Signal Hill Professional Center: Implementing a Concrete Structural System

Joseph Henry, Structural Option Dr. Linda Hanagan, Advisor Penn State Architectural Engineering Senior Thesis, Spring 2006

- •68,000 square feet of open office space
- Four Aboveground FloorsPre-framed for a bank, first floor
- •Commercial/Light Industrial District of Manassas, VA
- •<u>Standard Suburban Office</u> Building


Building Introduction Notable Features, M Group Architects

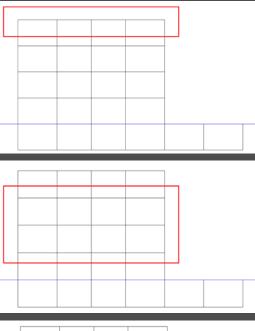
21,000 square feet of parking area achieved through excavating into sloping site

Building Introduction Notable Features, M Group Architects

Structure over parking area slopes with natural terrain

Building Introduction Notable Features, M Group Architects

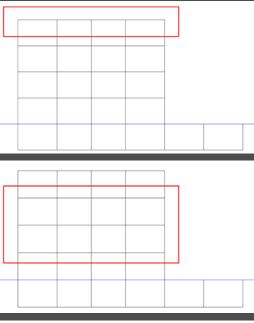
"SlenderCast" precast concrete wall system by Smith-Midland strives to:
Reduce thermal transmission by up to 25%
Protect façade from superstructure movement


Building Introduction Existing Structural System, Morabito Consultants

Goals

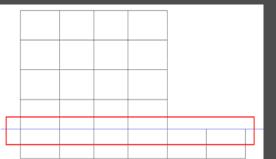
To reduce floor section thickness and structure weight
To lengthen spans for more open office space
To utilize as few laborers as possible

Concrete Structural Design Existing Structural System, Morabito Consultants



Roof Structure: 3" deck on W12x16 Beams, W18x40 Girders

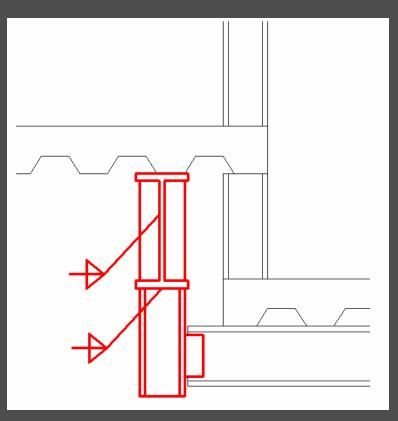
Office Floors 2-4: 3.5" Slab on 3" composite deck, W10x15 Beams, W21x44 Girders


Parking Deck/First Floor: 4" Slab on 2" composite deck, W10x15 Beams, W24x76 Girders

Concrete Structural Design Existing Structural System, Morabito Consultants

Roof Structure: 3" deck on W12x16 Beams, W18x40 Girders

Office Floors 2-4: 3.5" Slab on 3" composite deck, W10x15 Beams, W21x44 Girders

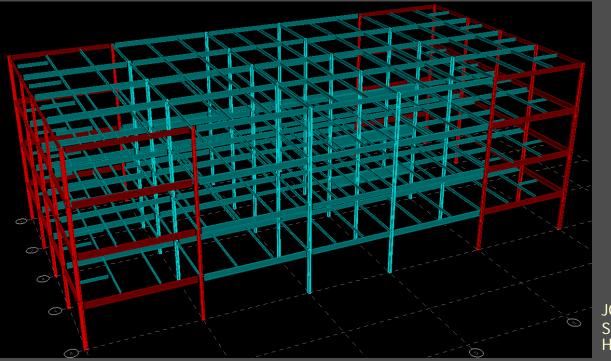


Parking Deck/First Floor: 4" Slab on 2" composite deck, W10x15 Beams, W24x76 Girders

> 250 psf Fire Engine Load

Building Introduction Existing Structural System, Morabito Consultants

Undulating Parking Structure •Attached to first floor diaphragm via coped beams and W6x25 hangers



Building Introduction Existing Structural System, Morabito Consultants

Lateral System

•Seismic Load Controls with 170k base shear

•Moment Frames on building perimeter anchored to shear walls in basement

Thesis Intent University of Leeds

Thesis Outline Concrete Structural Design

Design Includes:

- •Floor Slab
- •Lateral System
- •Columns
- •Footings
- •Connection to Parking Structure

Thesis Outline Concrete Structural Design

Design Includes:

- •Floor Slab
- •Lateral System
- •Columns
- •Footings
- •Connection to Parking Structure

Evaluated Through:

- Structural Efficiency
- Architectural Impact
- •Cost/Schedule Impact
- Possibility of Green Design

