with precast exterior wall panels

Constructability

Pros

- Shorter 3 week lead time for rebar
- Concrete may be cheaper in select Northern Virginia areas

Cons

- Heavy Structure: Larger Spread Footings
- Large (20x20) Obstructing Columns
- Drop Ceiling Negates Finished Surface
- Floor penetrations may present a problem

Cons

• Differing rentable areas for first floor offices than originally planned

Cons

- Longer erection time
- Construction in winter a concern
- Northern Virginia on PCA's "tight cement supply" list
- More expensive according to RS
 Means 2006

Green Roof

Pros

- Concrete system able to resist larger lateral loads
- Concrete more resistant to water damage from saturated roof

Cons

 Slab sizes in roof under heaviest roof garden similar to slab under parking deck Evaluation of the Composite Steel System

Structural Efficiency

Pros

- Lightweight system provides for smaller footings
- Smaller W10 columns take up less floor space

Cons

- Larger 27.5" (office) / 30" (parking) floor section depths
- Costly and time consuming moment connections needed for lateral system
- Complicated connections between parking structure and first floor
- Larger drift values
- Floor penetrations and superimposed loads require infill framing

Architectural Layout

Pros

- Columns less obstructive
- Columns can be placed in front of windows

Constructability

Pros

- Less expensive by almost \$200,000
- Faster erection time by over 2 weeks

Green Roof

Pros

 Under largest green roof system, composite roof structure comparable in size to office floor structure Cons

- Less rentable area and more common area
- Fewer parking spaces
- Cons
 - Complicated fireproofing required in parking structure and around common areas

Cons

• Lateral resistance of the given moment frame system a concern

Final Recommendations

Though concrete appears to be a more logical solution from the viewpoint of structural efficiency, its benefits soon become less convincing once a construction schedule and cost estimate reveal that it costs nearly \$200,000 more and takes almost 3 additional weeks to construct. Even in Northern Virginia, where differing cost indexes show that there is a slight bias towards concrete construction, steel would still be the most economical choice. Where floor-to-floor height is not a concern, and where a drop ceiling system are used, concrete is less appropriate from an architectural standpoint.

Most of the complications involved in steel construction are found in the first floor/parking deck structure. Large supporting girders increase excavation depth and are less attractive while complicated fireproofing takes up to an additional three weeks to apply.

Therefore, as suggested by many professionals in the Washington area, the most logical solution would be a hybrid structure, with concrete columns and slab at the first floor and composite steel at the second, third, and fourth floors. By employing a concrete structure on the first floor, the building will benefit from smaller floor section depth and therefore reduced excavation, simplified connections at varying elevations, and a natural fireproofing mechanism. By employing a composite steel system in the office structure, the building will benefit from smaller column sizes, a lighter structure with smaller footings, and less expensive and lengthy construction.

Though the composite steel system would reap structural benefits, the improved architectural layouts depended on a new column layout, with eight interior columns rather than twelve. For a composite steel system resting on the altered layout used throughout the concrete design, brief hand calculations showed that:

- Girders on the critical interior Column Lines 2 and 3, with an expanded 26'-3" tributary width over a 30'-0" length would need to be either a W18x55 or W21x48. This is an increase in size from W18x35 and W21x44 girders with the existing column layout. Infill beams along the 30'-0" length would only need to be upsized to W10x19 spaced 10'-0" OC.
- Critical interior columns with an expanded 788 square foot tributary area would need to be either a W12x96 or W14x90. This is an increase in size from W10x49 in the existing layout; however, given that the concrete columns were over 20x20, larger W14 columns could be a possibility.

Though column sizes do increase dramatically to reflect significantly larger tributary areas, the actual girder and beam layout would not change drastically, and would not translate to significantly greater costs.

Though the green roof does deliver reduced sound and heat transmission through the roof deck, it would require a 10% greater upfront costs and consistent maintenance throughout the life of the building. Considering that this building was built with economy in mind, it would be hard to justify the green roof to the owner. However, when looking beyond initial costs, the addition of a green roof does present greater possibilities in terms of quality of the workspace and therefore overall marketability of the office areas to potential leasers.

TABLES AND FIGURES

Tables

- 1. Summary of Estimates for Concrete Size and Required Steel Area
- 2. Summary of Results for Concrete Size and Required Steel Area
- 3. Summary of Design Considerations for Transverse Beams
- 4. New Seismic Loads
- 5. Drift Values in Both Directions Under Seismic and Wind Loads
- 6. Summary of Representative Column Design Details
- 7. Summary of Representative Footing Design Details
- 8. Rentable Areas Summary for Three Alternative Floorplans
- 9. Cost and Duration for Both Structural Systems
- 10. Summary of Material Costs Relative to the National Average
- 11. Roofscapes Green Roof Types
- 12. Approximate Structural Systems Under Roof Gardens

Figures

- 1A. Existing Composite Steel Layout, First Floor
- 1B. Existing Composite Steel Layout, Floors 2-4
- 2. Lateral Loads to Each Moment Frame in Each Direction
- 3. Moment Frame Layout
- 4. Column Layout Overview
- 5. Frame Sections Analyzed by ADOSS
- 6A. Negative Reinforcement Layouts
- 6B. Positive Reinforcement Layouts
- 7. Sample Slab/Drop/Column Section
- 8. Sample Slab and Reinforcement Layout for Torsion Beam
- 9. ETABS Model
- 10A. Displacement from 0.7Ex
- 10B. Displacement from 0.7Ey
- 11A. First Floor/Parking Deck Final Design
- 11B. Second, Third, and Fourth Floor Final Design
- 11C. Roof Floor Final Design
- 11D. Revised Footing Layout and Schedule
- 12. Sample Footing Detail
- 13A. Existing Layout, First Floor
- 13B. Existing Layout, Floors 2-4
- 13C. Existing Layout, Underground Parking Area
- 14A. Alternative #1, First Floor
- 14B. Alternative #1, Floors 2-4
- 14C. Alternative #1, Underground Parking Area
- 15A. Alternative #2, First Floor
- 15B. Alternative #2, Floors 2-4
- 15C. Alternative #2, Underground Parking Area
- 16A. Alternative #3, First Floor
- 16B. Alternative #3, Floors 2-4

Figures, Continued

16C. Alternative #3, Underground Parking Area
17. Original and Rearranged Elevations
18A. Collaged 5'-0" Precast Panels
18B. Collaged 3'-9" Precast Panels
19A. Base-Shaft-Capital Façade Alternative
19B. Symmetrical Façade Alternative
20A. Schedule for Concrete System
20B. Schedule for Composite Steel System
21A. Roof Section, Existing Steel System
21B. Roof Section, Floor Carpet on Steel System
21C. Roof Section, Meadows on Concrete System
21D. Roof Section, Meadows on Concrete System
22. Adjacent Green Space along Liberia Avenue

ACKNOWLEDGEMENTS

Thank you to my **family** for giving me the academic, personal and financial resources to get to Penn State.

Thank you to the **AE Faculty** for giving me the knowledge and confidence to get through Architectural Engineering at Penn State.

Thank you to the following for giving me the support to write my thesis and graduate from Penn State:

Branden Ellenberger of Morabito Consultants in Baltimore, for the project drawings and incredibly useful structural information

- Mark Bowles of the M Group Architects in Vienna, for constant architectural references and assistance
- John Barbour of the R.W. Murray Company in Fairfax, for guidance in the realm of construction management

Pat Hopple, as an excellent resource for ETABS questions

Kathleen, for the incredibly accurate column takeoffs

The Structural and Construction Management Mentors, of various companies, who directed my breadth analyses

Thank you to my **friends**, both on and off the water, for giving me the memories and friendships to miss Penn State.

REFERENCES

American Concrete Institute. ACI 318-05. Farmington Hills, MI: ACI, 2005.

American Institute of Steel Construction. *Manual of Steel Construction, LRFD.* AISC, 2001.

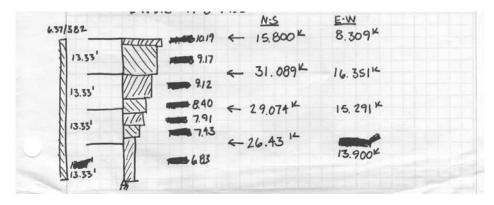
ASCE 7-02

- Concrete Reinforcing Steel Institute Design Manual. 1988 ed.
- Das, Braja M. *Principles of Foundation Engineering.* Pacific Grove, CA: Brooks/Cole-Thomson Learning, 2004.
- Egan, M. David. Architectural Acoustics. New York: McGraw Hill, Inc., 1988. pp 171-181.
- *Facilities Construction Cost Data.* Livingston, MA: R.S. Means, Construction Publishers and Consultants, 2006.

IBC 2003.

- McQuiston, F., Parker, J., and J. Spitler. *Heating, Ventilating, and Air Conditioning: Analysis and Design.* New York: John Wiley & Sons, Inc., 2000. pp 124-149.
- Nilson, A., Darwin, D., and C. Dolan. *Design of Concrete Structures.* New York: McGraw Hill, Inc., 2004.
- Office Finder. "A Summary of the Builders Owners and Managers Association (BOMA) Guidelines." <http://www.officefinder.com/boma.html> 2006.
- Slender Wall product information. <<www.smith-midland.com>> 2006.
- Roofscapes, Inc. product information. <<http://www.roofmeadow.com>> 2006. Additional Information from Melissa in customer service.
- U.S. Green Building Council. "Leed Green Building Rating System, Version 2.1." <<http://www.usgbc.org/LEED/publications.asp>>. Revised 14 March 2003.
- Various advisory e-mails from the Structural and Construction Management message board.
- Zoning Ordinances. Article VIII, Division 11, 12, 13 and 14. *City of Manassas Webpage.* <<www.manassascity.org>>. 2006.

APPENDIX A: LOAD CALCULATIONS


Snow Loading

Pg = 30 PSF (MANASSAS, VA) TERRAIN CITEGORY"C" (SUBURBAN) L'S DARMALY EXPOSED ROOP THERMAL & NORMAL STRUCTURE IMPORTANCE : NORMAL STRUCTURE	Ce+1.0 [1608.3.1] C++1.0 [1608.3.2] I+1.0
SNOW LOAD 30(1.0)(1.0)(1.0)) · 30 PSF

Wind Loading

BASIC WIND	SPEED	90MPH = V	(MANASSAS, VA) FIG	6-1	
WIND DIR. FALT	pe.	KD=0.85 FOR	MWFRS		
THPOLIANCE		I: 1.0	(SPECS)		
EXPOSURE CAT	<u>ELCEY</u>	B $Z_g = 1200$ $K_Z = 201(Z$ $K_H = 0.83$	(SPECS) X • 7.0 TBL 62 .12g) ^{21R} = 0.8257 = (TBL 63)	Z• 53.3 LH	31 MAX
TOPOGRAPHIL F	LIDE	K2T~1.0	(SLOPING SITE, NO I	REEGUA	emes)
GUST EFFECTS		G=0.85	(RIGID STRUCTURE)		
WALL PRESSURE	<u>Cole F</u> F	=-0.5	ENCLOSED (q2) WINDWARD (qh) LEEWARD (N·S (qh) LEEWARD (E-W	DIR) DIR)	
VELOUM PRESS	URE	92: 0.00256	KzkzrkoV2I		
HEIGHT (PT)	KZ	92 (PSF)	GCpq (WINDWARD)		
0-15	0.57	10.05	6.83 7.43	- 6.37	1 -3.82
15.20	0.62	10.93	7.91		
25.30	0.70	12.34	8.40		
30.40	0.76	13 40	9.12		
40-50	0.81	14.28	9.71		
50-53.33	0.85		10.19	+	+
				N-S	E-W
N-S	DIR: 147	-8 WIDE			
E-W	1 DIE: 77	'8" WIDE			
		N-C	E-W		

Wind Loading, Continued

Seismic Loading, Composite Steel Structure

```
SEISMIC USE GROUP I
 I=1.0
 Sps . 0.186
 Spi . 0.065
 SITE CLISS "D"
 R=30
 V=CSW
STEUCIDEE WT: DL+ 10PSF FOR PARTITIONS
10875 B SG. FT. ROUGH FLOOR AREA, 440FT PERMETER
     ROOF: 40 PSF (10875)+ 440 PUF (440) = 629 K
FLOORS 2-4 80 PSF (10875)+ 440 PUF (440) + 1064 K
                                           2 4883K
         Sos
              = 0.180 , 0062 <-
 Cs=
         R/I
        501 : 0005 · 0032
         SDI
        Q044 SOS I . 0.044 (0.186) - 0.000
                    C+. 0.028, X=0.80 LMOMENT RESISTING STEELT
      T=C+hnx
                    hn = 53-0
       T. 0.675.
 V = CSW = 0.062 (4883) = 302 K BASE SHEAR
FX. CVXV, USING 170" BASE SHEAR IN SPECS.
     Cux : wxhx
Zwxhx
                            FLOOR
                                         wxhx
                                          33337
                              R
                             43
                                          42206
                                          28019
                                        13 832
                              2
                             E
 FR . 85 48.3K
 F4 . 61.1 K
 Fs . 40.6 K
 F2 . 20.14
```

Seismic Loading, Concrete Structure

	VALENT LATERIL CE PROCEDURE	1BC 2003
SEIGNIC USE OROUP I I = 1.0 SDS = 0.186 SDJ = 0.065 SITE CUSS D R= (REINFORCED CO 3.0		(MES)
V·CSW		
	150 RCF)(10875 内) - + 10 PSF DL(108	Ave boop + (3.5/12" DROP)(10)(0,5')(15) 75)
+(440915 W	11)(2(145)+2(75))	= 1663K
ROOF: (8/12)(150) + (220)(10875)+(碧)(16)(2(145)+2(75));	
TOTAL WT= 3(1468)+ 1(1294) - 51	69BK
Cs= Sps . 0.186 = 0.		
501 - 0.065 T(EIJ) - 0.57(3/1)	0.038	
T+G+hN * G+ = 0.0	DIG x= 0.9 [LONG	FRAME CAREYING LATERAL
	(13.3 fr) + 53 ¹	LONO
+ (0.016)(53)^0	9 T.0.575	5.
0.044(0.186)= 00	044505 I = 0.000	31 1
V= (sW= 0.062 (5698	3) = 354× BASE	SHEAD
$C_{VX} = \frac{\omega_X h_X}{\Xi \omega_X h_X} = \frac{F_{LC}}{T}$	2 <u>wxhx</u> 2 <u>69010</u> 4 58574 39050 - 19525 2 186159	F2 = $ 3 ^{k}$ F4 = $ 1 ^{k}$ F3 = 75 k F2 = 37 k

APPENDIX B: CONCRETE FLOOR SYSTEM CALCULATIONS

Direct Design Method, Office Slab with Drops, 30'-0" Maximum Span Condition

OFFICE FUT PLATE WI DEOPS 11" THICK 4000 psi NW CONC., 3" DEOPS, 6-8"x 10-0" TL: 1.6(100) + 1.2(10+ 12(150) + 5) = 343 PSF MOMAX= \$ (0.343)(20)(302)= 772 FT-K CS. 9.375' MS. 10.625' end span 1590 CS : 406 FT-12 70% INTO : 54 17-16. - 2570 MS : 136 FT-1L - 60% CS : 265 FT-12 no€ . 441 Fr.K -772.FF-K 4070 MS : 177 Fr-16 2670 EXTO : 201 H.IL - 100% CS ' 201 FT.IL 07. MS . 0 FT.K interior span 6570 B · 502 FT-K - 2570 KS : 377 FT-K 772 Fr-12 3590 1 : 271 Fr.K - 4090 KS: 109 FT.K (FLAT SUB WI DEOPS) 406FI-K(12) /9.375 = 520 IN-K/FT da 13" As: 520 (09(13) · 0823 IN2 -> #6@6" As. 088 IN2 d= 12.875 a= 288(60) / 285(4)(12) + 1.294 \$MN = 0.9(60)(0.88)(12.875 -0.5(1.214)) = 581 IN-12

Direct Design Method, Office Flat Plate, 25'-0" Maximum Span Condition

NEW BAY CONDITION 22.5' 20' 20' 20' WORST CASE : 22-6" x 25-0" BAY 25' 25' 12 INTERIOR COLUMNS (12 IN LAST DESIGN) N 25' -> SIMILLE DISTUBUTION TO FUT SUB WIDEOPS, FLAT PUTET 9.5" THICK SUB LN/30 _ (25.12)/30 . 10" THICK TL + 1.6(100) + 1.2(10+ 12(150)) + 322 PEF MOMAX = 18 (0.322)(22.25)(252) = 566 FT-K CS + (22.5+20) = 10.625' MS = #00018 11.875'

Direct Design Method, Office Flat Plate, 25'-0" Maximum Span Condition, Cont'd

Direct Design Method, Parking Slab with Beams Between All Columns

Z FUT SUB WIBEAMS BOW ALL SUPPORTS USE 10" THICK SUB, 14"X 24" BEAMS TL = 1.6(250) +0.5 (30)+ 1.2(12(150)+ 50 +20) = 649 # F Mo= \$ (20)(0.649)(27.52) - 1228 FT-L 65700 8070 (S S470 545 = 294 Fr-1/L 65700 2070 MS = 160 Fr-K 7370 (S 4670 6M + 145 Fr-1/L 5470 546 = 170 Fr-K 2076 MS = 170 Fr-K interior span 122.8A-K (BEAMS) M= 345(12)/8.375 - 495 IN-K/FT d~ 10-075-0.5 - 8.75 " $A_{S} = \frac{495}{a9(60)(0,9)(875)} + \frac{1.164}{10^{2}} \rightarrow \frac{11563^{11}}{563^{11}} A_{S} = 1.24^{\circ}$ d= 10-075-05(0.625) + 8.9375 q= 1.24(60)/0.85(4)(9012) = 1.83 \$MN= 0.9 (1.24)(60) (8.9375-05(1.83)) = 537 IN-161FF -BEAM M= 294(12) - 3528 IN-K du24-1.5-0.5= 22 IN As = 3528/0.9(60)(0.9)(22) . 3.31N2 - USE 4#9 As=4.0 d= 21.936 q= (+)(40)/0.85(49(1+)(4) = 5.04 φMN=0.9(4)(60)(21.936 - ½(5.04)) · 4194 N-K

Selected ADOSS Results, Alternative #2 Office Flat Slab with Drops

FILE NAME	P:\ODROPSFA.ADS							
PROJECT ID.	Office Final Drops							
SPAN ID.	BC							
ENGINEER	Henry							
DATE TIME	02/09/06 09:11:02							
UNITS CODE	U.S. in-lb ACI 318-89							
SLAB SYSTEM FRAME LOCATION								
DESIGN METHOD MOMENTS AND SHEARS	STRENGTH DESIGN NOT PROPORTIONED							
NUMBER OF SPANS 7								
SOLID HEAD DIMENSI	CONS : COMPUTED BY PROGRAM							
DENSITY(pcf) TYPE N	SLABS BEAMS COLUMNS 150.0 150.0 150.0 IORMAL WGT NORMAL WGT NORMAL WGT 4.0 4.0 4.0 423.7 423.7 423.7 474.3 474.3 474.3							
	<pre>= 60.00 ksi TTER FROM TENSION FACE: = 1.50 in OUTER LAYER OM = 1.50 in OUTER LAYER BAR SIZE: = # 4 OM = # 4</pre>							
	0.01 Proprietary Software of PORTLAND CEMENT ASSN. Page 3 to: ae, university park, PA							

SPAN/LOADING	DATA
*********	* * * * *

SPAN	LENGTH	Tslab	WIDTH	L2***	SLAB	DESIGN	COLUMN	UNIFORM	I LOADS
NUMBER	L1		LEFT	RIGHT	SYSTEM	STRIP	STRIP**	S. DL	LIVE
İ	(ft)	(in)	(ft)	(ft)		(ft)	(ft)	(psf)	(psf)
1+	1.2	10.0	11 2	15 0	2		0	10.0	100 0
1*	1.3	10.0	11.3	15.0	-	26.3	.0	10.0	100.0
2	30.0	10.0	11.3	15.0	2	26.3	13.1	10.0	100.0
3	30.0	10.0	11.3	15.0	2	26.3	13.1	10.0	100.0
4	25.0	10.0	11.3	15.0	2	26.3	11.9	10.0	100.0
5	30.0	10.0	11.3	15.0	2	26.3	13.1	10.0	100.0
6	30.0	10.0	11.3	15.0	2	26.3	13.1	10.0	100.0
7*	1.3	10.0	11.3	15.0	2	26.3	.0	10.0	100.0

* -Indicates cantilever span information.
** -Strip width used for positive flexure.
***-L2 widths are 1/2 dist. to transverse column.