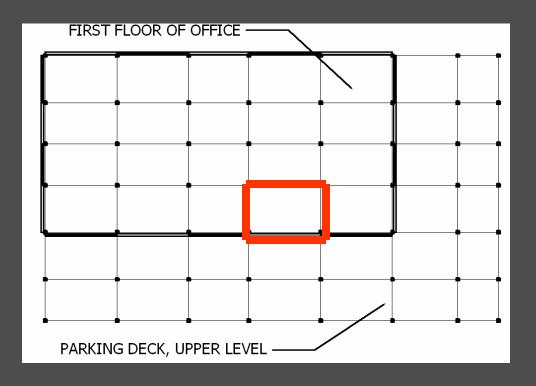
Two Way Slab Types •Flat Plate •Flat Slab with Edge Beams •Flat Slab with Drops •Flat Slab with Drops and Edge Beams •Flat Slab with Beams between all columns

Two Way Slab Types •Flat Plate •Flat Slab with Edge Beams •Flat Slab with Drops •Flat Slab with Drops and Edge Beams •Flat Slab with Beams between all columns

Evaluated Using

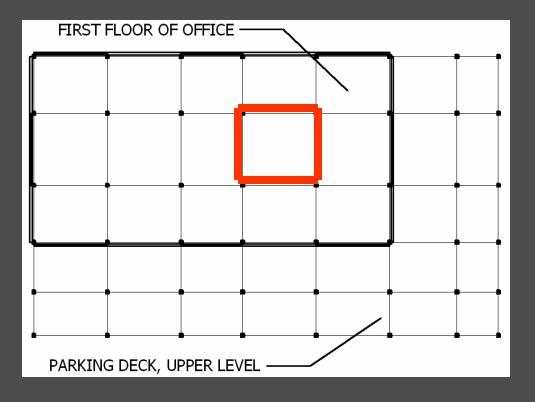
Direct Design Method
ADOSS

Two Way Slab Types

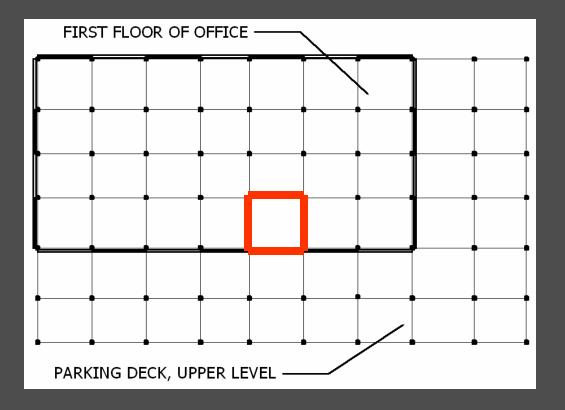

•Flat Plate

•Flat Slab with Edge Beams

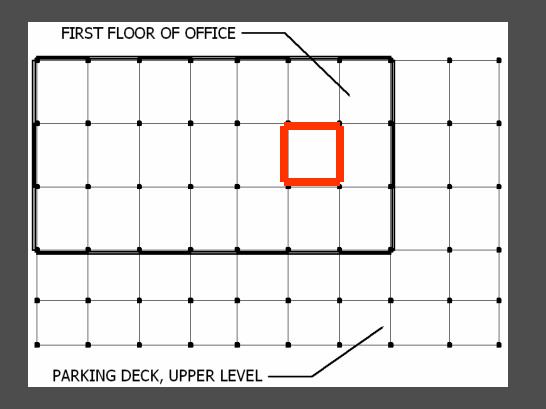
Flat Slab with Drops
Flat Slab with Drops and Edge Beams
Flat Slab with Beams
between all columns Evaluated UsingDirect Design MethodADOSS


Using Four Column Layouts

Column Grid, Existing Layout Maximum Bay Size = 20'-0"x30'-0"


Column Grid, Alternative #1

Maximum Bay Size = 30'-0''x30'-0''


Column Grid, Alternative #2

Maximum Bay Size = 20'-0''x21'-0''