"E"-Indicates exterior strip.

LATERAL LOAD/OUTPUT DATA

LATERAL LOADS ARE SPECIFIED AS BEING CAUSED BY WIND

JOINT	SLAB MO	OMENTS	COLUMN	MOMENTS
NO.	LEFT	RIGHT	ABOVE	BELOW
	(ft-k)	(ft-k)	(ft-k)	(ft-k)
1	.00	-71.00	.00	.00
2	-71.00	-65.00	.00	.00
3	-63.00	-71.00	.00	.00
4	-71.00	-63.00	.00	.00
5	-64.00	-70.00	.00	.00
6	-61.00	.00	.00	.00
Í			ĺ	

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

COL NUM		(ft-k)	(ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	(ft-k) (%)	(ft-k) (%)
1	LEFT TOP BOT	-6.7	.0 (0)	-6.5 (95) .0 (0)	.0 (0)	3 (4) .0 (0)
	RGHT TOP BOT	399.1 .0		382.8 (95) .0 (0)		16.3 (4) .0 (0)
2	LEFT TOP BOT			-581.2 (75) .0 (0)		-193.7 (25) .0 (0)
	RGHT TOP BOT			556.6 (75) .0 (0)		185.5 (25) .0 (0)
3	LEFT TOP BOT	-555.5 .0		-416.6 (75) .0 (0)		-138.9 (25) .0 (0)
	RGHT TOP BOT		.0 (0)	365.5 (75) .0 (0)	.0 (0)	121.8 (25) .0 (0)
4	LEFT TOP BOT	-487.3 .0	.0 (0) .0 (0)	-365.5 (75) .0 (0)	.0 (0) .0 (0)	-121.8 (25) .0 (0)
	RGHT TOP BOT	555.5 .0		416.6 (75) .0 (0)		138.9 (25) .0 (0)
5	LEFT TOP BOT	-742.1 .0	.0 (0)	-556.6 (75) .0 (0)	.0 (0)	-185.5 (25) .0 (0)
		.0	.0 (0)	581.2 (75) .0 (0)	.0 (0) .0 (0)	193.7 (25) .0 (0)
6		.0	.0 (0)	-382.8 (95) .0 (0)	.0 (0)	-16.3 (4) .0 (0)
	RGHT TOP BOT			6.5 (95) .0 (0)		.3 (4) .0 (0)

	SECTN	MOMENT	TOTAL-VERT DIFFERENCE (ft-k) (%)	MOMENT	MOMENT	MOMENT
2			.0 (0) .0 (0)			.0 (0) 149.7 (40)
			.0 (0) .0 (0)			.0 (0) 149.7 (40)
3	15.75 TOP BOT		.0 (0) .0 (0)	.0 (0) 193.5 (60)		.0 (0) 129.0 (40)
	15.75 TOP BOT	.0 322.6		.0 (0) 193.5 (60)		.0 (0) 129.0 (40)
4	11.88 TOP BOT	.0 210.7		.0 (0) 126.4 (60)		.0 (0) 84.3 (39)
	11.88 TOP BOT	.0 210.7		.0 (0) 126.4 (60)	.0 (0) .0 (0)	.0 (0) 84.3 (40)
5	14.25 TOP BOT	.0 322.6				.0 (0) 129.0 (40)
	14.25 TOP BOT	.0 322.6				.0 (0) 129.0 (39)
6	15.75 TOP BOT	.0 374.3		.0 (0) 224.6 (60)		.0 (0) 149.7 (40)
	15.75 TOP BOT		.0 (0) .0 (0)	.0 (0) 224.6 (60)		.0 (0) 149.7 (40)

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SHEAR ANALYSIS *****

NOTE--Allowable shear stress in slabs = 252.96 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

DI	RECT	S H	EAR	WIT	н т	RANSF	ER O	F M O M	ΕΝΤ
			- A R O	UND		СОЦИМ	N – –		
COL.	ALLOW.	PATT	REACTION	SHEAR	PATT	REACTION	UNBAL.	SHEAR	SHEAR
NO.	STRESS	NO.		STRESS	NO.		MOMENT	TRANSFR	STRESS
	(psi)		(kips)	(psi)		(kips)	(ft-k)	(ft-k)	(psi)
1E	252.96	4	148.2	116.20	4	148.2	422.6	159.8	250.55
21	252.96	4	305.0	233.61	4	305.0	-38.5	-15.4	246.43
31	252.96	4	254.5	194.92	4	254.5	-82.7	-33.1	222.46
4I	252.96	4	254.5	194.92	4	254.5	82.7	33.1	222.46
51	252.96	4	305.0	233.61	4	305.0	38.5	15.4	246.43
6E	252.96	4	148.2	116.20	4	148.2	-422.6	-159.8	250.55

	AROUND D	ROP/SO	LID HEAD -	-
COLUMN	ALLOW.	PATT	REACTION	SHEAR
NUMBER	STRESS	NO.		STRESS
	(psi)		(kips)	(psi)
1E	185.35	4	124.5	62.93
21	170.90	4	266.1	76.10
31	172.82	4	218.9	65.29
4 I	172.82	4	218.9	65.29
51	170.90	4	266.1	76.10
6E	185.35	4	124.5	62.93

NOTE--The schedule given below is a guide for proper reinforcement placement and is based on reasonable engineering judgement. Unusual boundary and/or loading conditions may require modification of this schedule.

NEGATIVE REINFORCEMENT

COLUMN NUMBER	* * -B * NO *		C O L BARS L E N LEFT (ft)	3	* * -B * NO		=	* - * -B C * NO	AR-LE	ARS NGTH- T RIGHT
1 2 3 4 5 6	11 10 10 10 10 11	# 7 # 6 # 6 # 7	1.33 10.77 10.18 11.77 10.77 10.18	10.18 10.77 11.77 10.18 10.77 1.33	11 10 9 9 10 11	# 5 # 7 # 6 # 6 # 7 # 5	6.50 6.5 6.50 6.7) 17 7 19) 19) 17	# 4 1. # 5 10. # 4 9. # 4 11. # 5 10. # 4 7.	77 10.77 27 11.77 77 9.27 77 10.77

SPAN NUMBER	* *	LONG B A	U M N BARS R LENGTH (ft)	* * - * N	O SIZE	BARS R	* * *	L NO	ONG - B A SIZE		* * *	S:	HORT - B A	BARS R
2 3 4 5 6	10 9 9 9 10	# 5 # 4 # 5	18.75 22.50		8 # 5 8 # 4 8 # 5	18.75 22.50		10 9 8 9 10	+ 4 # 4 # 4 # 4 # 4 # 4	25.50 30.50		10 9 8 9 10	# 4 # 4 # 4 # 4 # 4 # 4	21.00

DEFLECTION ANALYSIS

NOTES--The deflections below must be combined with those of the analysis in the perpendicular direction. Consult users manual for method of combination and limitations.

- --Spans 1 and 7 are cantilevers.
- --Time-dependent deflections are in addition to those shown and must be computed as a multiplier of the dead load(DL) deflection. See "CODE" for range of multipliers.

--Deflections due to concentrated or partialloads may be larger at the point of application than those shown at the centerline. Deflections are computed as from an average uniform loading derived from the sum of all loads applied to the span.

--Modulus of elasticity of concrete, Ec = 3834. ksi

	*	DEAD	*	DE	FLE	M N CTION	~ -			DE	FLE	L E CTION	~ -	R I P TO:	
SPAN	*	LOAD											·		
NUMBER	*	Ieff.	*	DEAD	*	LIVE	*	TOTAL	*	DEAD	*	LIVE	*	TOTAL	*
	*	(in^4)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*
		48644		01	 5	01		026		01	 5	01	1		
1			-		-						-				
2		32569	•	.20	8	.26	52	.470		.10	8	.12	20	.229	
3		31470	•	.15	5	. 23	36	.392		.07	8	.11	6	.194	
4		33935	•	.05	0	.08	33	.133		.01	1	.02	28	.039	
5		31470	•	.15	5	. 23	36	.392		.07	8	.11	6	.194	
6		32569	•	.20	8	.26	52	.470		.10	8	.12	20	.229	
7		48644	•	01	5	01	L1	026		01	5	01	.1	026	

Selected ADOSS Results, Alternative #2 Parking Flat Slab with Drops

FILE NAM	ЧE	P	\PDROPS	FA.ADS					
PROJECT	ID.		arking F						
SPAN ID		B					-		
ENGINEE	ર	He	enry						
DATE TIME			2/09/06):51:12						
UNITS CODE			.S. in-l CI 318-8						
SLAB SYS FRAME LO	STEM DCATION	FI	LAT SLAB NTERIOR	SYSTEM					
DESIGN N MOMENTS									
NUMBER (OF SPANS	9							
SOLID	HEAD DI	MENSION	3:	COMPUT	TED BY PRO	OGRAM			
reinford fr REINFORG VIELD DISTAN MINIMU MINIMU MINIMU	(RSI) (psi) (psi) STRENGI NCE TO R AT SLAB AT SLAB JM FLEXU AT SLAB AT SLAB	ETAILS: H FY = F CENTEI TOP : BOTTOM : RAL BAR TOP : BOTTOM :	4.0 423.7 474.3 NON-PRE 60.00 & FROM T = 1.50 SIZE: = # 4 = # 4	42 47 STRESSEI ksi ENSION H in OUT in OUT SPAN/I	23.7 74.3 PACE: TER LAYER TER LAYER LOADING DJ	4.0 423.7 474.3			

NUMBER	L1 (ft)	(in)	LEFT (ft)	RIGHT (ft)	SLAB SYSTEM	STRIP (ft)	STRIP** (ft)	S.DL (psf)	LIVE (psf)
					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
I									

COLUMN/TORSIONAL DATA *****

Ī	COLUMN	COLUMN		SLAB	COLUMN	BELOW	SLAB	CAPITA		COLUMN	MIDDLE
	NUMBER	C1	C2	HGT	C1	C2	HGT	EXTEN.	DEPTH	STRIP*	STRIP*
		(in)	(in)	(ft)	(in)	(in)	(ft)	(in)	(in)	(ft)	(ft)
ĺ											
j	i							İ		ĺ	i
	1	20.0	24.0	13.3	20.0	30.0	13.3	.0	.0	13.1	13.1
ĺ	2	20.0	20.0	13.3	24.0	20.0	13.3	.0	.0	13.1	13.1
ĺ	3	20.0	20.0	13.3	24.0	20.0	13.3	.0	.0	11.9	14.4
ĺ	4	20.0	20.0	13.3	24.0	20.0	13.3	.0	.0	11.9	14.4
ĺ	5	20.0	20.0	13.3	24.0	20.0	13.3	.0	.0	13.1	13.1
ĺ	6	20.0	24.0	13.3	24.0	24.0	13.3	.0	.0	12.5	13.8
ĺ	7	.0	.0	13.3	24.0	24.0	13.3	.0	.0	8.5	17.8
ĺ	8	.0	.0	13.3	20.0	20.0	13.3	.0	.0	8.5	17.8
j								İ			i

Columns with zero "C2" are round columns.

* -Strip width used for negative flexure.
**-Capital extension distance measured from face of column.

COLUMN	TRANS	SVERSE	BEAM	DR	OP PANEL/SC	OLID HEAD		SUPPORT					
NUMBER	WIDTH	DEPTH	ECCEN	LEFT	RIGHT	WIDTH	THICK	FIXITY*	Í				
	(in)	(in)	(in)	(ft)	(ft)	(ft)	(in)	8					
									-				
1	20.0	20.0	.0	1.3	5.0	8.8	3.5	100%					
2	.0	.0	.0	5.0	5.0	8.8	3.5	100%	Í				
3	.0	.0	.0	5.0	4.2	8.8	3.5	100%	Í				
4	j.0	.0	.0	4.2	5.0	8.8	3.5	100%	İ				
5	j.0	.0	.0	5.0	5.0	8.8	3.5	100%	İ				
6	24.0	32.0	.0	5.0	4.6	8.8	7.0	100%	i				
7	j.0	.0	.0	4.6	2.8	8.8	7.0	100%	i				
8	20.0	20.0	.0	2.8	1.3	8.8	3.5	100%	i				
	i							i	i				

* -Support fixity of 0% denotes pinned condition. Support fixity of 999% denotes fixed end condition.

> LATERAL LOAD/OUTPUT DATA ****

LATERAL LOADS ARE SPECIFIED AS BEING CAUSED BY WIND

JOINT	SLAB MO	OMENTS	COLUMN	MOMENTS
NO.	LEFT	RIGHT	ABOVE	BELOW
	(ft-k)	(ft-k)	(ft-k)	(ft-k)
-				
1	.00	-71.00	.00	.00
2	-71.00	-65.00	.00	.00
3	-63.00	-70.00	.00	.00
4	-70.00	-63.00	.00	.00
5	-65.00	-67.00	.00	.00
6	-66.00	-40.00	.00	.00
7	-26.00	-26.00	.00	.00
8	-32.00	.00	j .00	.00

LATERAL LOADS DISTRIBUTED TO THE COLUMN AND MIDDLE STRIPS ACCORDING TO CODE DISTRIBUTION FACTORS.

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS *****

COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
1	LEFT TOP	-6.8	.0 (0)	-6.6 (96)	.0 (0)	2 (3)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
	RGHT TOP	377.3	.0 (0)	365.6 (96)	.0 (0)	11.6 (3)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)
2	LEFT TOP	-794.5	.0 (0)	-595.9 (74)	.0 (0)	-198.6 (25)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)

	RGHT TOP BOT	750.8 .0			563.1 (75) .0 (0)	 - /	187.7 (25) .0 (0)
3	LEFT TOP BOT	-555.8 .0	.0 (.0 (- /	-416.9 (75) .0 (0)	 - /	-139.0 (25) .0 (0)
	RGHT TOP BOT		.0 (.0 (359.1 (75) .0 (0)	 - /	119.7 (25) .0 (0)
4	LEFT TOP BOT	-504.9 .0	.0 (.0 (- /	-378.7 (75) .0 (0)		-126.2 (25) .0 (0)
	RGHT TOP BOT		.0 (.0 (448.0 (75) .0 (0)	 - /	149.3 (25) .0 (0)
5	LEFT TOP BOT	-653.6 .0			-490.2 (75) .0 (0)	 	-163.4 (25) .0 (0)
	RGHT TOP BOT	603.5 .0			452.6 (75) .0 (0)	 - /	150.9 (25) .0 (0)
6	LEFT TOP BOT	-889.6 .0	.0 (.0 (- /	-667.2 (75) .0 (0)		-222.4 (25) .0 (0)
	RGHT TOP BOT				824.9 (75) .0 (0)		275.0 (25) .0 (0)
7	LEFT TOP BOT		.0 (.0 (-767.4 (75) .0 (0)		-255.8 (25) .0 (0)
	RGHT TOP BOT				638.5 (75) .0 (0)	 - /	212.8 (25) .0 (0)

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

* :	k 7	* *	* :	* *	* '	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* '	* :	* :	* *	* *	*	*	*	*	*	*	*	*	*	*	*		

COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STRIP MOMENT (ft-k) (%)	BEAM MOMENT (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
8	LEFT TOP	-41.7	.0 (0)	-40.4 (96)	.0 (0)	-1.3 (3)
	BOT	36.0	.0 (0)	34.9 (96)	.0 (0)	1.1 (3)
	RGHT TOP	12.6	.0 (0)	12.2 (96)	.0 (0)	.4 (3)
	BOT	.0	.0 (0)	.0 (0)	.0 (0)	.0 (0)

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

		MOMENT	DIFFERENCE	COLUMN STRIP MOMENT (ft-k) (%)	MOMENT	MOMENT
2	12.75 TOP BOT	.0 410.8	(-)	.0 (0) 246.5 (60)		.0 (0) 164.3 (40)
	12.75 TOP BOT			.0 (0) 246.5 (60)		.0 (0) 164.3 (40)
3	15.75 TOP BOT			.0 (0) 202.5 (60)		.0 (0) 135.0 (40)
	15.75 TOP BOT			.0 (0) 202.5 (60)		.0 (0) 135.0 (40)
4	11.88 TOP BOT			.0 (0) 129.6 (60)		.0 (0) 86.4 (40)
	11.88 TOP BOT		,	.0 (0) 129.6 (60)		.0 (0) 86.4 (39)
5	14.25 TOP BOT			.0 (0) 213.0 (60)		.0 (0) 142.0 (40)

	N CROSS SECTN	ſ	MOMENT (ft-k)	DIFFERE	NCE %)	COLUMN STR MOMENT (ft-k) (%)	MOMENT	왕)	MOMEN (ft-k)	ТТ (8)
			.0 355.1	.0 (0)	.0 (213.0 (6	0)	.0 (0)	.0 142.0	(0)
6			.0 296.4			.0 (177.8 (6				.0 118.6		
			.0 296.4			.0 (177.8 (6				.0 118.6	•	- /
7			.0 502.4			.0 (301.5 (6				.0 201.0		
		ТОР ВОТ	.0 502.4	.0 (.0 (- /	.0 (301.5 (6		.0 (.0 (.0 201.0		
8	9.77		-29.9 257.9	.0 (.0 (-18.0 (6 154.8 (6				-12.0 103.2		
		TOP BOT	-29.9 257.9	.0 (.0 (-18.0 (6 154.8 (6	- /			-12.0 103.2	•	,

DISTRIBUTION OF DESIGN MOMENTS IN SPANS

SHEAR ANALYSIS *****

NOTE--Allowable shear stress in slabs = 252.96 psi when ratio of col. dim. (long/short) is less than 2.0.

--Wide beam shear (see "CODE") is not computed, check manually.

--After the column numbers, C = Corner, E = Exterior, I = Interior.

D I 	R E C T 	S H 	EAR - ARO	WIT UND	н т	R A N S F C O L U M	ER 0 N	F M O M	E N T
COL. NO.	ALLOW. STRESS (psi)	PATT NO.	REACTION (kips)	SHEAR STRESS (psi)	PATT NO.	REACTION (kips)	UNBAL. MOMENT (ft-k)	SHEAR TRANSFR (ft-k)	SHEAR STRESS (psi)
 1E	252.96	4	151.1	111.67	4	151.1	397.4	144.0	220.02
21	252.96	4	320.8	207.35	4	320.8	-52.3	-21.7	220.91
31	252.96	4	264.9	171.20	4	264.9	-97.1	-40.2	196.38
4I	252.96	4	272.1	175.92	4	272.1	114.5	47.4	205.59
51	252.96	4	289.8	187.33	4	289.8	-71.4	-29.5	205.83
бI	252.96	4	446.6	157.08	4	446.6	314.0	125.6	195.73
71	252.96	4	482.4	212.30	4	482.4	-213.3	-85.3	244.35
8E	252.96	4	135.6	109.14	1	135.5	-52.1	-20.5	127.29

COLUMN NUMBER	AROUND D ALLOW. STRESS (psi)	ROP/SO PATT NO.	LID HEAD - REACTION (kips)	- SHEAR STRESS (psi)
1E 2I 3I 4I 5I 6I 7I 8E	191.80 175.72 177.83 177.83 175.72 176.82 182.98 206.97	4 4 4 4 4 4 4 4 4 1	127.5 280.2 227.7 235.0 249.2 389.4 426.1 111.2	57.23 71.09 60.25 62.18 63.23 101.02 124.07 61.49

DESIGN RESULTS

NOTE--The schedule given below is a guide for proper reinforcement placement and is based on reasonable engineering judgement. Unusual boundary and/or loading conditions may require modification of this schedule.

					****	******	* *	* * * *	*****	* * * * * * *	******	* * * * * *	* * *		
COLUMN	* * *	-B	LON A R	1G	C O L BARS	5	*	-	TRI SHOR	г ван		*M I * * -B	D D L LONG A R -	BAR	
	* 1	NO		ΖE	LEFT	RIGHT	*	NO		LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT
	*				(ft)	(ft)	*			(ft)	(ft)	*		(ft)	(ft)
1	-	11	#	5	1.33	10.13		10	# 5	1.33	6.47	16	# 4	1.33	7.76
2	2	10	#	7	10.76	10.76		9	# 7	6.63	6.63	24	# 4	10.76	10.76
3		9	#	6	10.24	11.75		8	# 6	6.60	6.75	17	# 4	9.25	11.75
4	-	10	#	6	11.75	10.24		9	# 6	6.75	6.60	18	# 4	11.75	9.25
5	2	11	#	б	10.75	10.75		10	# 6	6.60	6.60	20	# 4	10.75	10.75
6	2	10	#	7	12.25	10.24		10	# 7	7.00	6.60	22	# 5	12.25	9.95
7		7	#	8	9.78	9.36		7	# 8	6.07	6.07	31	# 4	9.78	8.38
8**		7	#	4	7.03	1.33		7	# 4	4.06	1.33	21	# 4	6.90	1.33

** - Positive reinforcement required, design manually.

NEGATIVE REINFORCEMENT

P O S I T I V E R E I N F O R C E M E N T *******

	*		C O DNG	L	U M N BARS	*	-	S T HORT		I P BARS	*	1.	1 I DNG	D	DLE BARS	*		S T H HORT		I P BARS
SPAN	*		- В	A	R	*		- B	А	R	*		- В	A	R	*		-в/	ł	R
NUMBER	*	NO	SIZ	ΖE	LENGTH	*	NO	SIZ	ΖE	LENGTH	*	NO	SIZ	ΖE	LENGTH	*	NO	SIZI	C	LENGTH
	*				(ft)	*				(ft)	*				(ft)	*				(ft)
2		10	#	5	25.92		10	#	5	25.92		10	#	4	29.92		10	 # 4	 1	25.17
3		8	#	5	22.50		8	#	5	22.50		8	#	4	30.50		8	# 4	1	21.00
4		8	#	4	18.75		8	#	4	18.75		9	#	4	25.50		8	# 4	1	17.50
5		9	#	5	22.50		8	#	5	22.50		9	#	4	30.50		8	# 4	1	21.00
6		11	#	4	22.50		11	#	4	22.50		8	#	4	30.50		8	# 4	1	21.00
7		9	#	6	21.22		8	#	6	21.22		12	#	4	27.83		12	# 4	1	19.13
8**		б	#	5	15.08		б	#	5	15.08		11	#	4	16.92		10	# 4	1	14.12

D E F L E C T I O N A N A L Y S I S

NOTES--The deflections below must be combined with those of the analysis in the perpendicular direction. Consult users manual for method of combination and limitations.

--Spans 1 and 9 are cantilevers.

- --Time-dependent deflections are in addition to those shown and must be computed as a multiplier of the dead load(DL) deflection. See "CODE" for range of multipliers.
- --Deflections due to concentrated or partialloads may be larger at the point of application than those shown at the centerline. Deflections are computed as from an average uniform loading derived from the sum of all loads applied to the span.

--Modulus of elasticity of concrete, Ec = 3834. ksi

SPAN NUMBER	DEAD LOAD	* *_ *		-	M N CTION LIVE (in)	~ -	R I P TO: TOTAL (in)	* * * *	DEAD	~		~ -	R I P TO: TOTAL (in)	 * *
1 2 3 4 5 6 7 8 9	52778 40937 42290 43859 43859 52428 60998 52428 52428 52478		014 .183 .129 .042 .132 .098 .089 .020	- 1 5 2 2 2 8 9 0	00 .18 .17 .05 .12 .12 .39 .03	36 75 52 94 21 92 39	023 .367 .301 .094 .326 .218 .481 .059 006		014 .095 .062 .009 .071 .044 .049 .002 003		00 .08 .01 .10 .04 .20 .00	7 6 6 1 4 7 3	023 .182 .149 .025 .172 .088 .256 .005 006	

Selected ADOSS Results, First Floor Slab with Superimposed Vault Load

							• •			
PROJECT	ID.			'inal Dro						
SPAN ID.		BC					-			
ENGINEEF	ર	He	enry							
DATE		02	2/09/06							
TIME		10	:51:12							
UNITS			S. in-l							
CODE		AC	CI 318-8	9						
SLAB SYS FRAME LO	STEM	FI	LAT SLAB	SYSTEM						
DESIGN M MOMENTS	METHOD AND SHEA	ARS NO	RENGTH T PROPO	DESIGN RTIONED						
NUMBER C	OF SPANS	9								
SOLID	HEAD DIN	MENSIONS	3 :	COMPUT	TED BY PRO	OGRAM				
CONCRETE	FACTORS	5 5	SLABS	BI	EAMS 50.0 AL WGT	COLUMN	S			
TYPE	II(per	NORN	IAL WGT	NORM	AL WGT	NORMAL W	GT			
f'c	(ksi) (psi) (psi)		4.0		4.0	4.0 423.7				
ict fr	(psi)	4	123.7	42	23.7 74 3	423.7				
	(201)			-		1/110				
REINFORG	CEMENT DI	TAILS:	NON-PRE	STRESSEI)					
YIELD	STRENGT	HFY =	60.00	ksi						
DISTAN A	ICE TO RI AT SLAB 7	f CENTEF FOP =	FROM T 1.50	'ENSION B in OUT	FACE: FER LAYER FER LAYER					
	AT SLAB H JM FLEXUH			in OUT	FER LAYER					
I	AT SLAB	FOP =	# 4							
	AT SLAB H JM SPACIN		# 4							
	IN SLAB :) in							
				SPAN/I	LOADING DA	ATA				
				* * * * * *	******	* * *				
					SLAB					Ī
					SYSTEM					ł
										Ì
1*	1.3	11.0	15.0	11.3	2 2 2 2 2 2 2 2 2 2 2 2	26.3	.0	10.0	100.0	
2	30.0	11.0	15.0	11.3	2	26.3	13.1	10.0	100.0	1
	30.0	11.0	15.0	11.3	2	26.3	13.1 11.9	10.0	100.0	ł
5	30.0	11.0	15.0	11.3	2	26.3	13.1	10.0	100.0	i
6	30.0	11.0	15.0	11.3	2	26.3	13.1	10.0	100.0	ļ
	∠/.3 17.0	11.0	15.0 15.0	11.3	2	∠6.3 26.3	12.5 8.5	50.0	280.0 280.0	-
9*	1.3	11.0	15.0	11.3	2	26.3	.0	50.0	280.0	Ì
i								1		1

* -Indicates cantilever span information.
 ** -Strip width used for positive flexure.
 ***-L2 widths are 1/2 dist. to transverse column.
 "E"-Indicates exterior strip.

PARTIAL LOADING DATA

SPAN	LOAD	TYPE	PART	IAL DEA	AD LOAD	S	LOAD	TYPE	PART	IAL LIV	/E LOAD	S
No.	No.	ÍÍ	Wa	Wb	La	Lb	No.	i i	Wa	Wb	La	Lb
1*												
2	1	UNIF	702.5	.0	20.0	30.0	1	UNIF	850.0	.0	20.0	30.
3	1	UNIF	702.5	.0	.0	10.0	1	UNIF	850.0	.0	.0	10.
4		i i					İ	i i				
5		i i					İ	i i				
6	1	UNIF	6111.0	.0	6.7	15.7	İ	i i				
7		i i					İ	i i				
8		i i					İ	i i				
9*		i i					İ	i i				

D E S I G N R E S U L T S ******

NOTE--The schedule given below is a guide for proper reinforcement placement and is based on reasonable engineering judgement. Unusual boundary and/or loading conditions may require modification of this schedule.

	*		СОL			TRI			*M I			TRIP
	*	LONG	BARS		*	SHOR'	t bai	RS	*	LONG	BAR	5
COLUMN	* -B	A R -	LEN	G T H-	* -B	A R -	LEN	G T H-	* -B	A R -	LEN	G T H-
NUMBER	* NO	SIZE	LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT	* NO	SIZE	LEFT	RIGHT
	*		(ft)	(ft)	*		(ft)	(ft)	*		(ft)	(ft)
1**	10	# 6	1.33	10.13	9	# 6	1.33	6.47	16	# 4	1.33	9.26
2	10	# 7	12.26	12.26	10	# 7	7.01	7.01	17	# 5	12.26	12.26
3**	10	# 6	10.75	11.75	9	# б	6.60	6.75	19	# 4	10.75	11.75
4**	10	# 6	11.75	10.75	9	# 6	6.75	6.60	18	# 4	11.75	10.75
5	10	# 7	12.25	10.24	9	# 7	7.00	6.60	16	# 5	12.25	9.25
6	11	# 7	12.25	11.32	10	# 7	7.00	6.60	23	# 5	12.25	11.32
7	7	# 8	9.36	9.36	7	# 8	6.07	6.07	30	# 4	8.42	9.23
8**	7	# 4	7.03	1.33	7	# 4	4.06	1.33	21	# 4	6.90	1.33

** - Positive reinforcement required, design manually.

P O S I T I V E R E I N F O R C E M E N T *****

	* *	C O L LONG	U M N BARS	*	S T R SHORT	I P BARS	* *		M I D ONG	D L E BARS	*		S T R HORT	I P BARS
SPAN	*	B A	R	*	B A	R	*		- B A	R	*		- B A	R
NUMBER	* NO	SIZE	LENGTH	* NC) SIZE	LENGTH	*	NO	SIZE	LENGTH	*	NO	SIZE	LENGTH
	*		(ft)	*		(ft)	*			(ft)	*			(ft)
2	10	 # 5	25.92	10) # 5	25.92		10	# 4	29.92		10	# 4	25.17
3	9	# 5	22.50	8	8 # 5	22.50		9	# 4	30.50		8	# 4	21.00
4	8	# 4	18.75	8	3 # 4	18.75		9	# 4	25.50		8	# 4	17.50
5	12	# 4	22.50	12	2 # 4	22.50		8	# 4	30.50		8	# 4	21.00
6	9	# б	23.00	8	8 # 6	23.00		12	# 4	30.50		12	# 4	21.00
7	9	# 6	21.22	8	3 # 6	21.22		12	# 4	27.83		12	# 4	19.13
8**	7	# 5	15.08	6	5 # 5	15.08		11	# 4	16.92		10	# 4	14.12

** - Negative reinforcement required, design manually.

DEFLECTION ANALYSIS ******

NOTES--The deflections below must be combined with those of the analysis in the perpendicular direction. Consult users manual for method of combination and limitations.

--Spans 1 and 9 are cantilevers.

--Time-dependent deflections are in addition to those shown and must be computed as a multiplier of the dead load(DL) deflection. See "CODE" for range of multipliers. --Deflections due to concentrated or partialloads may be larger at the point of application than those shown at the centerline. Deflections are computed as from an average uniform loading derived from the sum of all loads applied to the span.

--Modulus of elasticity of concrete, Ec = 3834. ksi

* DEAD SPAN * LOAD NUMBER * Ieff. * (in^4)	* DH * * DEAD	LUMN EFLECTION * LIVE * (in)	* TC		M I D D DEFLE DEAD * (in) *	LE ST CTION DUE LIVE * (in) *	RIP TO: TOTAL * (in) *
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4. .19 7. .13 9. .04 2. .11 5. .22 8. .07	24 .2 36 .1 46 .0 L5 .1 L9 .1 70 .3	09 - 30 93 50 78 44 70	023 .424 .329 .096 .293 .363 .440	014 .100 .067 .013 .047 .124 .030	009 .104 .095 .015 .094 .053 .199 .002	023 .204 .162 .027 .142 .177 .229 .007

UNIFORM LOADS S. DL LIVE (psf) (psf)

10.0100.010.0100.010.0100.010.0100.010.0100.050.0280.050.0280.050.0280.0

*

Selected ADOSS Results, Torsion Beam between Office Floor and Parking Deck

Selecte	ed ADC	DSS Re	sults, 1	orsion	Beam	betweer	n Office			
FILE NAM	ME	P	:\PDROPS	FA.ADS						
PROJECT ID.			arking F	inal Dro	ops					
			BC							
ENGINEE	R	H	Henry							
UNITS CODE			U.S. in-lb ACI 318-89							
SLAB SYS FRAME LO	STEM OCATION	FI	FLAT SLAB SYSTEM INTERIOR							
DESIGN N MOMENTS	METHOD AND SHE	S' ARS N	TRENGTH I OT PROPOI	DESIGN RTIONED						
NUMBER (OF SPANS	9								
CONCRETE FACTORS DENSITY(pcf) TYPE N f'c (ksi) fct (psi) fr (psi)			SLABS 150.0 MAL WGT 4.0 423.7 474.3	BEAMS 150.0 NORMAL WGT 4.0 423.7 474.3		COLUMNS 150.0 NORMAL WGT 4.0 423.7 474.3				
YIELD DISTAN MINIMU MINIMU MINIMU	STRENGT NCE TO R	H Fy = F CENTE TOP BOTTOM RAL BAR TOP BOTTOM NG:	SIZE: = # 4 = # 4	ksi ENSION B						
					LOADING D.					
SPAN NUMBER 	L1 (ft)	(in)	WIDTH LEFT (ft) 	RIGHT (ft)	SYSTEM	DESIGN STRIP (ft)	STRIP** (ft)			
1* 2 3 4 5 6 7 8 9*	i i		1							
TRAI	NSVE	RSE	BEAI	M S H	HEAR	AND	TOR			

TRANSVERSE BEAM SHEAR AND TORSION REQUIREMENTS(kips, ft-k, SQ.in, /,in.)