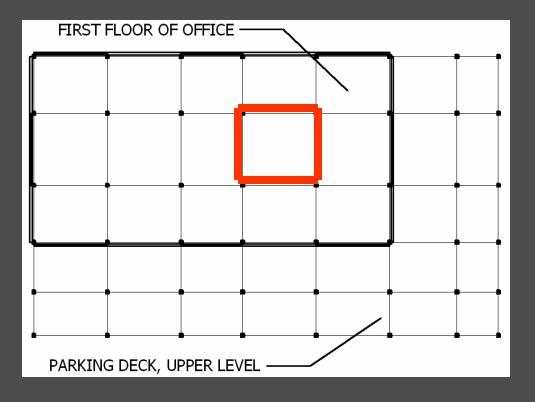
Column Grid, Alternative #3

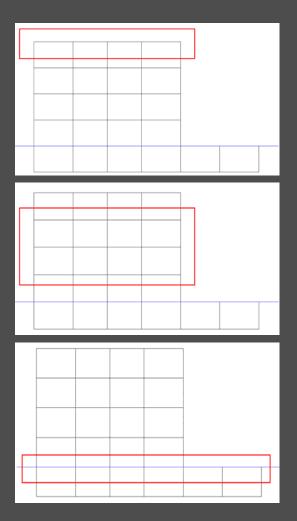
Maximum Bay Size = $25'-0''x^21'-0''$

Problems:

Solutions:

Problems:	Solutions:
•Flexure	•Thicker Slab, Beams between all columns


Problems:	Solutions:
•Flexure	 Thicker Slab, Beams between all columns
 Deflection 	•Edge Beam


Problems:	Solutions:
•Flexure	 Thicker Slab, Beams between all columns
 Deflection 	•Edge Beam
 Architecture 	•Larger Spans

Problems:	Solutions:
•Flexure	 Thicker Slab, Beams between all columns
 Deflection 	•Edge Beam
 Architecture 	•Larger Spans
•Shear	•Drops, Larger Columns

Column Grid, Alternative #1

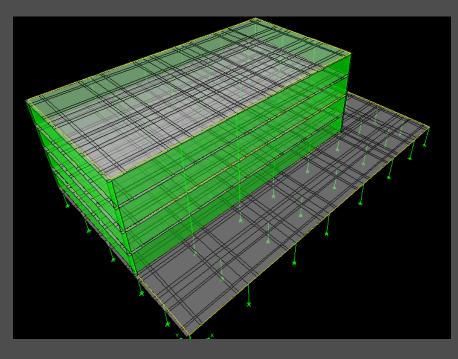
Maximum Bay Size = 30'-0''x30'-0''



Roof Structure: 8" Slab with 3.5" drops

Office Floors 2-4: 10" Slab with 3.5" drops, 4.5" drops at exterior columns

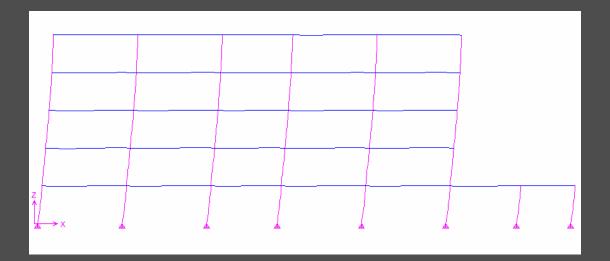
Parking Deck/First Floor: 11" Slab with 3.5" drops, 7" drops under parking live load


Location

Limited wind pressures, seismic will control
170k seismic base shear increases to 354k under concrete system Considerations

•Drift

Structural Strength


Drift Analysis from ETABS Model
Rigid Diaphragm with Columns rigidly attached
Lateral Loads applied to only top 4 diaphragms
Drift measured from Basement Floor

Drift Analysis from ETABS Model

Roof: 0.876" Floor 4: 0.773" Floor 3: 0.607" Floor 2: 0.394" Floor 1: 0.186"

Acceptable Drift: H/400 = 1.57"

Structural Analysis from ADOSS Model
Horizontal Loads applied to Frame
Flexure satisfactory
Larger unbalanced moments at interior columns at Floors 2 and 3 a problem
Larger columns necessary

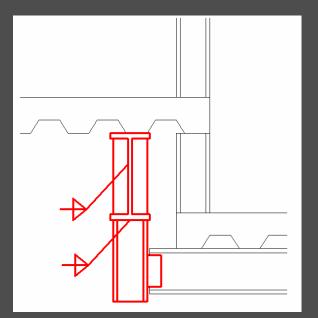
Columns and Footings

Using Moments and Loads from Structural Models
Column sizes dictated by shear in floor system
Per CRSI, minimum reinforcement in columns generally satisfactory
Footing sizes drastically increase by 3-4x in area, by almost 2x in thickness