				LEFT	SIDE				
BEAM	PATT.	Vu@d	Vc@d	Tu@d	Tc@d	Av/s	At/s	Atot/s	Al
No.	NO.	SHEAR	SHEAR	TORSION	TORSION	@d	@d	@d	@d
1	4	49.5	15.5	157.9	49.3	.039	.101	.241	6.68
2	* *		Tran	sverse be	am not spe	cified			* *
3	* *		Tran	sverse be	am not spe	cified			* *
4	* *		Tran	sverse be	am not spe	cified			* *
5	* *		Tran	sverse be	am not spe	cified			* *
б	2	90.1	54.7	148.1	89.9	.028	.026	.080	2.53
7	* *		Tran	sverse be	am not spe	cified			* *
8	3	68.1	41.5	39.8	24.2	.035	.017	.068	1.11

Signal Hill Professional Center

BEAM No.	PATT. NO.	Vu@d SHEAR	Vc@d SHEAR	RIGHT Tu@d TORSION	SIDE Tc@d TORSION	Av/s @d	At/s @d	Atot/s @d	Al @d
1	4	28.2	6.8	213.3	51.6	.024	.148	.319	9.76
2	* *		Trar	sverse be	am not spe	ecified			* *
3	* *		Trar	sverse be	am not spe	ecified			* *
4	* *		Trar	sverse be	am not spe	ecified			* *
5	* *		Trar	sverse be	am not spe	ecified			* *
6	2	49.0	27.4	190.4	106.4	.020*	.036	.088	3.53
7	* *		Trar	sverse be	am not spe	ecified			* *
8	3	40.2	29.1	56.4	40.8	.017*	.019	.054	1.40

DISTRIBUTION OF DESIGN MOMENTS AT SUPPORTS

COL NUM	CROSS SECTN	TOTAL MOMENT (ft-k)	TOTAL-VERT DIFFERENCE (ft-k) (%)	COLUMN STR: MOMENT (ft-k) (%	IP BEAM MOMENT) (ft-k) (%)	MIDDLE STRIP MOMENT (ft-k) (%)
					4) -11.1 (81) 0) .0 (0)	
	RGHT TOP BOT	104.2 -45.2			4) 85.0 (81) 4) -36.9 (81)	
2	LEFT TOP BOT	-1203.3	.0 (0) .0 (0)	-112.2 (9	9) -635.6 (52) 0) .0 (0)	-455.5 (37) .0 (0)
	RGHT TOP BOT	1285.3 .0	.0 (0) .0 (0)	146.5 (12 .0 (0	1) 830.0 (64) 0) .0 (0)	308.9 (24) .0 (0)
3	LEFT TOP BOT	-1262.2	.0 (0) .0 (0)	-143.8 (12	1) -815.1 (64) 0) .0 (0)	-303.3 (24) .0 (0)
	RGHT TOP BOT	1179.3 .0	.0 (0) .0 (0)	116.5 (9 .0 (0	9) 660.3 (55) 0) .0 (0)	402.5 (34) .0 (0)
4	LEFT TOP BOT	-534.9 .0			9) -299.5 (55) 0) .0 (0)	
	RGHT TOP BOT				5) .0 (0) 0) .0 (0)	
5	LEFT TOP BOT		.0 (0) .0 (0)	-392.2 (7 .0 ()	5) .0 (0) 0) .0 (0)	-130.7 (25) .0 (0)
	RGHT TOP BOT	523.5 .0	.0 (0) .0 (0)	392.6 (7! .0 ()	5) .0 (0) 0) .0 (0)	130.9 (25) .0 (0)
6	LEFT TOP BOT	-34.2 1.0	.0 (0) .0 (0)	-33.8 (99 1.0 (99	9) .0 (0) 9) .0 (0)	3 (0) .0 (0)
	RGHT TOP BOT	12.5 .0	.0 (0) .0 (0)	12.4 (99 .0 (0	9) .0 (0) 0) .0 (0)	.1 (0) .0 (0)
FILE CODE	NAME		PDROPSF9.ADS			
	SYSTEM LOCATION		AM-SUPPORTED TERIOR	SLAB		
			RENGTH DESIGN F PROPORTIONE			
NUMBE	R OF SPAN	S 7				
DEN TYF	ISITY(pcf E) 15 NORMA		150.0 MAL WGT NO	COLUMNS 150.0 DRMAL WGT 4.0 423.7 474.3	

REINFORCEMENT DETAILS: NON-PRESTRESSED YIELD STRENGTH (flexural) Fy = 60.00 ksi YIELD STRENGTH (stirrups) Fyv = 60.00 ksi Hanagan, Advisor April 10, 2006

DISTANCE TO RF CENTER FROM TENSION FACE:

								-
AT	SLAB	TOP	=	1	.50	in	OUTER	LAYER
AT	SLAB	BOTTOM	=	1	.50	in	OUTER	LAYER
AT	BEAM	TOP	=	1	.50	in	OUTER	LAYER
AT	BEAM	BOTTOM	=	1	.50	in		
FLEXURAI	L BAR	SIZES:		MII	JIMI	JM	MAXIM	JM
AT	SLAB	TOP	=	#	4			
AT	SLAB	BOTTOM	=	#	4			
AT	BEAM	TOP	=	#	4		#14	
IN	BEAM	BOTTOM	=	#	4		#14	
MINIMUM	SPAC	ING:						
IN	SLAB	= 6.	00	in				
IN	BEAM	= 1.0	00	in				

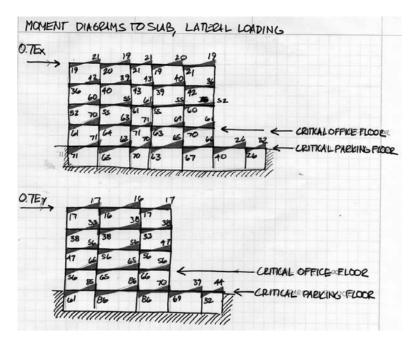
SPAN/LOADING DATA

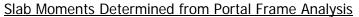
SPAN	LENGTH	Tslab	WIDTH	L2***	SLAB	DESIGN	COLUMN	UNIFORM	I LOADS
NUMBER	L1		LEFT	RIGHT	SYSTEM	STRIP	STRIP**	S. DL	LIVE
	(ft)	(in)	(ft)	(ft)		(ft)	(ft)	(psf)	(psf)
1*	1.3	11 0	15.0	15.0	4	30.0	0	60.0	250.0
-		11.0			-		.0		
2	21.0	11.0	15.0	15.0	4	30.0	8.5	60.0	250.0
3	31.0	11.0	15.0	15.0	4	30.0	13.0	60.0	250.0
4	23.0	11.0	15.0	15.0	4	30.0	9.5	60.0	250.0
5	20.0	11.0	15.0	15.0	4	30.0	10.0	60.0	250.0
б	17.5	11.0	15.0	15.0	4	30.0	8.8	60.0	250.0
7*	1.3	11.0	15.0	15.0	4	30.0	.0	60.0	250.0

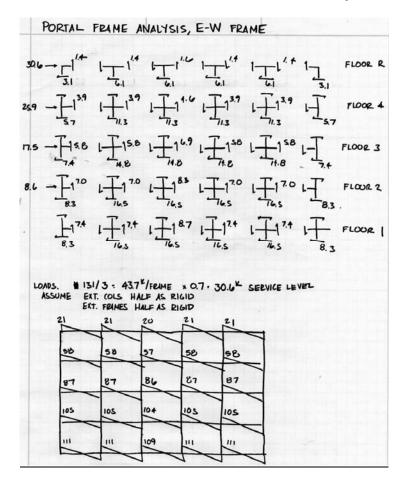
BEAMS ALONG SPAN DATA

SPAN	BEAM	E	EAM DEPTH	IS	HAUNCH	LENGTHS
NUMBER	WIDTH	LEFT	CENTER	RIGHT	LEFT	RIGHT
	(in)	(in)	(in)	(in)	(ft)	(ft)
1	24.0	32.0	32.0	32.0	.0	. 0
2	24.0	32.0	32.0	32.0	.0	.0
3	24.0	32.0	32.0	32.0	.0 .0	.0
4	24.0	32.0	32.0	32.0	.0	.0
5	.0	.0	.0	.0	.0	.0
6	.0	.0	.0	.0	.0	.0
7	.0	.0	.0	.0	.0	.0
					İ	

DISTRIBUTION OF DESIGN MOMENTS IN SPANS


SPAN CROSS NUM SECTN		DIFFERENCE	COLUMN STRIP MOMENT (ft-k) (%)	MOMENT	MOMENT
2 8.93 TOP BOT	-11.1 512.1	.0 (0) .0 (0)	-1.0 (9) 47.7 (9)	-5.9 (52) 270.5 (52)	
3 16.27 TOP BOT	.0 1016.3	.0 (0) .0 (0)	.0 (0) 115.8 (11)	.0 (0) 656.3 (64)	
4 12.07 TOP BOT	-96.1 575.5	.0 (0) .0 (0)		-53.8 (55) 322.2 (55)	
5 10.50 TOP BOT	.0 357.6	.0 (0) .0 (0)	.0 (0) 214.6 (60)		.0 (0) 143.1 (40)
6 10.06 TOP BOT	.0 384.4		.0 (0) 230.6 (60)		.0 (0) 153.7 (39)


Sample Spreadsheet Used to Size Torsion Beam


Tu= Vu=	151 96			
BEAM DIM	ENSIONS	SIZE OK?		
H= B=	24 26.5	0.453012 assumes f	<br [:] 'c=4000 psi	0.474
Acp= Pcp= Aoh= Ao= ph=	636 101 471.5 400.775 87	MAX SPA 10.875 10.25 24 final:	CING 10	
TORSION At=	0.050236	SHEAR Vc= Av=	51.53722 0.048198	
Longitue Ai= Ai=	DINAL REINFORCEME 0.437053 2.914961	ENT		
Mmax=	REINFORCEMENT 769.1 8.929525 840.1665	steel des AsFinal= a=	8#10 10 6.659267	


steel des At+Av	#4 stirrups @ 10"
steel des long	10-#5 distributed upsize 1,4,5,8 bottom reinf to 11

Slab Moments from Lateral Loads Derrived from ETABS

CRSI Tables Used to Size Columns and Reinforcing

4 4 1.06 1.06 1.06 2 2 2 1.06 1.06 1.06 4 7 1 1.30 1.06 <th>-</th> <th>Max Cap</th> <th>0X f</th> <th>fy</th> <th>25%</th> <th>fy</th> <th>20%</th> <th>ţ</th> <th>100%</th> <th>fy</th> <th>.If'c</th> <th>Ag</th> <th>Zero Axial</th>	-	Max Cap	0X f	fy	25%	fy	20%	ţ	100%	fy	.If'c	Ag	Zero Axial
1.06 1.30 1.88 3.33 1.25 1.25 1.59		4	Ŧ	4	Ŧ	4	z	4	£	d D	Ha	46	Load
1.30 1.88 3.33 1.25 1.59	A 2658	1075	3448	970	4330	816	4829	694	5361		3888		2792
1.88 3.33 1.25 1.59				985	4599	826	5135	669	5755		4286		335
3.33 1.25 1.59				1034	5227	198	5880	720	6745		5282		4695
1.25 1.59				1161	6751	953	7695	111	9166	481	4222	192	3773
1.25	··· ·	-		1136	5469	932	6176	758	7268		5080	-	6282
1.59				166	4551	831	5103	705	5737 Ansi	509	4266		3279
1 95	_			020	4934	853	5559	111	6345	206	4878		4091
	MA 2981			1010	5326	871	3978	728	4368	502	3680		3303
-35 MI 0 0 MI				1036	3813	861	4211	717	4665	494	4013		3930
10.3				1115	4300	917	4787	752	5430	490	69/3		69069
5.00	_			1320	8529	1070	9847	851	12063	471	10635		1172
9 1.25 MA	_			1001	4072	840	4523	838	1268	464	6745		118
	_	-		971	3780	815	4197	690	4669	497	3447		266
TIO 1.59 MA				032	4330	863	4829	726	5361	517	4574		407
1.95				1901	4599	883	5135	737	5155	512	5020		487
-25 HI PU	_			142	4383	853	4901	712	5594	486	4381		395
	_	• ~ •		1100	5107	206	5763	745	6743	477	5119		5504
#18 5.00 MA	A 3250	1675	5455	1245	6751	1093	7696	868	9166	495	8680	192	10502
	_				-							1	190
30.1			2695	994	3322	833	3635	708	3912	2010	3211		3457
# 9 1.67 MA			3990	1031	5030	861	5682	723	6517	205	5053		431
8-#10 2.12 MA	A 3074	1236	4403	1071	5538	890	5845	741	7328	503	5871	192	543
00 0			3044	0/01	3734	888	4111	744	4539	201	4057	-	4126
IN 100.3 111				1109	3965	915	4368	15/	8122	495	4500		6475
3.75				1212	7291	392	8376	804	10107	485	8669		910
MA 1.32 MA	_			1218	4249	845	5006	215	5711	480	5443		3453
	_	-		987	3541	827	3914	663	4294	505	3469	• •••	28082
1.0/				010	3780	8698	5103	730	5737	516	4872		429
FIO 2.12 MA				083	4934	006	5559	750	6345	514	5556		535
	_			0901	4081	880	4554	732	5144	499	4437	-	431
10.2				143	4383	908	4009	100	6594	508	6196		6408
3.75	_	-		231		1008	7128	816	8426	502	7792	• •	8936
MIR F F7 MD		1928		1504		983	5763	793	6743	481	6117		200
5	_			474		1178	7842	912	9206	453	1268		10832
8 1.32 MA	_			016	3975	852	4394	725	4781	522	3939	-	3423
1.67	_			1950	4206	877	4662	242	6136 5136	499	3554		2807
	_	-		110	4159	844	4655	708	5286	495	4066		348
2.12				095	4499	016	5003	765	5585	520	5021		5115
8-#11 2.60 MA	_			136	4800	940	2342	783	6021	513	5602		593
	_	-		087	4953	898	1655	741	6523	482	5312	-	5179

f'c = 4,000 psi fy = 60,000 psi M in loch bloc fy A in bloc		100% fy .1f'c Ag Axial	AN PP AN AP W	642 618 634 610	7273 240 5846 240 3846 240	664 6573 240 619 4323 240 660 7239 240	658 8759 240 600 5934 240 652 12327 240	575 8721 240	6291 3639 7144 4023 8234 4501	639 9317 240 615 4953 240 629 12010 240 603 6004 240 664 6100 240	631 3875 240 663 6891 240 628 4347 240	7891 240 4900 240 8819 240	652 11008 240 604 6607 240	575 94361 240	670 5660 240 626 3962 240 670 6298 240 621 4464 240	7096 5101 7896	606 5709 240 665 9796 240 1 595 7249 240 1 661 13840 240 1 655 7249 240 1 651 13840 240 1 655 10968 240 1	643 9549 240 632 4895 240 635 10906 240	619 5375 240 658 9208 240 624 5271 240	indicates 50% fy stress in bars on the tension side, and the tension side.
20" × 30"		5X fy 50X fy	de Ne de	1078 8722 908 1040 4919 873 1134 10217 943 1095 5496 906	1236 6887 990 1049 6739 894 996 4902 848	7144 909 5260 860 7560 921	1154 8559 960 11685 6472 900 1310 11019 1060 1	1223 8553 985	1045 7629 890 1015 4339 867 1058 8261 1039 4550 882 1097 9067 922 1069 4817 902		1010 4619 859 1078 7500 913 1032 4902 872	1109 8105 933 1061 5260 890 1138 8722 950 1085 5500 900	1219 10217 1002 1 1161 6472 948	1426 13897 1134 1 1352 8553 1065	1062 6570 909 1004 4984 854 1088 6927 927 1026 5360 867	1122 7381 951 1053 5837 884 1153 7844 971	5621 1077 5299 897 72 7962 1240 8961 1031 102 6585 11450 7448 942 87 10303 1459 11707 1181 139 8903 1339 10219 1059 124		1155 5285 951 1146 9067 957 1106 5393 926	-50% f
LAR TIED COLUMNS	1	ax Lap ux fy	He	4540 1439 6034 1290 2611 1439 3683 1246 4947 1570 7051 1356 2734 1570 4096 1323 5859 1903 9536 156	1903 5075 1 1333 4660 1 1333 3502 1	1384 4946 1384 3855 1384 3855 1439 5274 1439 5274 1439	5968 1 4734 1 7655 1	1200 010 0104	4242 1.343 5224 1243 2490 1343 5224 1243 2431 1395 5556 1274 2559 1396 3391 1240 4663 1464 6203 1314 2663 1464 6203 1314 2602 1464 3589 1282 2602 1464 13589 1282 2602 1464 13589 1282 2603 1464 13589 1368 1368 1368 2603 1464 13589 1368 1368 1368 1368 2603 1464 13589 1368 1368 1368 1368 1368 1368 1368 1368	1713 8135 1 1713 8135 1 1713 829 1 1343 4278 1	1396 5158 1 1396 5158 1 1396 3602 1	1464 55/4 1464 3855 1538 6034 1538 4134	1713	2157 9536 1 2157 6164 1	1343 1343 1396 1396	1464 1464 1538	3065 1538 4585 1297 4481 1713 6299 1501 3334 1713 5372 1398 5289 2157 8222 1797 3937 2157 7253 1658	4939 1545 6831 1364 2663 1545 3726 1343 5195 1637 7554 1413	1545 1545 1545	 "0% f," indicates zero tension in bors on the tension side, "50% f," indicates 50% i "100% f," indicates 100% f, stress (i.e., balance paint) in bors on the tension side.
RECTANGULAR TIED Short colymns - no sidesway Zero Bending on majór or minor axi	Axial Axial A	WHO BARS RHO X		1344 6-411 1.56 MA 1660 2L-35 MI 1963 6-414 2.25 MA 2638 2L-35 MI 2638 2L-35 MI	2L-35 6-# 9 1.00	2043 6-#10 1.27 MA 2513 3L-25 MI 3056 6-#11 1.56 MA 3461 3L-25 MI	0000	201		2L-45 8-#14 3.00 2L-45 8-# 8 1.05	1.33	4997 3E 11.05 MM 5825 8-#11 2.08 MA 3E MI	8-#14 3.00 3E	3E	8 1.05 S 1.33 S 1.33	8-#10 1.69 4L-25 8-#11 2.08	3430 84-25 3457 8-41-25 5060 8-418 5.33 MA 6859 4L-25 4L-25 4L-25 4L-25 HI		2L-55 10-#10 2.12 3L-45	(1) "0% fy" indicate
ly = 60,000 psi ∳P in kips	100% fy .1f'c Ag	A HO A HO	257 1407	2100 255 1589 102 2325 252 1820 102 2591 241 2031 102 2997 226 2574 102 4117 179 3854 102	261 1468 259 1706	2554 253 2261 102 2554 253 2261 102 2893 248 2615 102 3158 231 2917 102 3158 231 2917 102	206 3/18 238 3407 213 3816		2777 331 2040 130 3049 328 2314 130 3043 328 2314 130 3305 322 2572 130 3943 314 3229 2572 130 3943 314 3299 239 130	338 336 334 331	3710 1 3710 1	4540 321 4320 130 5074 310 4843 130	1030 130		3582 416 2564 160 3898 413 2882 160 4198 407 3187 160 4963 400 3956 160	423 2766 1 420 3187	418 3605 1 415 4123 1 407 4592 1 399 5784 1	411 5313 1 401 5975 1 387 7636 1	6624 413 6417 160 7451 401 7313 160	
f'c = 4,000 pai φ M in inch-kipa	25% fy 50% fy	eP et eP	422 1750 357	1712 433 1887 364 1857 445 2059 372 1995 458 2217 378 2336 454 2623 400 3138 588 3541 451	433 1670 365 450 1831 376 471 2020 369	1991 495 2224 403 1991 495 2224 403 2207 524 2481 421 22409 552 2718 436	609 2996 476 653 3325 501	COLUMNS 18" × 18"	2281 542 2516 459 2455 555 2721 467 2876 565 2916 472 3038 602 3406 494 4021 695 4579 552	2056 543 2256 461 2218 561 2447 472 2406 582 2670 485 2610 605 2913 500 2861 605 2913 500	563 3511 534 740 4246 580	3390 716 3833 576 3723 767 4238 602			2960 664 3268 566 3163 678 3507 573 3367 688 3739 578 3852 723 4315 600	685 3186 580 706 3445 593	33339 729 3726 608 3839 759 4083 627 4083 627 4083 627 4083 627 4083 627 4083 627 4083 627 4083 627 4084 4085 5290 690 642 642 642 642 642 642 642 642 642 642	841 4793 686 886 5275 714 1006 6485 791	4861 929 5548 740 6 5394 993 6175 777 7	
WNS 16"×16	Cap 0% fy	Ho do Ho do	588 1326 504	614 1422 518 648 1542 537 685 1666 554 773 1945 604 995 2598 734	599 1260 518 640 1373 542 688 1503 571	741 1643 603 809 1818 645 883 1993 684	970 2172 752 1081 2409 814	SQUARE TIED	744 1872 646 778 2016 665 815 2170 681 902 2510 730 1124 3312 858	728 1676 647 769 1810 671 817 1964 700 870 2132 732 930 2343 774	1012 2559 813 1187 3058 920	1100 2763 883 1210 3058 946 1261 3206 992	SOLARE TIED		888 2401 790 923 2570 808 959 2756 823 1047 3155 872	914 2325 816 962 2505 845	1015 2701 877 1084 2947 919 1157 3207 958 1332 3794 1065	1245 3434 1029 1355 3788 1092 1617 4613 1258	1406 3949 1140 1553 4401 1227	
SQUARE TIED COLUI Short columns, no sidesway Bars symmetrical in 4 faces	BARS RHO Max	-	1.23	4-19 1.56 967 4-10 1.98 1008 4-11 3.52 1127 4-118 6.25 1320	1.38 1.88	3.13 3.97 4.88	5.95		1.23 1.57 1.93 2.78 4.94	8-4 6 1.09 1254 8-7 1.48 1301 8-4 8 1.95 1354 8-4 9 2.47 1414 8-410 3.14 1414	3.85	12-410 4.70 1662 12-411 5.78 1750 16-410 6.27 1844				1.20	8-4 9 2.00 1886 8-410 2.54 1971 8-411 3.12 2045 8-414 4.50 2242 8-418 8.00 2718	3.81 4.68 6.75	16-#10 5.08 2398 16-#11 6.24 2545	

RH0 AH 4P 4P 1.05 2435 1083 1119 1.86 2501 1122 1119 3.31 3044 1429 1122 1.86 2551 1132 1112 1.81 2556 1245 2351 2.10 2555 1244 2556 3.15 2393 1337 1336 3.15 2393 1405 3233 3.15 2393 1515 556 5.16 3253 1736 556 5.16 3253 1737 555 5.16 3233 1738 5.15 3339 1596 5.16 3223 1738 5.25 3262 1727 5.25 3226 1382 1.39 3226 1382 2.133 3226 1667 2.55 4267 2111 5.55 4267 2111	968 982 982 982 11157 11157 11080 11080 11080 11080 11080 11181 11158 11330 11330 11330 11330 11330 11341 1414 1425 11350 1115000 111500 111500 1115000 1110000 1115000 11100000000	4789 472312 472312 472312 472312 472313 47243 47243 47243 47243 5705 5705 5705 5705 5705 5705 5705 570	oP oP oP 312 814 312 814 313 813 813 814 314 814 814 814 315 949 843 949 315 949 843 949 312 919 843 929 313 923 924 141 14 1201 147 121 14 1201 147 121 14 1201 123 926 222 929 926 1147 313 43 1134 55 313 43 1134 55 35 1153 55 1153 55 1153 55 1070 55 1073 55 1073	AH 4430 5360 5360 5963 4675 5983 5484 6472 5891 7839 7839 5891 7839	¢P 692 718 773	-			n	Axial
1.05 2435 1083 1.29 2500 1119 1.86 2545 1175 1.81 2374 1122 1.65 2555 1245 2.55 2393 1317 2.55 2393 1317 2.55 2393 1317 2.55 2393 1405 3.71 2793 1405 3.87 2938 1515 3.87 2938 1515 3.87 2938 1515 3.87 2938 1515 5.55 3223 1713 5.25 3262 1777 5.25 3262 1727 5.25 3262 1727 5.26 3331 1594 1.93 3126 1294 1.93 3122 1597 3.13 3523 1597 3.13 3525 1696 2.177 3344 1492	968 9825 9825 11031 1157 1036 10366 10366 10366 10366 11226 11303 13303 13303 13303 13303 13303 13303 13303 13303 13303 13303 13303 13303 1414 1421 11157 11	3992 4231 6136 6136 6136 3919 4732 5705 6875 6875 6573 6573 6573 6573 6573 6573 6573 65	818 819 949 949 943 867 867 867 1201 1201 1201 1134 1134 1134 1135 1137 1137 1137 1137 1137 1137 1137	4430 5369 5369 6963 6963 4355 4355 5484 5471 8871 5891 7839 7839 5491 7839	692 697 718 773		¢P	Ho		Load ØM
1.31 2374 1122 1.65 2555 1245 2.16 2555 1245 3.75 2439 1936 5.15 2398 1515 5.56 3298 1777 3.87 2938 1515 5.58 3298 1777 4.20 3050 1566 5.15 3298 1777 4.20 3050 1566 5.25 3262 1777 5.25 3262 1727 1.06 3180 1294 1.16 3180 1294 1.55 3381 1382 2.78 3323 1694 1.79 3323 1694 1.79 3323 1694 2.78 3323 1694 1.79 3323 1694 2.78 3323 1697 3.13 555 4267 2.16 3124 1492 2.55 3523 1697 3.13 555 4267 3.15 3523 1690 3.55 3573 1690 3.55 3573 1560 3.55 3575	1006 1036 1118 1226 1500 1181 1250 1330 1330 1330 1330 1330 1330 1330 13	3919 4190 4532 4532 5708 5708 5708 5708 5708 55705 55705 6875 6875 6559 5522 6559 5528 5528 5528 5528 5528 5528 5528 5	843 867 924 1201 1201 1002 1002 11147 11147 11153 11153 11153 11153 11153	4355 4676 5683 5484 6472 8871 5891 6450 7839 6749 6749		4890 5236 6114 8248	507 501 494 478	3532 3882 4765 6910	194 194 194 194	2535 3038 4235 7112
3.15 2799 1405 5.58 2338 1717 5.58 3050 1566 5.16 3223 1713 5.25 3262 1727 5.25 3262 1727 5.25 3262 1727 1.08 3180 1294 1.63 33381 1382 2.76 33331 1294 1.93 3323 1294 1.93 3323 1294 1.93 3323 1297 1.93 3323 1297 1.93 3324 1419 2.76 3323 1297 1.73 3323 1596 2.74 3324 1492 2.75 3523 1560 3.17 3525 1560 3.17 3525 1560 3.55 3523 1580 3.55 3523 1580 3.55 3523 1580 3.55 3523 1580 3.55 3576 1741	1191 1421 1421 1303 1303 1303 1303 11158 1130 1130 1130	5222 5705 6875 6875 6543 6559 6659 6659 6659 7390 7390	980 1147 1147 1153 1153 1153 973 973	5891 6450 7839 6749	/14 728 747 763 811 934	4803 5229 5771 5771 6293 7611 7611 10818	516 514 511 511 504 497 476	3887 4407 5012 5569 6969 10253	194 194 194 194 194	3131 3886 3886 4835 5772 8017 12476
5.15 3050 1566 5.16 3223 1713 5.25 3262 1727 1 10 3381 1284 1 108 3381 1284 1 108 3381 1284 1 108 3381 1284 1 108 3381 1284 1 108 3381 1284 1 108 3381 1284 1 1.08 3381 1284 1 1.08 3381 1284 1 1.10 3323 1297 1.139 3223 1297 1419 1 2.556 4267 2111 2.556 4267 2111 258 3.553 1580 1280 1280 1 2.556 4100 1952 1 3.533 1590 1741	1303 1391 1414 1156 1205 1330	5923 6543 6659 6659 6659 5228 5859 5859 5859	1070 1153 1153 973 1007	6749	808 836 916	6848 7583 9436	510 500 489	6326 7188 9173	194 194 194	6833 7998 10859
5.25 3262 1727 1.108 3180 1294 1.108 3181 1294 1.11.08 3381 1382 1.11.09 3032 1294 1.11.03 3033 1294 1.11.03 3032 1294 1.11.13 3032 1297 1.176 3243 1419 1.176 3443 1419 1.176 3424 1419 1.177 3343 1697 1.135 3125 1657 1.255 3573 1690 1.253 3573 1690 1.253 3573 1690 1.253 3573 1690 1.253 3573 1690 1.253 3573 1690 1.253 3795 1741	1414 1158 1158 1330 1330	6659 6659 ED COI 5859 5859 5859	1153 973 1007	1477	863 902	7988 8947	514 503	7627 8693	194	8755 10231
1 1.08 3180 1294 1 1.56 3381 1382 1 1.56 3381 1387 3 2.78 3381 1387 3 1.155 3381 1387 3 1.10 3032 1297 3 1.10 3032 1297 3 1.13 3135 1419 1 1.39 3243 1419 1 2.55 4267 2111 2 5.55 4257 1667 3 3.53 1690 1580 2 3.53 1580 1580 3 2.55 4100 1952 4 4.00 1952 1741	ARE 1156 1330	5228 5859 7390	973 1007	7618	924	9143	512	8912	194	10541
1 108 3180 1294 1 1.56 3381 1382 2 78 3329 1604 3 2.78 3329 1297 1 1.0 3032 1297 1 1.3 3126 1350 1 1.3 3278 1419 2 1.1 3344 1492 1 3.13 3555 1667 1 3.13 3555 1580 2 5.5 5.55 14192 3 3.55 1580 13.25 3 2.55 5.55 1580 3 2.55 3573 1690 3 2.55 3573 1690 3 2.53 3573 1690 3 3.55 3576 1741		5228 5859 7390	973 1007	24"	× 24"		1			
3 1.10 3032 1297 3 1.10 3032 1297 1 1.39 3126 1350 1 1.7 3344 1419 1 2.17 3345 1419 1 3.13 3525 1667 3 5.56 4267 2111 3 5.55 4267 2111 3 5.55 4267 2111 2 2.55 4267 2111 3 5.55 4267 2111 1 3.53 3521 1690 1 3.55 3573 1690 3 5.56 4100 1952 3 3.59 1741 356			1097	5810 6556 8374	827 847 902	6432 7422 9841	604 597 581	4668 5663 8096	230 230 230	3394 4746 8010
2.65 3522 1580 3.25 3673 1690 1 4.69 4100 1952 0 3.53 3796 1741	6 1215 4 1257 3 1295 9 1402 9 1677	4870 5174 5559 5955 6891 9168	994 1018 1048 1075 1154 1354	5416 5776 6233 6689 7805 10526	846 860 879 879 895 944 1068	5939 6416 7023 7616 9103 12737	622 620 617 617 603 585	4664 5266 6000 6649 8261 12056	230 230 230 230 230 230 230	3491 4341 5412 6481 9039 14554
3.53 3796 1741	5 1369 9 1432 6 1599	6332 6883 8207	1133 1178 1300	7138 7775 9345	941 970 1051	8231 9066 11159	617 608 598	7433 8420 10835	230 230 230	7803 9143 12407
16-#11 4.33 4009 1888 6308 16-#14 6.25 4544 2238 7714	3 1482 8 1569 4 1796	7118 7826 9543	1223 1288 1458	8101 8931 10982	998 1037 1147	9510 10600 13333	623 613 604	8927 10160 13189	230 230 230	9907 11732 15832
0-#10 4.41 4049 1902 6360 0-#11 5.42 4297 2086 7104	0 1592	7945 8817	1307	9076 10100	1060	10805	622 611	10387 11873	230	12008 14121
			1				•			
						£				

Sample Footing Spreadsheet

LOADING DL=	54		q(given)=	5000
LL= Pcn= TL=	49 103 143.2		Pce=	54
COLUMN Cdx(big)= Cdy(sm)= Ratio=	20 20 1		Afootingexst=	36
FSexst=	3.333333	<2?	*CHANGED FS	6 TO 3.5
FOOTING S B= L=	SIZE 8.577379 8.577379		Bfinal= Lfinal=	9 9
DIRECT SH q=	IEAR 12.27709	<164?	phi*4*(3000psi)^0.5
TWO WAY 328+q= Cdx+Cdy= 656+q= BL= CdxCdy=	340.2771 40		d= dfinalL= dfinalS= hfinal=	7.441323 8.625 7.875 12
WIDE BEAN Q= phiVnL= phiVnS=	1.767901 8.503388	>? >?	VL= VS=	5.211626 5.322119
REINFORC AsL=	0.436482	</td <td>AsLfinal=</td> <td>0.44</td>	AsLfinal=	0.44
aL= MuL=	0.862745 14.73865	</td <td>phiMn=</td> <td>16.22338</td>	phiMn=	16.22338

APPENDIX C: TAKEOFF INFO AND MEANS REFERENCES

Takeoff Spreadsheet, Concrete Structural System

CSI #	Description	Quantity	Units	Mat	Mat Cost	Labor	Labor Cost	Equip	Equip Cost	Daily Output	Crew	Duration	Total	OP	InclOP
2400900	Concrete Cols	33	CY	225	7425	370	12210	37.5	1237.5	16.2	C-14A	2.03704	20872.5	905	29865
	24x24 Average Size	34.1		225	7672.5	370	12617	37.5	1278.75	16.2		2.10234	21568.25	905	30860.5
	Minimum Reinforcement	34.1		225	7672.5	370	12617	37.5	1278.75	16.2		2.10234	21568.25	905	30860.5
		34.1		225	7672.5	370	12617	37.5	1278.75	16.2		2.10234	21568.25	905	30860.5
		75.9		225	17077.5	370	28083	37.5	2846.25	16.2		4.67941	48006.75	905	68689.5
		211.2			47520		78144		7920			13.0235	133584		191136
2401900	Flat Slab w/Drops, 20' Span Flat Slab w/Drops, 25'	72.1		242	17448.2	192	13843.2	18.75	1351.875	38.5	C-14B	1.87516	32643.28	610	43981
	Span	50		246	12300	169	8450	16.45	822.5	44.8		1.11732	21572.5	570	28500
		61.8		246	15202.8	169	10444.2	16.45	1016.61	44.8		1.37946	26663.61	570	35226
		61.8		246	15202.8	169	10444.2	16.45	1016.61	44.8		1.37946	26663.61	570	35226
		61.8		246	15202.8	169	10444.2	16.45	1016.61	44.8		1.37946	26663.61	570	35226
	Flat Slab w/Drops, 30'	102.3		246	25165.8	169	17288.7	16.45	1682.835	44.8		2.28348	44137.34	570	58311
	Span	239		250	59750	145	34655	14.15	3381.85	51		4.68719	97786.85	530	126670
		295.8		250	73950	145	42891	14.15	4185.57	51		5.8	121026.6	530	156774
		295.8		250	73950	145	42891	14.15	4185.57	51		5.8	121026.6	530	156774
		295.8		250	73950	145	42891	14.15	4185.57	51		5.8	121026.6	530	156774
		607.5		250	151875	145	88087.5	14.15	8596.125	51		11.9118	248558.6	530	321975
		2143.7			533997		322330		31441.725			43.4133	887769.1		1155437
0400550	One Way Beam, 25' Avg	07.0	CY	007	7000 4	455	40070	40	4054.0	45.0	0111	4 74400	04 400 0	4405	20000
2402550	Span	27.2	CY	287	7806.4	455	12376	46	1251.2	15.6	C14A	1.74136	21433.6	1125	30600
		20.4		287	5854.8	455	9282	46	938.4	15.6		1.30769	16075.2	1125	22950
		20.4		287	5854.8	455	9282	46	938.4	15.6		1.30769	16075.2	1125	22950
		20.4		287	5854.8	455	9282	46	938.4	15.6		1.30769	16075.2 29550	1125	22950
		37.5		287	10762.5	455	17062.5	46	1725	15.6		2.40385	29550	1125	42187.5
		125.9			36133.3		57284.5		5791.4			8.06828	99209.2		141638
2402850	Footings	798.2		242	193164	47	37515.4	0.26	207.532	81	C-14C	9.84946	230887.3	345	275379
												9.84946	230887.3		275379

\$TOT: 66.2862 1252240 1621952

Takeoff Spreadsheet, Composite Steel Structural System

260600	Columns, Supporting Roof													
	W10x33	252.7	LF 47	11876.9	2.11	533.197	1.38	348.726	1032		0.24486	12758.82	57	14403.9
	W10x39	53.2	47	2500.4	2.11	112.252	1.38	73.416	1032		0.05155	2686.068	57	3032.4
	W10x49	26.7	71	1895.7	2.21	59.007	1.45	38.715	984		0.02713	1993.422	83.5	2229.45
	W12x40	66.5	52.5	3491.25	2.11	140.315	1.38	91.77	1032		0.06444	3723.335	63	4189.5
	W12x45	13.3	52.5	698.25	2.11	28.063	1.38	18.354	1032		0.01289	744.667	63	837.9
	Columns, Supporting 3-4	412.4		20462.5		872.834		570.981			0.40087	21906.32		24693.2
	W10x33	239.4	47	11251.8	2.11	505.134	1.38	330.372	1032		0.23198	12087.31	57	13645.8
	W10x39	106.4	47	5000.8	2.11	224.504	1.38	146.832	1032		0.1031	5372.136	57	6064.8
	W10x45	106.4	47	5000.8	2.11	224.504	1.38	146.832	1032		0.1031	5372.136	57	6064.8
	W10x49	53.2	71	3777.2	2.21	117.572	1.45	77.14	984		0.05407	3971.912	83.5	4442.2
	W10x54	79.8	71	5665.8	2.21	176.358	1.45	115.71	984		0.0811	5957.868	83.5	6663.3
	W10x60	26.7	71	1895.7	2.21	59.007	1.45	38.715	984		0.02713	1993.422	83.5	2229.45
	W10x68	26.7	71	1895.7	2.21	59.007	1.45	38.715	984		0.02713	1993.422	83.5	2229.45
	W12x40	26.7	52.5	1401.75	2.11	56.337	1.38	36.846	1032		0.02587	1494.933	63	1682.1
	W12x45	26.7	52.5	1401.75	2.11	56.337	1.38	36.846	1032		0.02587	1494.933	63	1682.1
	W12x58	53.2	52.5	2793	2.11	112.252	1.38	73.416	1032		0.05155	2978.668	63	3351.6
	W12x65	53.2	91	4841.2	2.21	117.572	1.45	77.14	984		0.05407	5035.912	106	5639.2
	Columns, Supporting P- 2	798.4		44925.5	~ //	1708.584		1118.564			0.78497	47752.65		53694.8
	W10x33	26.7	47	1254.9	2.11	56.337	1.38	36.846	1032		0.02587	1348.083	57	1521.9
	W10x45	26.7	47	1254.9	2.11	56.337	1.38	36.846	1032		0.02587	1348.083	57	1521.9
	W10x49	438.9	71	31161.9	2.21	969.969	1.45	636.405	984		0.44604	32768.27	83.5	36648.2
	W10x54	53.2	71	3777.2	2.21	117.572	1.45	77.14	984		0.05407	3971.912	83.5	4442.2
	W10x68	93.1	71	6610.1	2.21	205.751	1.45	134.995	984		0.09461	6950.846	83.5	7773.85
	W10x88	53.2	71	3777.2	2.21	117.572	1.45	77.14	984		0.05407	3971.912	83.5	4442.2
	W12x65	53.2	91	4841.2	2.21	117.572	1.45	77.14	984		0.05407	5035.912	106	5639.2
	W12x79	26.6	91	2420.6	2.21	58.786	1.45	38.57	984		0.02703	2517.956	106	2819.6
	W12x96	39.9	125	4987.5	227	9057.3	1.49	59.451	960		0.04156	14104.25	144	5745.6
		811.5		60085.5		10757.2		1174.533			0.82318	72017.23		70554.6
6400010	Structural Steel Members, Roof													
	W8x10	32	10.45	334.4	3.63	116.16	2.38	76.16	600	E-2	0.05333	526.72	20.5	656
	W12x14	332.5	14.65	4871.13	2.48	824.6	1.62	538.65	880		0.37784	6234.375	22.5	7481.25
	W12x16	902.5	16.74	15107.9	2.48	2238.2	1.62	1462.05	880		1.02557	18808.1	25	22562.5
	W14x22	150	27	4050	2.2	330	1.44	216	990		0.15152	4596	35.5	5325
	W16x26	245	27	6615	2.18	534.1	1.43	350.35	1000		0.245	7499.45	35.5	8697.5
	W18x35	120	36.5	4380	3.28	393.6	1.58	189.6	960	E-5	0.125	4963.2	47.5	5700
	W18x40	360	42	15120	3.28	1180.8	1.58	568.8	960		0.375	16869.6	53.5	19260