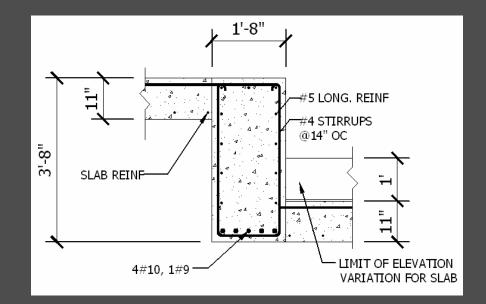
Connection to Parking Structure

Beam Connection to Undulating Parking Structure

•Torsion •Elevation


Concrete Structural Design Connection to Parking Structure

Beam	Size	Max Shear	Max Torsion	Max Moment	Steel Design Summary
A4-B4	20x44	80.7	107.9	888.6	(shear) #4 stirrups @ 14" 11#5 long. Distributed on three sides (flexure) 4#10, 1#9
B4-C4	20x36	80.7	107.9	863.0	(shear) #4 stirrups @ 12" 9 # 5 long. Distributed on three sides (flexure) 4#11, 1#10
C4-D4	20X30	80.7	107.9	516.9	(shear) #4 stirrups @ 10" 7 #5 long. Distributed on three sides (flexure) 4#10, 1#9
D4-E4	20x26	80.7	107.9	7367	(shear) #4 stirrups @ 9.5" 5 #5 long. Distributed on three sides (flexure) bottom row: 4#10, 1#1 top row: 5#9
E4-F4	20x28 +2″ elev.	80.7	107.9	7367	(shear) #4 stirrups @ 9.5" 5 #5 long. Distributed on three sides (flexure) bottom row: 4#10, 1#1 top row: 5#9
F1-F2	24x34 +2″ elev.	96.0	151.0	606.4	(shear) #4 stirrups @ 10" 7 # 5 long. Distributed on three sides (flexure) 4#11, 4#10
F2-F3 F3-F4	24x32	96.0	151.0	606.4	(shear) #4 stirrups @ 10" 7 # 5 long. Distributed on three sides (flexure) 4#11, 4#10


Concrete Structural Design Additional Considerations

Beam Connection to Undulating Parking Structure

Steel Design

Concrete Design

Concrete Structural Design Summary

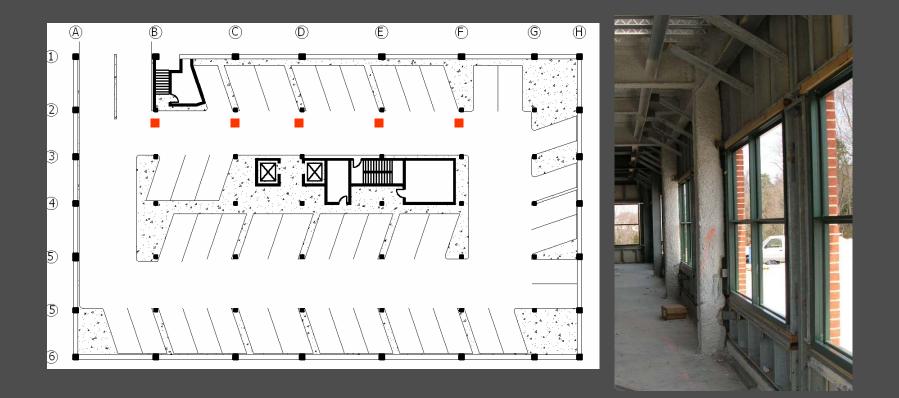
Drop panel system used throughout to combat shear
Concrete Moment Frames sufficient for drift and lateral load resistance
Column sizes dictated by shear and not axial loads
Footing sizes drastically increase
Connection to undulating parking structure achieved through beam

Concrete Structural Design Methods of Evaluation (Breadth Analyses)

•<u>Architectural Impact</u>: Number of Parking Spaces, Size of Obstructing Columns, Façade

•<u>Cost/Schedule Impact</u>: Overall Cost, Erection Time, and Local Adjustments

•<u>Possibility of Green</u> <u>Design</u>: Structural, Cost, and Aesthetic Implications of a Green Roof

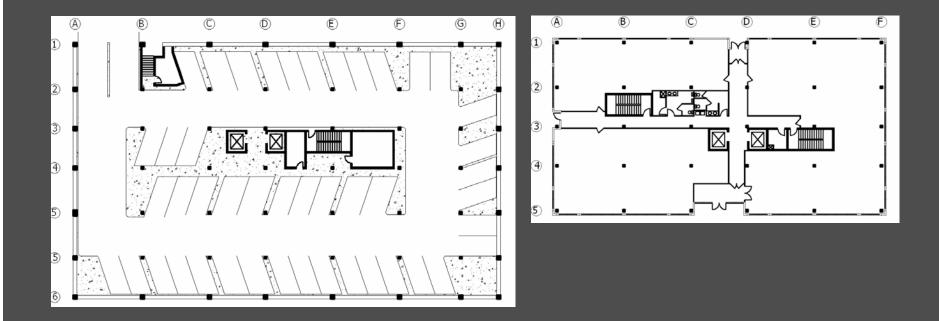

Architectural Design (Breadth 1) Overview and Problem Statement

•Parking Area: New Column Layout overlaps with interior driveway by 2'-6"