		igan, Ad [.] 10, 2000			Signa	al Hi	ll Prof	essi	onal Ce	ente	er		seph Hen al Emphas		
		2142			50478.4		5617.46		3401.61			2.35326	59497.45		69682.3
	Structural Steel Members, 2-4														
	W8x10	25		10.5	262.5	3.63	90.75	2.38	59.5	600	E-2	0.04167	412.75	20.5	512.5
	W10x15	1080.5		23	24851.5	3.63	3922.215	2.38	2571.59	600		1.80083	31345.31	34.5	37277.3
	W10x22	35		23	805	3.63	127.05	2.38	83.3	600		0.05833	1015.35	34.5	1207.5
	W14x22	30		27	810	2.2	66	1.44	43.2	990		0.0303	919.2	35.5	1065
	W14x26	40		27	1080	2.2	88	1.44	57.6	990		0.0404	1225.6	35.5	1420
	W16x26	75		27	2025	2.18	163.5	1.43	107.25	1000		0.075	2295.75	35.5	2662.5
	W16x31	150		32.5	4875	2.42	363	1.59	238.5	900		0.16667	5476.5	41.5	6225
	W18x35	210		36.5	7665	3.28	688.8	1.58	331.8	960	E-5	0.21875	8685.6	47.5	9975
	W18x40	50		42	2100	3.28	164	1.58	79	960		0.05208	2343	53.5	2675
	W21x44	390		46	17940	2.96	1154.4	1.42	553.8	1064		0.36654	19648.2	57.5	22425
		2085.5			62414		6827.715		4125.54			2.85058	73367.26		85444.8
	Structural Steel Members, Park														
	W8x10	22.5	LF	10.5	236.25	3.63	81.675	2.38	53.55	600	E-2	0.0375	371.475	20.5	461.25
	W10x15	1927.5		23	44332.5	3.63	6996.825	2.38	4587.45	600		3.2125	55916.78	34.5	66498.8
	W10x19	1060		23	24380	3.63	3847.8	2.38	2522.8	600		1.76667	30750.6	34.5	36570
	W12x19	39.5		23	908.5	2.48	97.96	1.62	63.99	880		0.04489	1070.45	31.5	1244.25
	W12x22	40		23	920	2.48	99.2	1.62	64.8	880		0.04545	1084	31.5	1260
	W14x22	47.5		27	1282.5	2.2	104.5	1.44	68.4	990		0.04798	1455.4	35.5	1686.25
	W16x26	353		27	9531	2.18	769.54	1.43	504.79	1000		0.353	10805.33	35.5	12531.5
	W18x35	185		36.5	6752.5	3.28	606.8	1.58	292.3	960	E-5	0.19271	7651.6	47.5	8787.5
	W18x40	40		42	1680	3.28	131.2	1.58	63.2	960		0.04167	1874.4	53.5	2140
	W16x31	17		32.5	552.5	2.42	41.14	1.59	27.03	900		0.01889	620.67	41.5	705.5
	W21x50	25		52.5	1312.5	2.96	74	1.42	35.5	1064		0.0235	1422	64.5	1612.5
	W24x55	52.33		57.5	3008.98	2.84	148.6172	1.37	71.6921	1110		0.04714	3229.284	69.5	3636.94
	W24x62	150		65	9750	2.84	426	1.37	205.5	1110		0.13514	10381.5	78	11700
	W24x76	230		79.5	18285	2.84	653.2	1.37	315.1	1110		0.20721	19253.3	94	21620
		4189.33			122932		14078.46		8876.1021			6.17423	145886.8		170454
2403200	NonComposite Deck, Roof 22 Ga, 3" Deep	13335.5	SF	2.02	26937.7	0.36	4800.78	0.02	266.71	3600	E-4	3.70431	32005.2	2.92	38939.7
2405800	Composite Deck, 2-4 20 Ga, 3"	11469.5		1.71	19612.8	0.43	4931.885	0.03	344.085	3000		3.82317	24888.82	2.72	31197
	Composite														
	Deck, Park 20 Ga, 3"	22214.2		1.71	37986.3	0.43	9552.106	0.03	666.426	3000		7.40473	48204.81	2.72	60422.6
7001500	Poured Concrete on Deck, 2-4	123.9	СҮ	246	30479.4	13.55	1678.845	5.3	656.67	160	C-20	0.77438	32814.92	28	3469.2

	Poured Concrete on Deck, Park	240		246	59040	13.55	3252	5.3	1272	160		1.5	63564	28	6720
8401000	Weld Shear Connectors, 2- 4 3/4" Diameter, 5.5" Long, Park	1629 4603	Ea	0.62 0.62	1009.98 2853.86	0.72 0.72	1172.88 3314.16	0.29 0.29	472.41 1334.87	905 905	E-10	1.8 5.08619	2655.27 7502.89	2.35 2.35	3828.15 10817.1
7812	Cementitious Fireproofing On Corrugated Deck, 1"	11469.5 22214.2	SF	0.64 0.64	7340.48 14217.1	0.56 0.56	6422.92 12439.95	0.09 0.09	1032.255 1999.278	1250 1250	G-2	9.1756 17.7714	14795.66 28656.32	1.71 1.71	19612.8 37986.3
2402850	Footings	235.7	CY	242	57039.4	47	11077.9	0.26	61.282	81	C-14C	2.90988	68178.58	345	81316.5

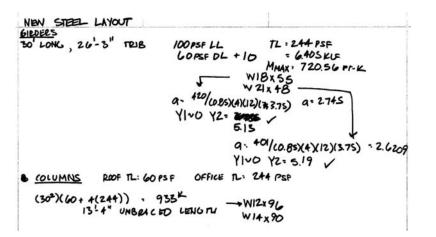
R.S. Means 2006 Cost Data

0010 0020	CONCRETE IN PLACE Including forms (4 uses), concrete, placement, reinforcing	R033053 -10									
0050	steel and finishing unless otherwise indicated	R033053		-							-
0300	Beams, 5 kip per L.F., 10' span	-50	C-14A	15.62	12.804	C.Y.	287	455	46	788	1,1
0350	25' span	R033053		18.55	10.782		298	385	39	722	1,0
0500	Chimney foundations, industrial, minimum	-60	C-14C	32.22	3.476		129	118	.66	247.66	3
0510	Maximum	R033105		23.71	4.724		152	160	.90	312.90	4
0700	Columns, square, 12" x 12", minimum reinforcing	-80	C-14A	11.96	16.722		305	595	60.50	960.50	1,4
0720	Average reinforcing	R033105		10.13	19.743		485	705	71.50	1,261.50	1,7
0740	Maximum reinforcing	-85		9.03	22.148		725	790	80	1,595	2,2
0800	16" x 16", minimum reinforcing			16.22	12.330		243	440	44.50	727.50	1,05
0820	Average reinforcing			12.57	15.911		410	565	57.50	1,032.50	1,48
0840	Maximum reinforcing			10.25	19.512		640	695	70.50	1,405.50	1,92
0900	24" x 24", minimum reinforcing		1000	23.66	8.453		207	300	30.50	537.50	76
0920	Average reinforcing			17.71	11.293		370	400	41	811	1,12
0940	Maximum reinforcing			14.15	14.134		585	505	51	1,141	1,52
1000	36" x 36", minimum reinforcing			33.69	5.936		182	211	21.50	414.50	57
1020	Average reinforcing			23.32	8.576		325	305	31	661	89
1040	Maximum reinforcing			17.82	11.223		545	400	40.50	985.50	1,30
1200	16" diameter, minimum reinforcing			31.49	6.351		236	226	23	485	66
1220	Average reinforcing			19.12	10.460		415	370	38	823	1,12
1240	Maximum reinforcing	1		13.77	14.524		630	515	52.50	1,197.50	1,60
1300	20" diameter, minimum reinforcing			41.04	4.873	-	238	174	17.60	429.60	57
1320	Average reinforcing	-		24.05	8.316		400	296	30	726	96
1340	Maximum reinforcing			17.01	11.758		630	420	42.50	1,092.50	1,42
1400	24" diameter, minimum reinforcing			51.85	3.857		223	137	13.90	373.90	49
1420	Average reinforcing			27.06	7.391		400	263	26.50	689.50	90
1440	Maximum reinforcing			18.29	10.935		620	390	39.50	1,049.50	1,37
1500	36" diameter, minimum reinforcing			75.04	2.665		224	95	9.60	328.60	41
1520	Average reinforcing			37.49	5.335		380	190	19.25	589.25	75
1540	Maximum reinforcing		-	22.84	8.757		600	310	31.50	941.50	1,225
1900	Elevated slabs, flat slab with drops, 125 psf Sup. Load, 20'	span	C-14B	38.45	5.410	120	242	192	18.75	452.75	610
1950	30' span			50.99	4.079		250	145	14.15	409.15	530
2100	Flat plate, 125 psf Sup. Load, 15' span	+	-	30.24	6.878	4	220	245	24	489	675

Signal Hill Professional Center

ilear -	0331	0 Structural Concrete	CR	REW	OUTPUT	LABOR- HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL 0&P	
	-		- 01	14B	49.60	4.194	C.Y.	226	149	14.55	389.55	510	240
240	2150	25' span Waffle const., 30" domes, 125 psf Sup. Load, 20' span -10	1		37.07	5.611		330	200	19.45	549.45	715	
	2300	Waffie const., 50 domes, 125 psi 5dp. coad, 20 span	-	+	44.07	4.720		294	168	16.40	478.40	620	
	2350	30' span -50 -50	11		27.38	7.597		410	270	26.50	706.50	930	
	2500	One way joists, 50 pans, 125 psi Sup. Load, 15 span		+	31.15	6.677		375	237	23	635	830	
	2550	25' span R033053			Contraction of			245	360	35	640	905	
	2700	One way beam & slab, 125 psf Sup. Load, 15' span -60	1		20.59	10.102		1125141251	22/21/21	1233	511.50	705	
1	2750	25' span R033105			28.36	7.334		225	261	25.50		00000	
		Two way beam & slab, 125 psf Sup. Load, 15' span -80	11		24.04	8.652		232	310	30	572	800	
	2900	25' span R033105		*	35.87	5.799	*	196	206	20	422	575	
8	2950	Elevated slabs including finish, not		1									
	3100	including forms or reinforcing	11-	-	-								1
5	3110		11	C-8	2613	.021	S.F.	1.18	.66	.27	2.11	2.67	
	3150	Regular concrete, 4" slab	H	1	2585	.022	1	1.74	.67	.27	2.68	3.31	1
1	3200	6" slab	11		2685	.021		.76	.65	.26	1.67	2.17	
£.,	3250	2-1/2" thick floor fill						1.04	.67	.27	1.98	2.54	
10	3300	Lightweight, 110# per C.F., 2-1/2" thick floor fill	11		2585	.022			.87	.35	1.92	2.57	
10	3400	Cellular concrete, 1-5/8" fill, under 5000 S.F.			2000	.028		.70			0.000	2.36	ł
13	3450	Over 10,000 S.F.			2200	.025		.66	.79	.32	1.77	0.000	
	3500	Add per floor for 3 to 6 stories high			31800	.002			.05	.02	.07	.11	4
100	3520	For 7 to 20 stories high		*	21200	.003			.08	.03	.11	.17	1
16	3800	Footings, spread under 1 C.Y.	C	-14C	38.07	2.942	C.Y.	175	99.50	.56	275.06	360	
1	Carl Contractor	Over 5 C.Y.	-	1	81.04	1.382		242	47	.26	289.26	345	
	3850		T	17	40	2.800		109	95	.53	204.53	278	
	3900	Footings, strip, 18" x 9", unreinforced			25	3 200		130	108	.61	238.61	325	1
		R0512	3										26
		Shop fabrid for 100-ton, 1-2 story project, bolted conn's										1	
		Steel concrete filled, extra strong pipe, 3-1/2" diameter		E-2	660	.085	L.F.	31.50	3.30	2.16	36.96	43	1
		4" diameter		1	780	.072	11	35	2.79	1.83	39.62	45.50	1
1200		5" diameter	++	+	1020	.055		41.50	2.14	1.40	45.04	51.50	1
雷		6 ^r diameter	11		1200	.047		55	1.82	1.19	58.01	65	
			H	+		.047		55	1.02	1.19		65.50	1
		8" diameter (***) For galvanizing, add		۲	1100	.051	+		1.98	1.30	58.28		
1							Lb.	.22			.22	.25	1
		For web ties, angles, etc., add per added lb.		Sswk		.008		.95	.34		1.29	1.68	1
		Steel pipe, extra strong, no concrete, 3" to 5" diameter		E-2	16000			.95	.14	.09	1.18	1.39	
3		6' to 12" diameter			14000	.004	•	.95	.16	.10	1.21	1.44	
		Stel pipe, extra strong, no concrete, 3" diameter x 12'-0"			60	.933	Ea.	117	36.50	24	177.50	220	
		4" diameter x 12'-0"		+	58	.966		171	37.50	24.50	233	283	1
		6" diameter x 12'-0"			54	1.037		325	40.50	26.50	392	460	
		8" diameter x 14'-0"	Ж	+	50	1.120		575	43.50	28.50	647	745	1
		10" diameter x 16'-0"			48	1.167		830	45.50	29.50	905	1.025	
		12" diameter x 18'-0"		+	40	1.244		1,125	45.50	31.50	1,205	1,025	ł
		Strettral tubing, square, A500GrB, 4" to 6" square, light section			1	11222201	+	and the second second	10000 C 10000		Call Perception and a	and all and a second	
		and the second se	H	_	11270	.005	Lb.	.95	.19	.13	1.27	1.54	1
				*	32000	.002	1	.95	.07	.04	1.06	1.22	
		Concrete filled, add	41				L.F.	3.47			3.47	3.81	
		Stuctural tubing, sq, 4" x 4" x 1/4" x 12'-0"		E-2	58	.966	Ea.	157	37.50	24.50	219	267	1
E.		6" x 6" x 1/4" x 12.0"			54	1.037		257	40.50	26.50	324	385	
		8" x 8" x 3/8" x 14'-0"		-	50	1.120		555	43.50	28.50	627	720	
		10" x 10" x 1/2" x 16'-0"			48	1.167		1,025	45.50	29.50	1,100	1,250	
		Structural tubing, rect, 5" to 6" wide, light section	11-	+	8000	.007	Lb.	.95	.27	.18	1.40	1.74	
		neavy section	11		12000	.005	1	.95	.18	.10	1.40	100 million (100 million)	
		7 to 10" wide, light section	h-	-								1.51	
		Heavy section			15000	.004		.95	.15	.10	1.20	1.41	
		Structural tubing root Et 2	1		18000		*	.95	.12	.08	1.15	1.36	
		Structural tubing, rect, 5" x 3" x 1/4" x 12'-0"			58	.966	Ea.	152	37.50	24.50	214	262	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			54	1.037		238	40.50	26.50	305	365	
		8" x 4" x 3/8" x 12'-0"	11		54	1.037		345	40.50	26.50	412	480	
		10" x 6" x 3/8" x 14'-0"			50	1.120		555	43.50	28.50	627	720	
		12" x 8" x 1/2" x 16:0"	++-	++	48	1.167	+	1.025	45.50	29.50	1,100	1,250	
			11	1	1080	.052	L.F.	25	2.02	1.32	28.34	32.50	
		• Stape; A992 steel, 2 tier, W8 x 24		10000									
		W Stepe; A992 steel, 2 tier, W8 x 24 W8 x 31	1	-	and the second second		Gel -						
		wape, A992 steel, 2 tier, W8 x 24	+		1080	.052	Ged.	32.50	2.02	1.32	35.84	40.50	
		W8 x 31	,		and the second second		Col.						

0020	Shon fah'd	for 100-ton, 1-2 story project,	bolted conn's10							0.00	15.41	10.40
0102		6x9	R051223	E-2	600	.093	L.F.	9.40	3.63	2.38		19.45
0302		8 x 10	-15		600	.093		10.45	3.63	2.38	16.46 39.05	20.50 45.50
0502	-	x 31			550	.102		32.50	3.96	2.59	29.01	34.50
0702	W	10 x 22			600	.093		23	3.63	2.50	57.55	66.50
0902	7	x 49			550	.102		14.65	2.48	1.62	18.75	22.50
1102		12 x 14			880	.064	++	23	2.48	1.62	27.10	31.50
1302		• x 22			880 880	.064		27	2.48	1.62	31.10	36
1502		x 26			640	.088	++	75	3.40	2.23	80.63	91.50
1702		x 72			990	.057		27	2.20	1.44	30.64	35.5
1902	۷	V 14 x 26			900	.062	++	31.50	2.42	1.59	35.51	40.50
2102		x 30			810	.069		35.50	2.69	1.76	39.95	46
2302		x 34			720	.078		125	3.03	1.98	130.01	146
2502		x 120	All and the later		1000	.056		27	2.18	1.43	30.61	35.5
2702	1	V 16 x 26			900	.062		. 32.50	2.42	1.59	36.51	41.5
2902		x 31 x 40			800	.070		42	2.72	1.78	46.50	53
3102	1	x 40 V 18 x 35		E-5	960	.083		36.50	3.28	1.58	41.36	47.5
3302		x 40			960	.083		42	3.28	1.58	46.86	53.
3502		x 50			912	.088		52.50	3.46	1.66	57.62	65.
3702		x 55			912	.088		57.50	3.46	1.66	62.62	71
3902		x 33 W 21 x 44			1064	.075		46	2.96	1.42	50.38	57.
4102		x 50			1064	.075		52.50	2.96	1.42	56.88	64.
4302 4502		x 62			1036	.077		65	3.04	1.46	69.50	78. 85
4502		x 68			1036	.077		71	3.04	1.46	75,50	69.
4702		W 24 x 55			1110	.072		57.50	2.84	1.37	61.71	78
5102		x 62			1110	.072		65	2.84	1.37	69.21	84.
5302		x 68			1110	.072		71	2.84	1.37	75.21	94
5502		x 76			1110	.072		79.50	2.84	1.37	83.71	103
5702		x 84			1080	.074		88	2.92	1.40	92.32	103
5902		W 27 x 94			1190	.067		98	2.65	1.27	101.92	120
		and the second sec	A MARCH AND A MARCH AND A MARCH AND A MARCH AND A MARCH AND A MARCH AND A MARCH AND A MARCH AND A MARCH AND A M									1 14 1
300 0010	METAL DEC	teel Deck CKING Steel decking	R0531	CRE		PUT HOL	rs uni		LABOR	re costs Equip.	TOTAL	INC
	METAL DEC	CKING Steel decking units, galv, 2 [*] deep, 20-20 ga	uge, over 15 squares -10	00	W OUT	PUT HOL	rs uni 2 S.F.	5.85	LABOR .89	EQUIP. .06	6.80	
300 0010 0200	METAL DEC	CKING Steel decking units, galv, 2 [*] deep, 20-20 ga 18-20 gauge	uge, over 15 squares	00	W OUT	PUT HOU	rs uni 2 S.F. 3	5.85	LABOR .89 .91	EQUIP. .06 .06	6.80 7.62	
300 0010 0200 0250	METAL DEC	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge	uge, over 15 squares -10	00	W OUT	PUT HOU	RS UNI 2 S.F. 3 3	5.85 6.65 6.85	LABOR .89 .91 .93	EQUIP. .06 .06	6.80 7.62 7.84	1NC
300 0010 0200 0250 0300	METAL DEC	CKING Steel decking units, galv, 2 [*] deep, 20-20 ga 18-20 gauge	uge, over 15 squares -10	00	W OUT	PUT HOU	RS UNI 2 S.F. 3 4	5.85 6.65 6.85 8.15	LABOR .89 .91 .93 .95	EQUIP. .06 .06 .06 .07	6.80 7.62 7.84 9.17	1NC
300 0010 0200 0250 0300 0320	METAL DEC Cellular	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge	uge, over 15 squares	00	W OUT 14 14 13 13 13	PUT HOU 60 .02 20 .02 90 .02 60 .02 30 .02	RS UNI 2 S.F. 3 3 4 4	5.85 6.65 6.85 8.15 9.05	LABOR .89 .91 .93 .95 .97	EQUIP. .06 .06 .07 .07	6.80 7.62 7.84 9.17 10.09	NC
300 0010 0200 0250 0300 0320 0340	METAL DEC Cellular	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 18-18 gauge 16-18 gauge 16-16 gauge leep, galvanized, 20-20 gauge	uge, over 15 squares	00	W OUT 144 144 139 130 133	PUT HOU 60 .02 20 .02 90 .02 50 .02 30 .02	RS UNI 2 S.F. 3 3 4 4 3 3	5.85 6.65 6.85 8.15 9.05 6.45	LABOR .89 .91 .93 .95 .97 .94	EQUIP. .06 .06 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 - 7.45	NC
300 0010 0200 0250 0300 0320 0340 0400	METAL DEC Cellular	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge teep, galvanized, 20-20 gauge 18-20 gauge	uge, over 15 squares	00	W OUT 14 14 13 13 13 13 13 13 13 13 13 13	PUT HOL 60 .02 20 .02 90 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02	RS UNI 2 S.F. 3 3 4 4 3 4 4 4	5.85 6.65 6.85 8.15 9.05 6.45 7.80	LABOR .89 .91 .93 .95 .97 .94 .96	EQUIP. .06 .06 .07 .07 .06 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500	METAL DEC Cellular	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 18-18 gauge 16-18 gauge 16-16 gauge leep, galvanized, 20-20 gauge	uge, over 15 squares	00	W OUT 144 144 139 130 131 135 135 125	PUT HOL 60 .02 20 .02 90 .02 60 .02 75 .02 50 .02 90 .02	RS UNI 2 S.F. 3 3 4 4 3 4 4 5	5.85 6.65 6.85 9.05 6.45 7.80 7.75	LABOR .89 .91 .93 .95 .97 .94 .96 1	EQUIP. .06 .06 .07 .07 .07 .06 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.83 8.82	1NC
300 0010 0200 0250 0300 0320 0320 0340 0400 0500	METAL DEC Cellular	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge	uge, over 15 squares	00	W OUT 144 144 139 130 133 135 135 125 125 125	PUT HOL 60 .02 20 .02 90 .02 50 .02 50 .02 50 .02 50 .02 50 .02 50 .02 50 .02 50 .02 30 .02	RS UNI 2 S.F. 3 3 4 4 3 4 5 5	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700	METAL DEC Cellular ? 3° c	XING Steel decking XING Steel decking 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-20 gauge 16-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge	uge, over 15 squares	00	W OUT 144 144 139 130 131 135 135 125	PUT HOL 60 .02 20 .02 90 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02	RS UNI 2 S.F. 3 3 3 4 4 4 5 5 5 3 3 3	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .08	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0500 0700 0800	METAL DEC Cellular ? 3° c	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 16-19 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-18 gauge	uge, over 15 squares	00	W OUT 144 144 144 139 139 139 139 139 129 123 115	PUT HOL 60 .02 20 .02 20 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02	RS UNI 2 S.F. 3 3 3 4 4 4 5 5 5 5 3 9	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.18	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .08 .08	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000	METAL DEC Cellular ? 3° c	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga	uge, over 15 squares	00	W OUT 4 144 144 144 139 136 133 135 135 125 115 110	PUT HOL 60 .02 20 .02 90 .02	RS UNI 2 S.F. 3 3 3 4 4 4 5 5 5 5 6 3 9 1	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95	LABOR .89 .91 .93 .95 .97 .94 .96 .1 .05 .1.13 .1.18 .1.24	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000 1100	METAL DEC Cellular ? 3° c	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge	uge, over 15 squares	00	W OUT 144 144 144 139 136 137 138 129 123 115 110 104	PUT HOL 60 .02 20 .02 20 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02	RS UNI 2 S.F. 3 3 3 3 4 4 3 4 5 5 6 5 8 9	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 8.75 9.55 9.55	LABOR .89 .91 .93 .95 .97 .94 .96 1.05 1.13 1.18 1.24 1.32	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000 1100 1200	METAL DEC Cellular ? 3" c 41/	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-18 gauge 16-16 gauge 18-20 gauge 18-18 gauge 18-18 gauge 18-18 gauge 18-18 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge	uge, over 15 squares	00	W OUT 14 144 139 130 130 130 130 130 130 130 130	PUT HOL 60 .02 20 .02 20 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02	RS UNI 2 S.F. 3 3 3 3 4 4 4 4 5 5 6 5 8 9	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9.55 9.89 8.95	LABOR .89 .91 .93 .95 .97 .94 .96 .1 .05 .1.13 .1.18 .1.24	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28	1NC
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000 1100 1200 1300	METAL DEC Cellular ? 3° c 41/ For s	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge	uge, over 15 squares	00	W OUT 14 144 139 130 130 130 130 130 130 130 130	PUT HOL 60 .02 20 .02 20 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02	RS UNI 2 S.F. 3 3 3 3 4 4 3 4 5 5 6 5 8 9	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15%	LABOR .89 .91 .93 .95 .97 .94 .96 1.05 1.13 1.18 1.24 1.32	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46	1NC
300 0010 0200 0250 0300 0320 0340 0500 0500 0500 0600 0700 0800 1000 1100 1200 1300 1500	METAL DEC Cellular ? 3" c 41/ For For	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-18 gauge 16-16 gauge 16-16 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-1	uge, over 15 squares <u>-10</u>	00	W OUT 14 144 139 130 130 130 132 122 123 125 120 124 125 120 125 120 125 125 125 125 125 125 125 125	PUT HOL 60 .02 20 .02 20 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02 30 .02	RS UNI 2 S.F. 3 3 3 3 4 4 3 4 5 5 6 5 8 9	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 1.13 1.18 1.24 1.32 1.38	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46	
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000 1100 1200 1300 1500 1700	METAL DEC Cellular ? 3° c 41/ For For	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge	uge, over 15 squares <u>-10</u>		W OUT 4 144 143 143 133 133 133 133 133 133 133 133 134 122 125 116 110 104 983 933	PUT HOL 500 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0300 .022 .0300 .022 .0300 .022 .0300 .033	RS UN 2 S.F. 3 3 4 4 3 4 4 5 5 5 3 9 1 8	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15%	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50%	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .10	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.822 9.87 10.76 10.26 10.28 11.46 12.43	
300 0010 0200 0250 0320 0320 0320 0320 0340 0400 0500 0600 0700 0800 1000 1100 1200 1300 1500 1700 1900	METAL DEC Cellular ? 3° c 41/ For For	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge acoustical deck, add cells used for ventilation, add multi-story or congested site, ,	uge, over 15 squares <u>-10</u>		W OUT 14 144 139 130 130 130 132 122 123 125 120 124 125 120 125 120 125 125 125 125 125 125 125 125	PUT HOI 600 .024 600 .024 600 .024 600 .026 600 .026 600 .026 600 .026 600 .026 600 .026 600 .022 600 .022 600 .022 600 .023 600 .023 600 .021	RS UN 2 S.F. 3 3 4 4 3 4 4 5 5 5 3 9 1 8 4 4 5 5 5 5 3 4 4 4 5 5 5 5 4 4 4 4 4 4 5 5 5 5 6 7 8 4 4 4 4 4 5 5 6 7 8 4 4 4 4 4 5 5 6 7 7 8 6 7 7 8 6 7 </td <td>5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15%</td> <td>LABOR .89 .91 .93 .95 .97 .94 .96 .96 .96 .97 .94 .96 .11 .1.13 .1.13 .1.13 .1.13 .1.13 </td> <td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .10</td> <td>6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43</td> <td></td>	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15%	LABOR .89 .91 .93 .95 .97 .94 .96 .96 .96 .97 .94 .96 .11 .1.13 .1.13 .1.13 .1.13 .1.13 	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .10	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43	
300 0010 0200 0250 0320 0320 0320 0320 0320 0320 0320 0400 0500 0600 0700 0800 1000 1100 1200 1300 1500 1700 1900 2100	METAL DEC Cellular ? 3" c 41/ For For c For c	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-18 gauge 16-16 gauge 16-16 gauge accustical deck, add accustical deck, add accustical deck, add	uge, over 15 squares0		W OUT 4 144 144 144 133 133 133 133 133 133 133 133 134 122 125 115 110 104 988 933 450 450	PUT HOI 600 .024 600 .024 600 .024 600 .022 600 .022 600 .022 600 .022 600 .022 600 .022 600 .022 600 .022 600 .022 600 .023 600 .023 600 .024 600 .0004	RS UN 2 S.F. 3 3 4 4 3 4 5 5 5 5 3 4 1 1 2 S.F.	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15%	LABOR .89 .91 .93 .95 .97 .97 .94 .96 .1 1.05 1.13 1.13 1.13 1.13 1.24 1.32 1.38 50% 29 .25	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43	
300 0010 0200 0250 0300 0320 0340 0400 0500 0700 0700 0700 0700 0700 1200 1300 1500 1700 1900 22100 2400	METAL DEC Cellular ? 3" c 41/ For For c For c	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 gg 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-18 gauge 16-18 gauge 16-19 gauge 16-10 gaug	uge, over 15 squares <u>-10</u>		W OUT 4 144 144 139 130 133 133 133 122 122 122 122 122	PUT HOL 500 .022 500 .022 200 .022 300 .022 300 .022 300 .022 300 .022 300 .022 300 .022 300 .023 300 .033 50 .033 00 .030 00 .000 00 .004	RS UN 2 S.F. 3 3 4 4 3 4 4 4 5 5 5 5 8 4 4 4 4 4 5 5 5 5 6 5 7 8 4 4 4 4 4 4 4 4 5 5 5 5 6 5 7 4 4 4 4 4 4 4 5 5 6 5 7 7 8 4 4 4 4 4 4 4 4 4 5 5 6 5 </td <td>5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9.55 9.8.95 10.05 10.95 15% 15% 1.47 1.47 1.73</td> <td>LABOR .89 .91 .93 .95 .97 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% 29 .25 .33</td> <td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .09 .09 .09 .10 .02 .02 .02</td> <td>6.80 7.62 7.84 9.17 10.09 7.74 8.83 8.83 8.83 9.87 10.76 10.22 10.22 10.22 10.22 11.46 12.43</td> <td></td>	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9.55 9.8.95 10.05 10.95 15% 15% 1.47 1.47 1.73	LABOR .89 .91 .93 .95 .97 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% 29 .25 .33	EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .09 .09 .09 .10 .02 .02 .02	6.80 7.62 7.84 9.17 10.09 7.74 8.83 8.83 8.83 9.87 10.76 10.22 10.22 10.22 10.22 11.46 12.43	
300 0010 0200 0200 0300 0320 0340 0400 0500 0500 0600 0700 0800 1000 1100 1200 1300 1500 1700 1900 2400 2600	METAL DEC Cellular ? 3" c 4-1/ For For For Open typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-20 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-10 g	uge, over 15 squares0		W OUT 4 144 144 132 133 133 133 133 122 122 122	PUT HOL 500 .022 500 .022 900 .022 900 .022 900 .022 900 .022 900 .022 900 .022 900 .022 900 .022 900 .023 900 .033 900 .033 900 .000 900 .000 900 .000	RS UN 2 S.F. 3 3 3 3 4 4 4 4 5 5 5 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 1.5% 1.47 1.47 1.24	LABOR .89 .91 .93 .95 .97 .97 .96 .1 1.05 1.13 1.18 1.24 1.32 1.38 .0% .29 .25 .33 .30	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .08 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43	
300 0010 0200 0200 0300 0300 0340 0400 0500 0600 0700 0800 1000 1100 1200 1300 1500 1700 1900 24	METAL DEC Cellular ? 3" c 4-1/ For For For Open typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-17 gauge 16-18 gauge 16-19 gauge 16-19 gauge 16-19 gauge 16-10 gaug	uge, over 15 squares0		W OUT 4 144 144 144 144 144 133 136 133 136 133 137 134 132 1252 115 110 104 988 938 450 510 3866 4300 3800 3800	PUT HOL 50 .02 50 .02 20 .02 90 .02 90 .02 50 .02 50 .02 50 .02 50 .02 50 .02 50 .02 50 .03 5 .03 0 .000 0 .000 0 .000 0 .000	RS UN 2 S.F. 3 3 3 3 4 4 4 4 5 5 3 3 4 4 5 5 3 3 4 4 5 5 3 3 4 4 5 5 3 4 4 4 4 4 5 5 3 4 4 4 4 4 4 4 4 4 4 4 5 5 3 4 4 4 5 5 6 4 4 4 4 4 5 5 6 5 7 5 </td <td>5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.24 2.24</td> <td>LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% .29 .25 .33 .30 .34</td> <td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09</td> <td>6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 1.243</td> <td></td>	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.24 2.24	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% .29 .25 .33 .30 .34	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 1.243	
300 0010 0200 0250 0300 0320 0340 0400 0500 0600 0700 0800 1000 1000 1000 1100 1200 1300 1500 1700 1900 2100 2400 2600 2700 2900	METAL DEC Cellular ? 3" c 4-1/ For For Open typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-18 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge acoustical deck, add cells used for ventilation, add multi-story or congested site, r e, galv, 1-1/2" deep wide nib, Over 500 squares 18 gauge, under 50 squares 18 gauge, under 50 squares	uge, over 15 squares0		W OUT 4 144 144 144 144 144 133 133 1337 1332 1337 1322 1222 122 115 110 104 988 933 938 450 510 3866 4300 4300 4300	PUT HOU 50 .022 20 .022 30 .022 50	RS UN 2 S.F. 3 3 3 3 4 4 4 4 5 5 3 3 1 - 2 S.F.	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15% 15% 1.47 1.47 1.06	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% 29 .25 .33 .30 .34 .30	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .10 .02 .02 .02 .02 .02 .02 .02	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 11.43 1.2.43 1.33 2.08 1.56 2.60 1.93	
300 0010 0200 0250 0300 0320 0340 0300 0300 0320 0340 0500 0500 0500 0700 0800 1000 1000 1200 1300 1500 1500 1700 2000 2400 2600 2700 2900 3000 3000	METAL DEC Cellular ? 3" c 4-1/ For For Open typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 18-20 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 16-16 gauge accustical deck, add accustical deck, add accustical deck, add accustical deck, add coustical deck, add 20 gauge, under 50 squares Over 500 squares 18 gauge, under 50 squares Over 500 squares	uge, over 15 squares0		W OUT 4 144 144 144 143 133 133 133 133 133 123 125 123 125 124 144 133 133 133 133 125 125 121 110 104 984 933 933 4500 510 5100 510 5100 386 4300 3800 4300 3700	PUT HOU 500 .022 500 .02	RS UN 2 S.F. 3 4 4 4 5 5 5 5 8 9 1 5 8 5 1 5 </td <td>5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15% 1.47 1.06 1.73 1.24 2.24 1.61 3.01</td> <td>LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 1.38 50% .29 .25 .33 .30 .30 .35</td> <td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07</td> <td>6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.78 1.33 2.08 1.56 2.60 0.193 3.38</td> <td></td>	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15% 1.47 1.06 1.73 1.24 2.24 1.61 3.01	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 1.38 50% .29 .25 .33 .30 .30 .35	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.78 1.33 2.08 1.56 2.60 0.193 3.38	
300 0010 0200 0200 0300 0340 0300 0340 0400 0500 0500 0600 0700 0800 1000 1000 1100 1200 1200 1300 1500 1900 2100 2400 2600 2700 3000 3050 3100 3200	METAL DEC Cellular ? 3" c 41/ For For For For Open typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 18-18 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 18-10 gauge 18-10 gauge 19-10 gauge 0 yer 500 squares 18 gauge, under 50 squares 0 Ver 500 squares 16 gauge, under 50 squares 0 Ver 500 squares 16 gauge, under 50 squares 0 Ver 500 squares	uge		W OUT 4 144 144 144 144 144 133 133 1337 1332 1337 1322 1222 122 115 110 104 988 933 938 450 510 3866 4300 4300 4300	PUT HOL 50 .02 50 .0	RS UN 2 S.F.7 3 3 3 4 4 4 3 4 4 4 5 5 5 5 8 9 1 1 2 S.F. 1 1 2 S.F.	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 10.95 15% 15% 1.47 1.47 1.06	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% 29 .25 .33 .30 .34 .30	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .10 .02 .02 .02 .02 .02 .02 .02	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 11.43 1.2.43 1.33 2.08 1.56 2.60 1.93	
300 0010 0200 0250 0300 0320 0340 0300 0300 0300 0300 0300 0300 0300 0300 0300 0300 0600 0700 0800 1000 1000 1200 1300 1500 1700 1900 2100 2400 2600 3000 3050 3050 3200	METAL DEC Cellular ? 3" c 41/ For For For Open typ 3" de	CKING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-	uge		W OUT 4 144 144 144 143 133 133 133 133 133 123 122 123 116 104 988 933 933 4500 5100 3860 4300 4300 33800 4300 3400	PUT HOL 60 .02 50 .00 50 .0	RS UN 2 S.F.7 3 3 3 4 4 4 3 4 4 4 5 5 5 5 8 9 1 1 2 S.F. 1 1 2 S.F.	5.85 6.65 6.85 7.80 7.75 8.75 9.55 9 8.95 10.05 15% 15% 1.47 1.06 1.73 1.24 2.24 1.61 3.001 2.17	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.138 1.14 1.32 1.38 50% .29 .25 .33 .30 .34 .35 .31	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.822 9.87 10.76 10.26 10.28 11.46 12.43 1.78 1.33 2.08 1.56 2.60 1.93 3.38 2.50	
300 0010 0200 0200 0250 0300 0320 0340 0400 0500 0500 0500 0600 0700 0800 1000 1200 1300 1500 1700 1900 2100 2400 2600 2700 3000 3050 3100 3200 3200 3200 3200	METAL DEC Cellular ? 3° c 41/ For For For For Solo Open typ 3° de 3° de	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-20 gauge 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, add coustical deck, add coustical deck, add colls used for ventilation, add multi-story or congested site, i e, galv., 1-1/2" deep wide rib, Over 500 squares 20 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 gauge, under 50 squares	uge		W OUT 4 144 14: 144 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 13: 14: 14: 14: 14: 13: 13: 13: 13: 13: 13: 13: 14: 10: 10: 10: 380: 4: 30: 3: 13: 3: 13: 3: 13: 3: 14: 10: <	PUT HOL 60 .022 20 .024 20 .025 20	RS UN 2 S.F.7 3 3 3 4 4 4 3 4 4 4 5 5 5 5 8 9 1 1 2 S.F. 1 1 2 S.F.	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.05 10.05 10.05 10.05 10.5% 15% 1.47 1.47 1.06 1.73 1.24 2.24 1.61 3.01 2.17 2.02	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.138 1.14 1.32 1.38 50% .29 .25 .33 .30 .34 .35 .31	EQUIP: .06 .06 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.822 9.87 10.76 10.26 10.28 11.46 12.43 1.78 1.33 2.08 1.56 2.60 1.93 3.38 2.50	
300 0010 0200 0250 0300 0320 0340 0300 0300 0300 0300 0300 0300 0300 0300 0300 0400 0500 0500 0700 0800 1000 1200 1300 1500 1700 1900 2100 2400 2600 2700 3000 3050 3100 3200 3200	METAL DEC Cellular ? 3" c 41/ For For For For for for 0pen typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-16 gauge leep, galvanized, 20-20 gauge 18-20 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 16-16 gauge 12" deep, galvanized, 20-20 gauge 18-18 gauge 16-16 gauge 12" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge, under 50 squares 20 gauge, under 50 squares Over 500 squares 18 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 gauge, under 50 squares 16 squares 16 gauge, under 50 squares 16 rest	uge		W OUT 4 144 144 144 133 133 133 133 133 133 122 122 122 122 1101 104 988 933 9386 4500 5100 3866 4300 3300 3300 3700 4200 3600 10 9	PUT HOL 60 .022 20 .024 20 .025 20	RS UN 2 S.F. 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	5.85 6.65 6.85 9.05 6.45 7.80 7.75 8.75 9.55 9 8.95 10.05 10.05 10.05 10.05 10.05 10.5% 15% 1.47 1.47 1.06 1.73 1.24 2.24 1.61 3.01 2.17 2.02	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% .29 .25 .33 .30 .34 .30 .35 .31 .31 .36	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .09 .09 .09 .09 .09	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.243 1.243 1.243 1.250 2.60 1.93 3.38 2.50 2.40	
300 0010 0200 0250 0300 0320 0320 0340 0400 0500 0500 0600 0700 0800 1000 1000 1200 1300 1500 1700 2200 2600 2700 2900 3050 3100 3200 3200 3050 3100	METAL DEC Cellular ? 3" c 41/ For For For For for 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ 00pen typ	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 18-20 gauge 18-20 gauge 18-18 gauge 16-16 gauge 18-16 gauge 18-16 gauge 18-16 gauge 18-16 gauge 18-16 gauge 19-1	uge		W OUT 4 144 144 144 133 133 133 133 133 133 122 122 122 122 121 110 100 988 450 510 386 430 4300 3400 4200 3600 10 9 9 9	PUT HOL 600 .022 200 .02	RS UN 2 S.F.7 3 3 4 4 4 4 3 4 4 4 5 5 5 5 5 5 5 5 5 5 6 7 8 9 9 1 1 ↓ 7 Ea 17 Ea	5.85 6.65 6.85 7.80 7.75 8.75 9.55 9 10.05 10.95 10.95 10.95 10.95 15% 1.47 1.47 1.24 1.47 1.24 1.61 3.01 2.17 2.02 4.1	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.	EQUIP. .06 .06 .07 .07 .07 .07 .07 .07 .07 .07	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.1.46 12.43 1.1.78 1.33 2.08 1.56 2.60 0.1.93 -3.38 2.50 2.40 	
300 0010 0200 0200 0250 0300 0320 0340 0400 0500 0500 0600 0700 0600 0700 0800 1000 1000 1200 1300 1500 1700 1900 2100 2400 2600 2700 3000 3050 3050 3050 3200 3200 3200	METAL DEC Cellular ? 3" c 3" c 4-1/ For For For typ Open typ Open typ 3" de 3" de 3" de 3000 WELD S 0020 3000	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge accustical deck, add cells used for ventilation, add multi-story or congested site, r e, galv, 1-1/2" deep wide rib, Over 500 squares 20 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares 3/4" diameter, 3:3/16" long <td>uge</td> <td></td> <td>W OUT 4 144 144 144 133 133 133 133 133 133 134 133 135 122 122 122 110 104 980 380 450 510 3860 4300 4200 3600 3600 3600 10 9 9 9</td> <td>PUT HOL 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 75 .02 60 .02 60 .03 0 .03 0 .03 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 <</td> <td>RS UN 2 S.F. 3 3 4 4 3 4 4 4 5 5 5 5 5 5 6 7 8 9 9 9 1 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7</td> <td>5.85 6.65 6.85 7.80 7.75 8.75 9.55 9.89 10.05 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 15% 1.47 1.06 1.73 1.24 2.24 1.61 3.01 2.17 2.02 4.1 4.1 4.1 4.3</td> <td>LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.18 1.24 1.32 1.38 .29 .25 .33 .30 .34 .30 .35 .31 .35 .31 .36 .68 .69</td> <td>EQUIP: .06 .06 .07 .07 .07 .07 .07 .08 .09 .09 .09 .09 .09 .09 .09 .09</td> <td>6.80 7.62 7.84 9.17 10.09 7.45 8.832 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.1.46 12.43 1.33 2.08 1.56 2.60 1.93 3.38 2.50 2.40 3.37 1.40</td> <td></td>	uge		W OUT 4 144 144 144 133 133 133 133 133 133 134 133 135 122 122 122 110 104 980 380 450 510 3860 4300 4200 3600 3600 3600 10 9 9 9	PUT HOL 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 60 .02 75 .02 60 .02 60 .03 0 .03 0 .03 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 <	RS UN 2 S.F. 3 3 4 4 3 4 4 4 5 5 5 5 5 5 6 7 8 9 9 9 1 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	5.85 6.65 6.85 7.80 7.75 8.75 9.55 9.89 10.05 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 15% 1.47 1.06 1.73 1.24 2.24 1.61 3.01 2.17 2.02 4.1 4.1 4.1 4.3	LABOR .89 .91 .93 .95 .97 .94 .96 .1 1.05 .1.13 1.18 1.24 1.32 1.38 .29 .25 .33 .30 .34 .30 .35 .31 .35 .31 .36 .68 .69	EQUIP: .06 .06 .07 .07 .07 .07 .07 .08 .09 .09 .09 .09 .09 .09 .09 .09	6.80 7.62 7.84 9.17 10.09 7.45 8.832 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 1.1.46 12.43 1.33 2.08 1.56 2.60 1.93 3.38 2.50 2.40 3.37 1.40	
300 0010 0200 0200 0250 0300 0320 0340 0400 0500 0500 0500 0700 0800 1000 1000 1200 1300 1200 1500 1700 1900 2000 3000 3050 3100 3200 3200	METAL DEC Cellular ? 3" c 3" c 4-1/ For For For Open typ 0010 WELD S 0020 0030 0030 0030 0030 0030	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 18-18 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge 2" deep, galvanized, add cells used for ventilation, add multi-story or congested site, i e, galv, 1-1/2" deep wide rib, Over 500 squares 20 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares Over 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squares 0 ver 500 squar	uge		W OUT 4 144 144 144 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 140 933 10 9 9 9 9 9	PUT HOL 600 .022 .0200 .024 .0200 .024 .0200 .024 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0200 .022 .0300 .023 .0300 .0303 .0300 .0303 .0300 .0303 .0300 .0303	RS UN 2 S.F. 3 3 4 4 3 4 4 4 5 5 5 5 5 7 8 9 9 1 1 1 8 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.66 1.73 1.24 2.24 1.61 3.01 2.17 2.02 4.1 4.3 4.43 4.43	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.24 1.32 1.38 50% .29 .25 .33 .30 .34 .30 .34 .30 .35 .31 .35 .31 .36 .69 .69	EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 .09 .09 .09 .09 .00 .02 .02 .02 .02 .02 .02 .02	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.26 10.26 10.26 10.28 11.46 12.43 11.46 12.43	1NC
300 0010 0200 0200 0250 0300 0320 0340 0340 0500 0500 0500 0700 0800 1000 1000 1200 1300 1200 1500 1700 1900 2100 2400 2600 3000 3050 3100 3200 3050 3100 3200 3050 3100 3200 0	METAL DEC Cellular ? 3" c 3" c 4-1/ For For For typ Open typ Open typ 3" de 3" de 3" de 3000 WELD S 0020 3000	XING Steel decking units, galv, 2" deep, 20-20 ga 18-20 gauge 18-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-18 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 16-16 gauge 2" deep, galvanized, 20-18 ga 16-16 gauge accustical deck, add cells used for ventilation, add multi-story or congested site, r e, galv, 1-1/2" deep wide rib, Over 500 squares 20 gauge, under 50 squares Over 500 squares 16 gauge, under 50 squares over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares in Over 500 squares 3/4" diameter, 3:3/16" long <td>uge</td> <td></td> <td>W OUT 4 144 144 144 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 134 133 135 125 116 104 933 933 933 933 934 933 935 934 936 933 937 934 938 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934</td> <td>PUT HOL 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 7 .03 7 .03 7 .03 7 .00 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 <!--</td--><td>RS UN 2 S.F. 3 3 4 4 4 5 5 5 3 3 4 4 4 1 5 5 5 7 7 7 7 7 7 7 7 7</td><td>5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.24 2.24 1.61 3.01 2.17 2.02 2.02 4.11 4.3 4.6 4.3</td><td>LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.22 1.38 50% .29 .25 .33 .30 .34 .30 .35 .31 .36 .68 .69 .69 .70</td><td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 .09 .09 .09 .09 .09 .02 .02 .02 .02 .02 .02 .02 .02</td><td>6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 2.60 1.93 3.38 2.56 2.60 1.93 3.38 2.50 2.40 2.40 1.43 1.37 1.40 1.43</td><td></td></td>	uge		W OUT 4 144 144 144 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 134 133 135 125 116 104 933 933 933 933 934 933 935 934 936 933 937 934 938 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934 939 934	PUT HOL 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 600 .02 7 .03 7 .03 7 .03 7 .00 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 0 .000 </td <td>RS UN 2 S.F. 3 3 4 4 4 5 5 5 3 3 4 4 4 1 5 5 5 7 7 7 7 7 7 7 7 7</td> <td>5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.24 2.24 1.61 3.01 2.17 2.02 2.02 4.11 4.3 4.6 4.3</td> <td>LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.22 1.38 50% .29 .25 .33 .30 .34 .30 .35 .31 .36 .68 .69 .69 .70</td> <td>EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 .09 .09 .09 .09 .09 .02 .02 .02 .02 .02 .02 .02 .02</td> <td>6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 2.60 1.93 3.38 2.56 2.60 1.93 3.38 2.50 2.40 2.40 1.43 1.37 1.40 1.43</td> <td></td>	RS UN 2 S.F. 3 3 4 4 4 5 5 5 3 3 4 4 4 1 5 5 5 7 7 7 7 7 7 7 7 7	5.85 6.65 6.85 9.05 7.80 7.75 8.75 9.55 9 8.95 10.05 10.95 15% 15% 1.47 1.47 1.24 2.24 1.61 3.01 2.17 2.02 2.02 4.11 4.3 4.6 4.3	LABOR .89 .91 .93 .95 .97 .94 .96 1 1.05 1.13 1.18 1.22 1.38 50% .29 .25 .33 .30 .34 .30 .35 .31 .36 .68 .69 .69 .70	EQUIP. .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08 .08 .09 .09 .09 .09 .09 .02 .02 .02 .02 .02 .02 .02 .02	6.80 7.62 7.84 9.17 10.09 7.45 8.83 8.82 9.87 10.76 10.26 10.28 11.46 12.43 11.46 12.43 2.60 1.93 3.38 2.56 2.60 1.93 3.38 2.50 2.40 2.40 1.43 1.37 1.40 1.43	