•Office Layouts: Interior Corridor area needs to be moved to accommodate parking area and new column layouts

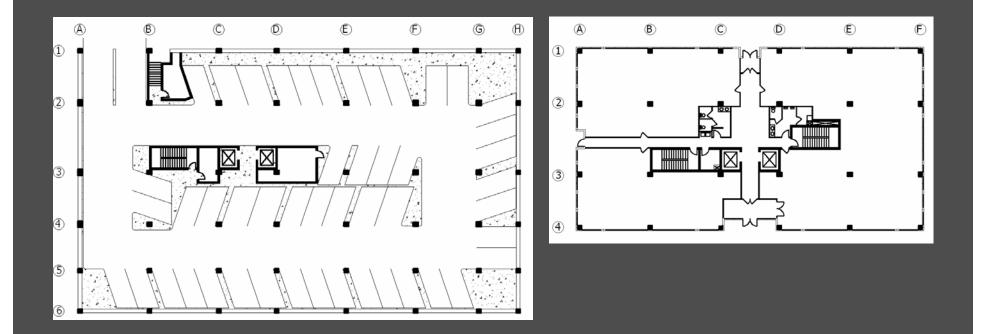
•Façade Layouts: 24" wide columns block windows

Architectural Design (Breadth 1) Overview and Problem Statement

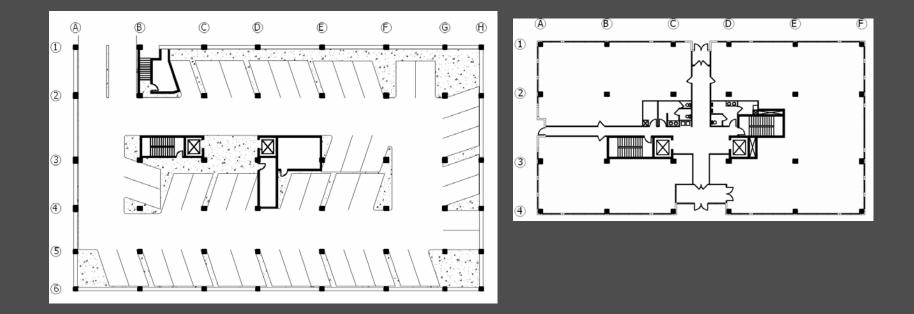

Architectural Design (Breadth 1) Overview and Problem Statement

- •Parking Area: New Column Layout overlaps with interior driveway by 2'-6"
- •Office Layouts: Interior Corridor area needs to be moved to accommodate parking area and new column layouts
- •Façade Layouts: 24" wide columns block windows

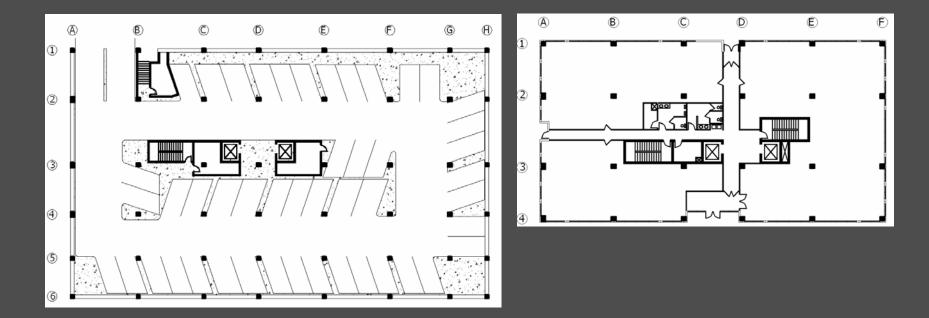
Floorplan evaluated by the Building Owner and Managers Association Industry Standard


Façade evaluated by simplifying Precast Panel use

Architectural Design (Breadth 1) Existing Design


Total Rentable Area: 36,730 square feet
R/U Ratio: 16.74%
Underground Parking Spaces: 44

Architectural Design (Breadth 1) Alternative #1

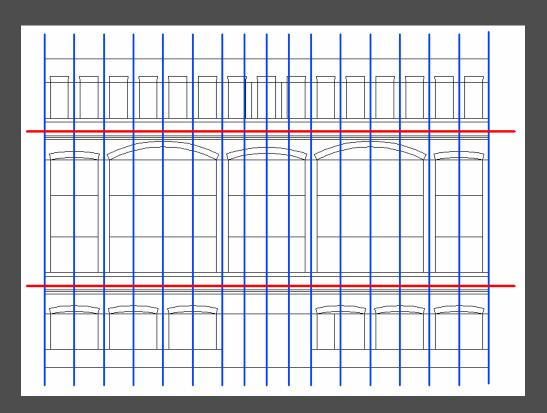

Total Rentable Area: 37,740 square feet
R/U Ratio: 14.77%
Underground Parking Spaces: 48

Architectural Design (Breadth 1) Alternative #2

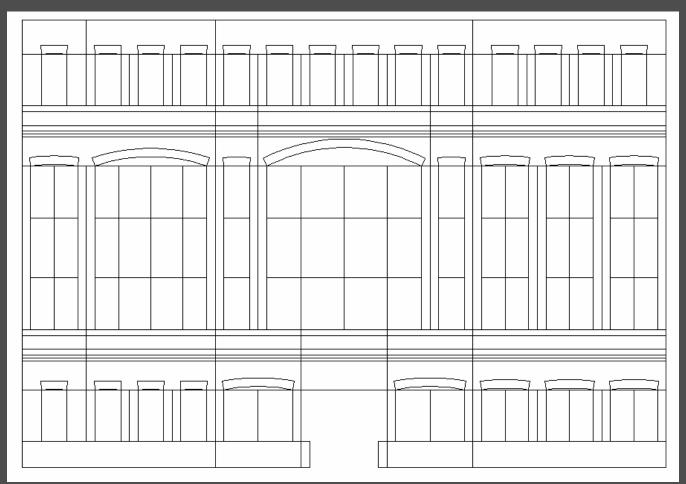
Total Rentable Area: 37,027 square feet
R/U Ratio: 16.09%
Underground Parking Spaces: 46

Architectural Design (Breadth 1) Alternative #3

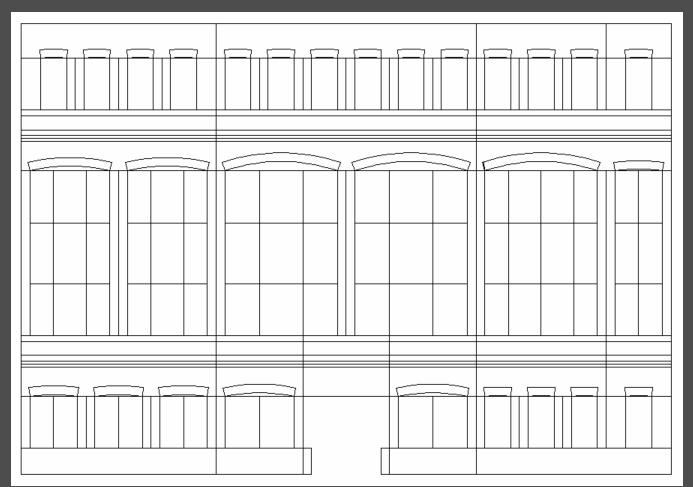
Total Rentable Area: 37,116 square feet
R/U Ratio: 15.90%
Underground Parking Spaces: 47

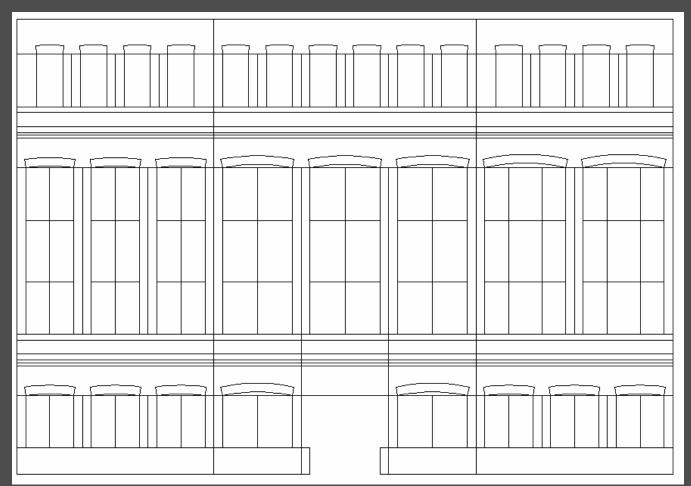

Architectural Design (Breadth 1) Floorplan Study Summary

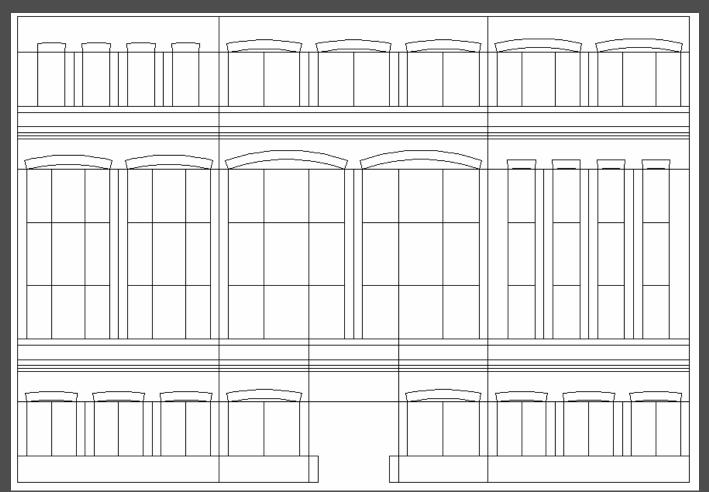
Average Annual Rental Value per usable square feet in Prince William County is \$25
Parking Spaces, if rented, could cost \$50/month