200		Т	DAILY	LABOR-		0.000000000	2006 BAR	E COSTS		TOT
	07812 Cementitious Fireproofing	CREW	OUTPUT		UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL
60	1300 Difficult access, minimum	G-2	225	.107	S.F.	.48	3.12	.52	4.12	
00	1400 Maximum	+	130	.185	+	.53	5.40	.90	6.83	
	1500 Intumescent epoxy fireproofing on wire mesh, 3/16" thick								1. (123)	
	1550 1 hour rating, exterior use	G-2	136	.176	S.F.	5.55	5.15	.86	11.56	
	1600 Magnesium oxychloride, 35# to 40# density, 1/4" thick		3000	.008		1.17	.23	.04	1.44	
	1650 1/2" thick		2000	.012		2.35	.35	.06	2.76	
	1700 60# to 70# density, 1/4" thick		3000	.008		1.55	.23	.04	1.82	
	1750 1/2" thick		2000	.012		3.12	.35	.06	3.53	
	2000 Vermiculite cement, troweled or sprayed, 1/4" thick		3000	.008		1.06	.23	.04	1.33	
	2050 1/2" thick		2000	.012	+	2.10	.35	.06	2.51	
	9000 Minimum labor/equipment charge	+	3	8	Job		234	39	273	1
462 0010 EXC	VATION, STRUCTURAL		U44	*		1.4	9 5.		0.12	10
0015 H	and, pits to 6' deep, sandy soil R312316	-	-					6	.74	
0020							-	-		
0030		8		C.Y.		27.50	1		1000	
0040			00			69.50	-	27.		125
0050		2 3.3				92.50		69.5	and the second se	
0100		3 5				139		92.5	0 14	
0200	Heavy soil or clay Pits to 2' deep, normal soil 1 Clab 4	- 0.01	57			185		139	216	能的
0210		2				55		185	289	100
0220						46.50		55	85.	1
0230		1.66				46.50		46.50	- 12	6-3
0300	Heavy clay 18	2.222				62		46.50	72	
0500	Vits 6' to 12' deep, sandy soil	3.333		1	-			62	96	1001
	Fleavy soil or clay	1.600		1		92.50	T	92.50	14	E
0900	ts 12' to 18' deep, sandy soil 3	2.667		-	-	44	-	44	68	
	neavy soil or clay	2						73	114	E /
Thank I	rimming, bottom of excavation	4	-	-		55		55	85.50	
J	pes and sides B-2 2400	.017	S.F.			110		110	171	1. 1
AIG NO	und obstructions 2400	.017				.46		.46	1/1	
1300 Hand lo	ading trucks from stock pile, sandy soil	5	B.C.Y.			.46		.46	14	
	I Lian I 12 I	.667	1			139		139	72	
I OI WEL	or muck hand exception while a second s	1	11			18.25		18.25	216	
		-+	%		-	27.50		27.50	28.50	1
wachine	excavation, for spread and matrix B-9 3.40 1	1.765 E	ic.y					50%	42.50	
6030 Com	mall building foundations			-	1	325	43.50	368.50	50%	t
Lom	non earth, hydraulic backhoo 1 /0 0 V	1						000.00	560	
		291 B	0.4	_					100	H
1040	CV hushed	78 B.	C.Y.	a series of		9.55	6.10	15.00		
1.	1000	48				5.00	5.30	15.65	21.50	2
060	100 .1	48					0.00	11.10	1475	

APPENDIX D: HAND STEEL CALCULATIONS UNDER ROOF GARDEN AND WITH NEW COLUMN LAYOUT

Under Roof Garden

FLOWER CARP	ET. OL = 10 PSF + 18 PSF	DL . 10 PSF+18 PSF
	Hr neg.	LL- SOPER
	SL+ 30 PSF	SL= 30PSF
	TL:12(28)+16(30) + 82 PSF	TL+1.2(28)+0S(30)+1.6(50) - 128.6 RSP
	(82)(18.75 TUB) = 1.54 KUF	2.42 KLP
	MMAX= \$ (1.54)(302) = 173.5 M-K	
لم 	DHANUAL WIAX30 NON COMPOS.	WI6x40
AROMATIC GA	ROBN OL 10 PSF+24	DL . 34
	LL-neg.	11-50
	SL-30	SL. 30
	TL. 89 PSF	TL- 136 PSF
	MMAX= 188 17-14-	MMAX · 287 FT-K
	WILX31	WIBX40
		M COMPOSITE
SAVANNAH	DL: HORF	DL: 46 +40 MMX = 317 FT.
	LL : vey .	11:50
	SL · 30	SL: 30 W21×44
	TL : 104 PSF	12- 15- 15- 219.8
	MHAX. 220FT-V	MMAX: SHE FT-K
	(OMPOSITE SYSTEM W 3" DECK + YI-0, Y2. 4.70	35 CONC. WAT22
	Y1-0, Y2- 4.70	
	- WICKIS	60110.03(1)(3.1)(4.1.0)
2	(NONCOMPOSITE) WIBX35V	Y2+ 6.5.0.5(1.84) + 5.58
MEADONS	DL: 64 PSF	DL: 64+60
10000	LL. may	LL: SO
	SL: 300	SL: 30
	11.125	TL: 172 515
	MMAX. 26 4 FT-16	MMX = FT-K
1	- W16x40	Y1.0 Y2: 4.75

With New Column Grid