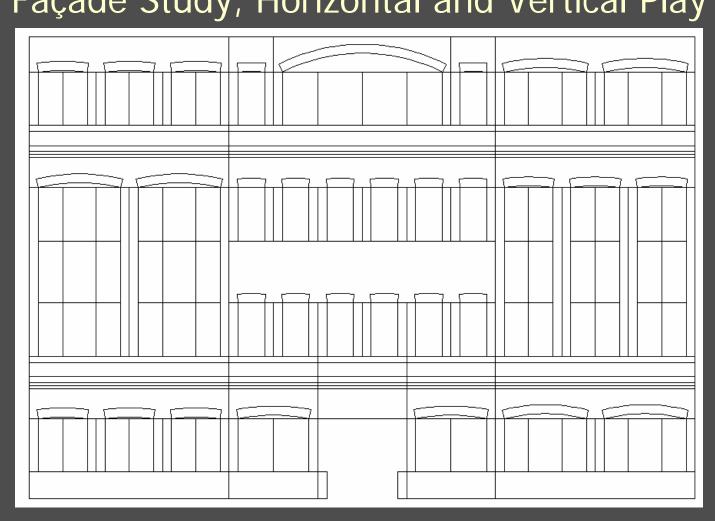

Increased Annual Revenue to the Owner: \$7,425 to \$21,150

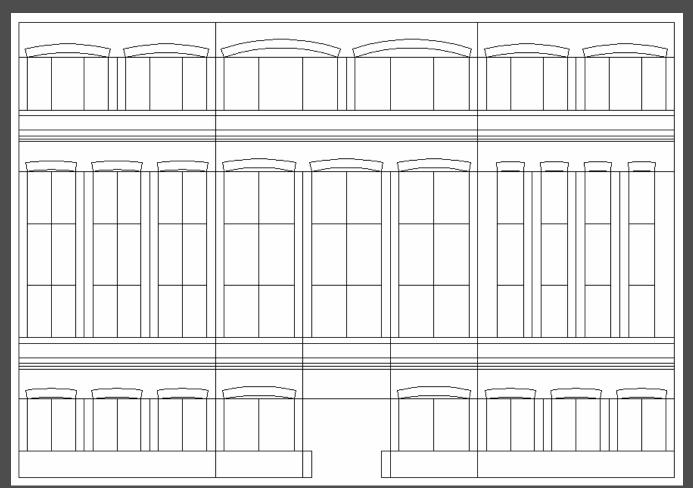
Architectural Design (Breadth 1) Façade Study


 Precast Panels can be shifted and moved to suit the structural layout •Horizontally, panels adhere to 3'-9" and 5'-0" modules •Vertically, the design details draw from base-shaftcapital office building icon

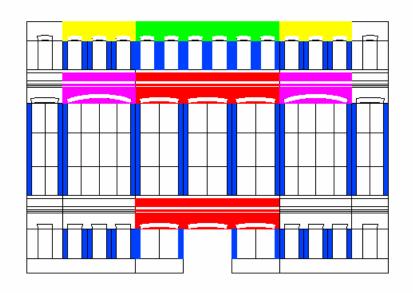

Architectural Design (Breadth 1) Façade Study, Horizontal Play


Architectural Design (Breadth 1) Façade Study, Horizontal Play


Architectural Design (Breadth 1) Façade Study, Horizontal Play

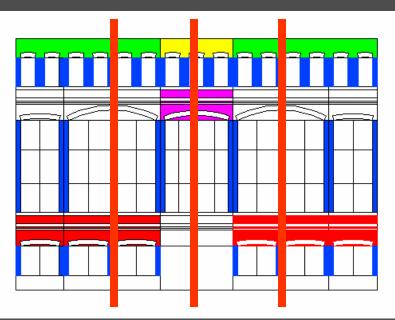

Architectural Design (Breadth 1) Façade Study, Horizontal and Vertical Play

Architectural Design (Breadth 1) Façade Study, Horizontal and Vertical Play



Architectural Design (Breadth 1) Façade Study, Horizontal and Vertical Play

Architectural Design (Breadth 1) Façade Study, Most Economical Redesign



Windows completely free of column obstructions
 Maximum number of panels re-used

•Panels kept under 30'-0" wide

Architectural Design (Breadth 1) Façade Study, Most Economical Redesign

Windows completely free of column obstructions
Maximum number of panels re-used
Panels kept under 30'-0" wide

Cost Estimates from R.S. Means 2006

Material	Cost	Construction Duration
Concrete System		
Columns, Slabs, Beams	\$1,120,566	14 weeks
Footings	\$230,887	2 weeks
Steel System		
Columns and Beams	\$668,928	8 weeks
Deck and Shear Studs	\$170,345	
Poured Conc. On Deck	\$162,010	
Fireproofing	\$73,044	
Total	\$1,074,327	12 weeks, 4 days
Footings	\$73,044	3 days

Composite Steel Costs \$1,147,371 over 13.5 weeks
Concrete Costs \$1,351,453 over 16 weeks
\$200,000+ cost difference in favor of Steel

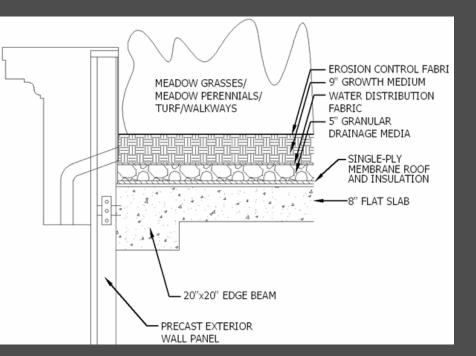
Cost/Schedule Analysis (Breadth 2) Concrete vs. Steel, Local Influences

•Local Cost Adjustments

Location	Concrete Costs	Steel Costs
Washington, DC	0.992	1.062
Fairfax, VA	0.921	0.921
Arlington, VA	0.902	0.898
Alexandria, VA	0.915	0.952
Winchester, VA	0.795	0.891

Cost/Schedule Analysis (Breadth 2) Concrete vs. Steel, Local Influences

•<u>Lead Times</u>: After Design Completion, Procurement, Submittals, and Approvals, it takes 12 weeks to produce structural steel and only 3 weeks to produce rebar


•<u>Supply and Demand</u>: Washington DC area on Portland Cement Association's "tight cement supply" list for 2005 and 2006

•<u>Weather</u>: Per ACI 318-05 concrete must be kept above freezing, which may add cost and duration

Green Roof Addition (Breadth 3) Overview of Green Roof Types

Information from Roofscapes, Inc.

System	Thickness/ Sat.Weight
Flower Carpet	2-3"/ 12-18 psf
Aromatic Garden	3-4"/ 18-24 psf
Savannah	4-6"/ 24-36 psf
Meadows	6-9"/ 36-54 <u>psf</u>

Green Roof Addition (Breadth 3) Implications of Green Roof

Increased Costs

For enlarged roof system: \$17,500 for steel, \$30,000 for concrete
\$10-13 to install and 4-6 man hours per 1000 square feet per year to maintain
\$90,000 to \$117,000 to install (10% of structural system price)
\$720 to \$1,080 to maintain

Green Roof Addition (Breadth 3) Implications of Green Roof

Increased Costs

•For enlarged roof system: \$17,500 for steel, \$30,000 for concrete

\$10-13 to install and 4-6 man hours per 1000 square feet per year to maintain
\$90,000 to \$117,000 to install (10% of structural system price)

•\$720 to \$1,080 to maintain

Benefits

Per LEED Green Building Rating System, eligible for 1 point (Heat Island Effect: Roof, Credit 7.2)
Reduced noise transmission through roof structure
Increased R-values in roof system

Final Conclusions Original Composite Steel Design Review

Pro

- •Light
- Small Columns
- •Cheaper
- •Faster

Con

Average 12" deeper section depth than concrete
Complicated connections at parking structure
Less drift resistance
Time consuming fire protection needed

Final Conclusions Reinforced Concrete Design Review

Pro

- •Smaller floor section depth
- •Simpler connections to parking structure
- •More drift resistant
- No fireproofing required
 More effectively resists water damage from green roof

Con

Heavy system with larger footings
Large obstructing columns
More expensive by
\$200,000
Longer erection time by
2.5 weeks

Final Conclusions Recommendations

Hybrid Structure:Concrete up to First FloorComposite Steel Above

- •Fireproofing simplified between office area and underground parking
- •Better appearance, smaller section depth in parking area
- •Simplified connections to parking structure
- •Good cost and schedule compromise
- •Concrete first floor helps resist lateral loads

Thank You Questions and Comments?

